Does Production of Clarias gariepinus × Heterobranchus longifilis Hybrids Influence Quality Attributes of Fillets?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish, Rearing, and Housing Facilities
2.2. pH Measurement
2.3. Colour Measurement
2.4. Chemical Analysis
2.5. Nutritional Value
2.6. Structure
2.7. Cooking Loss
2.8. Texture Profile Analysis
2.9. Sensory Analysis
2.10. Statistical Analysis
3. Results
3.1. Zootechnical Parameters
3.2. Proximate Composition and Fat Characteristics of Fillets
3.3. Color of Fillets
3.4. pH and Cooking Loss of Fillets
3.5. Muscle Structure
3.6. Texture of Fillets
3.7. Sensory Assessment of Fillets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Green, B.W.; Rawles, S.D. Comparative growth and yield of channel catfish and channel x blue hybrid catfish fed a full or restricted ration. Aquac. Res. 2010, 41, e109–e119. [Google Scholar] [CrossRef]
- Solomon, R.J.; Taruwa, S.M. The growth comparison of two catfishes (C. gariepinus and Heteroclarias). Nat. Sci. 2011, 9, 138–148. [Google Scholar]
- Owodeinde, F.G.; Fakoya, K.A.; Anetekhai, M.A. Growth performance of hybrid catfish Clarias gariepinus and Heterobranchus bidorsalis on earthen ponds. Asian J. Biol. Sci. 2012, 5, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Orie, A.M.; Omotoyinbo, S.O.; Sadiku, S.O.E. The growth and body composition of Clarias gariepinus fingerlings fed combined different sources of lipids. J. Aquac. Res. Dev. 2013, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Chwastowska-Siwiecka, I.; Skiepko, N.; Pomianowski, J.F.; Kondratowicz, J. Pomiary morfometryczne i ocena jakości mięsa suma afrykańskiego. Med. Weter 2016, 72, 102–109. [Google Scholar]
- Laureati, M.; Cattaneo, C.; Bergamaschi, V.; Proserpio, C.; Pagliarini, E. School children preferences for fish formulations: The impact of child and parental food neophobia. J. Sens. Stud. 2016, 31, 408–415. [Google Scholar] [CrossRef]
- Wysocki, A.F.; House, L.; Messina, W.A., Jr. Seafood Perception among People Aged 55 and above: Summary of Focus Groups Results: FE821; University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2019; Available online: https://edis.ifas.ufl.edu/FE821 (accessed on 22 August 2021).
- FAO. Fishery and Aquaculture Statistics. Global Aquaculture Production 1950–2015 (FishstatJ); FAO Fisheries and Aquaculture Department: Rome, Italy, 2017. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Buchanan, K.; Burt de Perera, T.; Carere, C.; