Biological Activities of Grape Seed By-Products and Their Potential Use as Natural Sources of Food Additives in the Production of Balady Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Grape Seeds Powder
2.3. Proximate Chemical Composition
2.4. Determination of Total Phenols, Flavonoids, and Scavenging Activity
2.5. Determination of Metal Elements
2.6. Extraction of Polyphenolics of Grape Seeds
2.7. HPLC Analysis of Phenolic Components
2.8. Farinograph Properties
2.9. Preparation of Grape Seeds Balady Bread
2.10. Sensory Evaluation Methods
2.11. Statistical Analysis
3. Results and Discussions
3.1. Chemical Composition of Grape Seed Powder (GSP) and Balady Bread Supplemented with Different Ratios of GSP
3.2. Phenolic Acids Identification and Antioxidants Capacity in a Grape Seed Powder
3.3. Rheological Properties of Balady Bread Supplemented with Different Ratios of GSP
3.4. Sensory Properties of Balady Bread Supplemented with Different Ratios of GSP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruno, J.A.; Konas, D.W.; Matthews, E.L.; Feldman, C.H.; Pinsley, K.M.; Kerrihard, A.L. Sprouted and non-sprouted chickpea flours: Effects on sensory traits in pasta and antioxidant capacity. Pol. J. Food Nutr. Sci. 2019, 69, 203–209. [Google Scholar] [CrossRef]
- Cappa, C.; Alamprese, C. Brewer’s spent grain valorization in fiber-enriched fresh egg pasta production: Modelling and optimization study. LWT-Food Sci. Technol. 2017, 82, 464–470. [Google Scholar] [CrossRef]
- Drabińska, N.; Ciska, E.; Szmatowicz, B.; Krupa-Kozak, U. Broccoli by-products improve the nutraceutical potential of gluten-free mini sponge cakes. Food Chem. 2018, 267, 170–177. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; El-Mogy, M.M.; Parmar, A.; Mansour, A.T.; Shalaby, T.A.; Ali, M.R. Phytochemical characterization and utilization of dried red beetroot (Beta vulgaris) peel extract in maintaining the quality of Nile Tilapia Fish Fillet. Antioxidants 2022, 11, 906. [Google Scholar] [CrossRef]
- Majzoobi, M.; Poor, Z.V.; Jamalian, J.; Farahnaky, A. Improvement of the quality of gluten-free sponge cake using different levels and particle sizes of carrot pomace powder. Int. J. Food Sci. Technol. 2016, 51, 1369–1377. [Google Scholar] [CrossRef]
- Abu-Shahba, M.S.; Mansour, M.M.; Mohamed, H.I.; Sofy, M.R. Biosorptive Removal of Cadmium Ions from hydroponic Solution with indigenous garlic peel and mercerized garlic peel on lettuce productivity. Sci. Hortic. 2022, 293, 110727. [Google Scholar] [CrossRef]
- Ramón-Gonçalves, M.; Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. J. Waste Manag. 2019, 96, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Khalek, H.H.; Mattar, Z.A. Biological activities of Egyptian grape and mulberry by-products and their potential use as natural sources of food additives and nutraceuticals foods. J. Food Meas. Charact. 2022, 6, 1559–1571. [Google Scholar] [CrossRef]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-food byproducts as a new source of natural food additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Santos, P.; Zanuso, E.; Genisheva, Z.; Rocha, C.M.R.; Teixeira, J.A. Green and sustainable valorization of bioactive phenolic compounds from pinus by-products. Molecules 2020, 25, 2931. [Google Scholar] [CrossRef]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.; Gomez, P.M. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Krupa-Kozak, U.; Drabi´nska, N.; Baczek, N.; Šimková, K.; Starowicz, M.; Jeli´nski, T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021, 10, 819. [Google Scholar] [CrossRef] [PubMed]
- Pfukwa, T.M.; Fawole, O.A.; Manley, M.; Pieter, A.; Gouws, P.A.; Opara, U.L.; Mapiye, C. Food preservative capabilities of grape (Vitis vinifera) and clementine mandarin (Citrus reticulata) byproducts extracts in South Africa. Sustainability 2019, 11, 1746. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Abdullah, J.J.; Greetham, D.; Fu, D.; Yu, M.; Ren, L.; Li, S.; Lu, D. Valorization of food waste into biofertiliser and its field application. J. Clean. Prod. 2018, 187, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Shirahigue, L.D.; Regina, S.; Antonini, C. Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Food Technol. 2020, 50, 1–17. [Google Scholar] [CrossRef]
- Jaisanthi, J.; Thahira, A. Phytonutrient composition, antioxidant activity and acceptability of baked product incorporated with grape seed extract. J. Hum. Nutr. Food Sci. 2014, 2, 1049. [Google Scholar]
- Jordão, A.M.; Cosme, F. Grapes and Wines—Advances in Production, Processing, Analysis and Valorization; IntechOpen: London, UK, 2018; p. 384. Available online: https://www.intechopen.com/books/6077 (accessed on 1 June 2022).
- Peixoto, C.M.; Inês, M.; Alves, M.J.; Calhelha, R.C. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Poveda, J.M.; Loarce, L.; Alarcón, M.A. Revalorization of winery by-products as source of natural preservatives obtained by means of green extraction techniques. Ind. Crops Prod. 2018, 112, 617–625. [Google Scholar] [CrossRef]
- Hoye, C.; Ross, C. Total phenolic content, consumer acceptance, and Instrumental analysis of bread made with grape seed flour. J. Food Sci. 2011, 76, S428–S436. [Google Scholar] [CrossRef]
- Peighambardoust, S.; Aghamirzaei, M. Physicochemical, nutritional, shelf life and sensory properties of iranian sangak bread fortified with grape seed powder. J. Food Process Technol. 2014, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Burcinl, E.; Vural, H. Grape seed four is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. Meat Sci. 2011, 88, 179–183. [Google Scholar] [CrossRef]
- Rubilar, J.; Cruz, R.; Khmelinskii, I.; Vieira, M. Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coatings on different food matrices. Int. J. Food Stud. 2013, 2, 22–38. [Google Scholar] [CrossRef]
- Garcia, M.M.; Rivas-Gonzalo, J.C.; Ibanez, E.; Garcia, M.C. Recovery of catechins and proanthocyanidins from winery by-products using subcritical water extraction. Anal. Chim. Acta. 2006, 563, 44–50. [Google Scholar] [CrossRef]
- Choi, C.; Chung, H.; Choi, M.; Kang, M. Effects of grape pomace on the antioxidant defense system in diet-induced hypercholesterolemic rabbits. Nutr. Res. Pract. 2010, 4, 114–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanakis, C.M.; Aldawoud, T.M.S.; Rizou, M.; Rowan, N.J.; Ibrahim, S.A. Food ingredients and active compounds against the Coronavirus disease (COVID-19) pandemic: A comprehensive review. Foods 2020, 9, 1701. [Google Scholar] [CrossRef] [PubMed]
- Aksoylu, Z.; Cagindi, O.; Kose, E. Effects of blueberry, grape seed powder and poppy seed incorporation on physicochemical and sensory properties of biscuit. J. Food Qual. 2015, 38, 164–174. [Google Scholar] [CrossRef]
- Aghamirzaei, M.; Peighambardoust, S.H.; Azadmard-Damirchi, S.; Majzoob, M. Effects of grape seed powder as a functional ingredient on flour physicochemical characteristics and dough rheological properties. J. Agric. Sci. Technol. 2015, 17, 365–373. Available online: http://jast.modares.ac.ir/article-23-1326-en.html (accessed on 1 June 2022).
- Özcan, M.M. Mineral contents of several grape seeds. Asian. J. Chem. 2010, 22, 6480–6488. [Google Scholar]
- Walker, R.; Tseng, A.; Cavender, G.; Ross, A.; Zhao, Y. Physicochemical, nutritional, and sensory qualities of wine grape pomace fortified baked goods. J. Food Sci. 2014, 79, S1811–S1822. [Google Scholar] [CrossRef]
- Fernández-Fernández, A.M.; Dellacassa, E.; Nardin, T.; Larcher, R.; Ibañez, C.; Terán, D.; Gámbaro, A.; Medrano-Fernandez, A.; del Castillo, M.D. Tannat Grape skin: A Feasible ingredient for the formulation of snacks with potential for reducing the risk of diabetes. Nutrients 2022, 14, 419. [Google Scholar] [CrossRef]
- Maner, S.; Sharma, A.K.; Banerjee, K. Wheat flour replacement by wine grape pomace powder positively affects physical, functional and sensory properties of cookies. Proc. Natl. Acad. Sci. USA 2017, 87, 109–113. [Google Scholar] [CrossRef]
- Guiné, R.P.; Florença, S.G.; Barroca, M.J.; Anjos, O. The link between the consumer and the innovations in food product development. Foods 2020, 9, 1317. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahim, E.A.; El-Beltagi, H.S. Constituents of apple, parsley and lentil edible plants and their therapy treatments for blood picture as well as liver and kidney functions against lipidemic disease. Elec. J. Environ. Agric. Food Chem. 2010, 9, 1117–1127. [Google Scholar]
- Afify, A.E.-M.M.R.; El-Beltagi, H.S.; Aly, A.A.; El-Ansary, A.E. Antioxidant enzyme activities and lipid peroxidation as biomarker for potato tuber stored by two essential oils from Caraway and Clove and its main component carvone and eugenol. Asian Pac. J. Trop. Biomed. 2012, 2, S772–S780. [Google Scholar] [CrossRef]
- Acun, S.; Gul, H. Effects of grape pomace and grape seed flours on cookie quality. Qual. Assur. Saf. Crop. 2014, 6, 81–88. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; El-Desouky, W.; Yousef, R.S. Synergistic antioxidant scavenging activities of grape seed and green tea extracts against oxidative stress. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Helou, C.; Gadonna-Widehem, P.; Robert, N.; Branlard, G.; Thebault, J.; Librere, S.; Jacquot, S.; Mardon, J.; Piquet-Pissaloux, A.; Chapron, S.; et al. The impact of raw materials and baking conditions on Maillard reaction products, thiamine, folate, phytic acid and minerals in white bread. Food Funct. 2016, 7, 2498–2507. [Google Scholar] [CrossRef]
- Bredariol, P.; Vanin, F.M. Bread Baking Review: Insight into Technological Aspects in Order to Preserve Nutrition. Food Rev. Int. 2021, 1–18. [Google Scholar] [CrossRef]
- Soliman, A.S.; Abbas, M.S.; Abol-Ella, M.F.; Eassawy, M.M.; Mohamed, R.H. Towards bridging wheat gap in Egypt by using cassava, quinoa and guar as supplements for the production of balady bread. J. Food Meas. Charact. 2019, 13, 1873–1883. [Google Scholar] [CrossRef]
- Yaseen, A.A.; Shouk, A.E.H.A.; Selim, M.M. Egyptian balady bread and biscuit quality of wheat and triticale flour blends. Pol. J. Food Nutr. Sci. 2007, 57, 25–30. [Google Scholar]
- Ghonaim, M.M.; Mohamed, H.I.; Omran, A.A.A. Evaluation of wheat salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet. Resour Crop Evol. 2021, 68, 227–242. [Google Scholar] [CrossRef]
- AOAC. American of Cereal Association Chemists Approved Method of the AOAC, 10th ed.; American Association of Cereal Chemists: St. Paul, MD, USA, 2000. [Google Scholar]
- Nwosu, J.N.; Owuamanam, C.I.; Omeire, G.C.; Eke, C.C. Quality parameters of bread produced from substitution of wheat flour with cassava flour using soybean as an improver. Am. J. Res. Comm. 2014, 2, 99–118. [Google Scholar]
- Wu, C.-H.; Murthy, H.N.; Hahn, E.-J.; Paek, K.-Y. Improved production of caffeic acid derivatives in suspension cultures of Echinacea purpurea by medium replenishment strategy. Arch. Pharmacal Res. 2007, 30, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Baba, S.A.; Malik, S.A. Determination of total phenolic and flavonoid content, antimicrobialand antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 2015, 9, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Lee, Y.J.; Kim, Y.H.; Yoon, K.S. Antioxidant and antimicrobial activities of Quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea. Prev. Nutr Food Sci. 2017, 22, 195–202. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolourisation assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Yadav, K.; Bajaj, R.K.; Mandal, S.; Saha, P.; Mann, B. Evaluation of total phenol content and antioxidant properties of encapsulated grape seed extract in yoghurt. Int. J. Dairy Technol. 2018, 71, 96–104. [Google Scholar] [CrossRef]
- Hegazy, A.L.; Ammer, M.S.; Ibrahium, M.I. Production of Egyptian gluten-free bread. World J. Dairy Food Sci. 2009, 4, 123–128. [Google Scholar]
- Stone, H.; Sidel, J.L. The role of sensory evaluation in the food industry. Food Qual. Prefer. 1993, 4, 65–73. [Google Scholar]
- Bradley, E.L.; Blackwood, L.G. Comparing paired data: A simultaneous test for means and variances. Am. Stat. 1989, 43, 234–235. [Google Scholar]
- Mohamed, A.I.A.; Özcan, M.M.; Al Juhaimi, F.; Babiker, E.F.E.; Ghafoor, K.; Banjanin, T.; Osman, M.A.; Gassem, M.A.; Alqah, H.A. Chemical composition, bioactive compounds, mineral contents, and fatty acid composition of pomace powder of different grape varieties. J. Food Process. Preserv. 2020, 44, e14539. [Google Scholar] [CrossRef]
- Lachman, J.; Hejtmánková, A.; Hejtmánková, K.; Horníčková, Š.; Pivec, V.; Skala, O.; Dědina, M.; Přibyl, J. Towards complex utilisation of winemaking residues: Characterisation of grape seeds by total phenols, tocols and essential elements content as a by-product of winemaking. Ind. Crops Prod. 2013, 49, 445–453. [Google Scholar] [CrossRef]
- Shallan, M.A.; El-Beltagi, H.S.; Mona, A.M.; Amera, T.M. Chemical evaluation of pre-germinated brown rice and whole grain rice bread. Elec. J. Environ. Agricult. Food Chem. 2010, 9, 958–971. [Google Scholar]
- El-Beltagi, H.S.; El-Senousi, N.A.; Ali, Z.A.; Omran, A.A. The impact of using chickpea flour and dried carp fish powder on pizza quality. PLoS ONE 2017, 12, e0183657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.C.; Christophe, B.; Attia, H. Dietary fiber and fiber-rich by-products of food processing: Characterization, technological functionality and commercial applications: A review. Food Chem. 2011, 2, 411–421. [Google Scholar] [CrossRef]
- Ajila, C.M.; Aalami, M.; Leelavathi, K.; Prasada Rao, U.J.S. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. Technol. 2010, 11, 219–224. [Google Scholar] [CrossRef]
- Lonnie, M.; Hooker, E.; Brunstrom, J.M. Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients 2018, 10, 360. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahim, E.A.; El-Beltagi, H.S.; Romela, R.M. White Bean seeds and Pomegranate peel and fruit seeds as hypercholesterolemic and hypolipidemic agents in albino rats. Grasas Y Aceites 2013, 64, 50–58. [Google Scholar] [CrossRef]
- Chen, S.X.; Ni, Z.J.; Thakur, K.; Wang, S.; Zhang, J.G.; Shang, Y.F.; Wei, Z.J. Effect of grape seed power on the structural and physico chemical properties of wheat gluten in noodle preparation system. Food Chem. 2021, 355, 129500. [Google Scholar] [CrossRef]
- Fouad, G.I.; Rizk, M.Z. Possible neuromodulating role of different grape (Vitis vinifera L.) derived polyphenols against Alzheimer’s dementia: Treatment and mechanisms. Bull. Natl. Res. Cent. 2019, 43, 108. [Google Scholar] [CrossRef]
- Khalil, A.; Tazeddinova, D. The upshot of polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. Nat. Prod. Bioprospecting. 2020, 10, 411–429. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; Mohamed, H.I.; Abdelazeem, A.S.; Youssef, R.; Safwat, G. GC-MS analysis, antioxidant, antimicrobial and anticancer activities of extracts from Ficus sycomorus fruits and leaves. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Afify, A.E.M.M.R.; Shalaby, E.A.; El-Beltagi, H.S. Antioxidant activity of aqueous extracts of different caffeine products. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Kupe, M.; Karatas, N.; Unal, M.S.; Ercisli, S.; Baron, M.; Sochor, J. Phenolic composition and antioxidant activity of peel, pulp and seed extracts of different clones of the turkish grape cultivar. Karaerik Plants 2021, 10, 2154. [Google Scholar] [CrossRef] [PubMed]
- Meral, R.; Doğan, İ.S. Grape seed as a functional food ingredient in bread-making. Int. J. Food Sci. Nutr. 2013, 64, 372–379. [Google Scholar] [CrossRef]
- Abdel-Rahim, E.; El-Beltagi, H.S.; Ali, R.F.M.; Amer, A.A.; Mousa, S.M. The effects of using synthetic and natural color foods on lipid profile and liver function in rats. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 11, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wang, W.; Li, Y. Dough properties, bread quality, and associated interactions with added phenolic compounds: A review. J. Funct. Foods 2019, 52, 629–639. [Google Scholar] [CrossRef]
- Guaita, M.; Bosso, A. Polyphenolic characterization of grape skins and seeds of four Italian red cultivars at harvest and after fermentative maceration. Foods 2019, 8, 395. [Google Scholar] [CrossRef] [Green Version]
- Matloub, A.A. Optimization of polyphenol extraction from Vitis vinifera L. leaves, antioxidant activity and its correlation with amelioration effect on AlCl3-induced Alzheimer’s disease. Arch. Pharm. Sci. Ain Shams Univ. 2018, 2, 97–110. [Google Scholar] [CrossRef]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat bread fortification by grape pomace powder: Nutritional, technological, antioxidant, and sensory properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Mironeasa, S.; Codina, G.; Mironeasa, C. The effect of wheat flour substitution with grape seed flour on the rheological parameters of the dough assessed by Mixolab. J. Texture Stud. 2012, 43, 40–48. [Google Scholar] [CrossRef]
- Munteanu, M.F.; Gligor, R.; Alexa, E.; Poiana, A.M.; Onet, M. Determination of the nutritional properties from grape seed flour. Curr. Opin. Biotechnol. 2013, 24, S115. [Google Scholar] [CrossRef]
- Rosales Soto, M.U.; Brown, K.; Ross, C.F. Antioxidant activity and consumer acceptance of grape seed flour-containing food products. Int. J. Food Sci. Technol. 2012, 47, 592–602. [Google Scholar] [CrossRef]
- Baxter, N.J.; Lilley, T.H.; Haslam, E.; Williamson, M.P. Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochem. 1997, 36, 5566–5577. [Google Scholar] [CrossRef]
- Valkova, V.; Duranova, H.; Stefanikova, J.; Miskeje, M.; Tokar, M.; Gabriny, L.; Kowalczewski, P.Ł.; Kacániova, M. Wheat bread with grape seeds micropowder: Impact on dough rheology and bread properties. Appl. Rheol. 2020, 30, 138–150. [Google Scholar] [CrossRef]
- Schleibinger, M.; Meyer, A.L.; Afsar, N.; Gyorgy, N.A.; Dicker, V.; Schmitt, J.J. Impact of dietary fibers on moisture and crumb firmness of brown bread. Advnced J. Food Sci. Technol. 2013, 5, 1281–1284. [Google Scholar] [CrossRef]
- Seleem, H.A.; Omran, A.A. Evaluation quality of one layer flat bread supplemented with beans and sorghum baked on hot metal surface. Food Nutr. Sci 2014, 5, 2246–2256. [Google Scholar] [CrossRef] [Green Version]
- Eshak, N.S. Sensory evaluation and nutritional value of balady flat bread supplemented with banana peels as a natural source of dietary fiber. Ann. Agric. Sci. 2016, 61, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Amer, A.A.; El-Beltagi, H.S.; Ali, R.F.M.; Mousa, S.M.; Abdel-Rahim, E. The effects of wheat flour and barley flour on the quality and properties of biscuits colored with synthetic and natural colorants. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 11, 30–38. [Google Scholar] [CrossRef] [Green Version]
Ingredients | Bb Control | GSP 5% | GSP 10% | GSP 15% |
---|---|---|---|---|
wheat flour 72% (g) | 100 | 95 | 90 | 85 |
Grape seeds flour (g) | 0 | 5 | 10 | 15 |
Corn oil | 3.5 | 3.5 | 3.5 | 3.5 |
Sugar | 6 | 6 | 6 | 6 |
Salt (g) | 2 | 2 | 2 | 2 |
Water (mL) | 60 | 66 | 72 | 79 |
Yeast | 3 | 3 | 3 | 3 |
Samples | Moisture (%) | Ash (%) | Fat (%) | Protein (%) | Total Carbohydrate (%) | Fiber (%) | Fe (mg/kg) | Zn (mg/kg) |
---|---|---|---|---|---|---|---|---|
GSP | 7.16 ± 0.85 d | 3.54 ± 0.17 a | 10.48 ± 0.58 a | 13.14 ± 0.31 b | 31.68 ± 0.53 a | 34.0 ± 0.83 a | 37.7 ± 0.51 a | 9.27 ± 0.32 a |
Bb control | 51.65 ± 0.71 c | 1.9 ± 0.21 c | 3.55± 0.26 d | 12.05 ± 0.40 c | 29.83 ± 0.33 b | 1.02 ± 0.16 e | 8.3 ± 0.27 e | 6.52 ± 0.34 d |
GSP 5% | 53.72 ± 0.46 b | 3.08 ± 0.31 b | 4.83 ± 0.35 c | 13.82 ± 0.41 a | 21.20± 0.57 c | 3.35 ± 0.3 d | 13.15 ± 0.37 d | 7.16 ± 0.16 c |
GSP 10% | 54.8 ± 0.56 a | 3.41 ± 0.25 a | 6.75 ± 0.55 b | 13.85 ± 0.38 a | 16.24 ± 0.61 d | 4.95 ± 0.48 c | 14.96± 0.44 c | 7.79 ± 0.25 b |
GSP 15% | 55.19 ± 0.26 a | 3.48 ± 0.27 a | 7.55 ± 0.62 b | 13.63 ± 0.26 a | 13.25. ± 0.72 e | 6.9 ± 0.50 b | 21.51 ± 0.5 b | 7.61 ± 0.19 b |
Compound | Concentration (mg/g) |
---|---|
Gallic acid | 23.87 |
Protocatechuic acid | 17.45 |
p-hydroxybenzoic acid | 5.39 |
Cateachin | 1.39 |
Caffeic acid | 1.49 |
Syringic acid | 0.61 |
Vanilic acid | 0.82 |
Ferulic acid | 1.06 |
p-cumaric acid | 0.11 |
Rutin | 3.58 |
Quercetin | 0.18 |
Kaempferol | 0.13 |
Samples | Water Absorption (WA) % | Dough Development Time (DTT) Min | Dough Stability Min | Mixing Tolerance Index (MTI) BUE * | Farinograph Quality Number | Time to Breakdown |
---|---|---|---|---|---|---|
Bb control | 63.66 ± 0.53 c | 4.59 ± 0.52 c | 4.99 ± 0.72 c | 69.46 ± 1.59 b | 68.46 ± 1.41 c | 6.03 ± 1.52 b |
GSP 5% | 65.85 ± 0.48 b | 8.71 ± 0.48 a | 12.72 ± 0.79 a | 33.45 ± 1.48 d | 129.45 ± 1.48 a | 13.95 ± 1.45 a |
GSP 10% | 66.89 ± 0.38 a | 6.14 ± 0.37 b | 7.18 ± 0.51 b | 56.89 ± 0.78 c | 79.89 ± 0.78 b | 8.57 ± 0.70 b |
GSP 15% | 67.26± 0.41 a | 5.12 ± 0.62 c | 4.09 ± 0.81 c | 80.06 ± 1.91 a | 68.06± 1.91 c | 6.53 ± 1.91 b |
Samples | Taste | Chewing Ability | Texture | Aroma | Color | Roundness | Crumb | Appearance | Overall Acceptability |
---|---|---|---|---|---|---|---|---|---|
Bb control | 9.4 ± 0.70 a | 9.0 ± 1.05 a | 9.1 ± 0.54 a | 9.2 ± 0.59 a | 9.2 ± 0.69 a | 9.2 ± 0.55 a | 9.3 ± 0.67 a | 9.0 ± 0.72 a | 9.3 ± 0.67 a |
GSP 5% | 7.6 ± 0.51 b | 8.1 ± 1.20 ab | 7.7 ± 1.16 b | 7.8 ± 1.03 b | 7.8 ± 0.73 b | 7.1 ± 1.16 b | 7.9 ± 0.59 b | 7.8 ± 1.05 b | 8.5 ± 0.75 ab |
GSP 10% | 7.2 ± 0.32 b | 7.2 ± 1.14 b | 6.9 ± 1.20 b | 7.8 ± 1.32 b | 6.6 ± 0.85 c | 6.2 ± 1.03 bc | 6.4 ± 0.46 c | 6.9 ± 1.12 b | 7.6 ± 0.57 b |
GSP 15% | 5.2 ± 0.83 c | 5.2 ± 0.72 c | 5.3 ± 0.64 c | 5.8 ± 0.42 c | 5.8 ± 0.43 c | 5.2 ± 0.32 c | 5.6 ± 0.35 d | 5.1 ± 0.40 c | 5.9 ± 0.52 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkatry, H.O.; Ahmed, A.R.; El-Beltagi, H.S.; Mohamed, H.I.; Eshak, N.S. Biological Activities of Grape Seed By-Products and Their Potential Use as Natural Sources of Food Additives in the Production of Balady Bread. Foods 2022, 11, 1948. https://doi.org/10.3390/foods11131948
Elkatry HO, Ahmed AR, El-Beltagi HS, Mohamed HI, Eshak NS. Biological Activities of Grape Seed By-Products and Their Potential Use as Natural Sources of Food Additives in the Production of Balady Bread. Foods. 2022; 11(13):1948. https://doi.org/10.3390/foods11131948
Chicago/Turabian StyleElkatry, Haiam O., Abdelrahman R. Ahmed, Hossam S. El-Beltagi, Heba I. Mohamed, and Nareman S. Eshak. 2022. "Biological Activities of Grape Seed By-Products and Their Potential Use as Natural Sources of Food Additives in the Production of Balady Bread" Foods 11, no. 13: 1948. https://doi.org/10.3390/foods11131948
APA StyleElkatry, H. O., Ahmed, A. R., El-Beltagi, H. S., Mohamed, H. I., & Eshak, N. S. (2022). Biological Activities of Grape Seed By-Products and Their Potential Use as Natural Sources of Food Additives in the Production of Balady Bread. Foods, 11(13), 1948. https://doi.org/10.3390/foods11131948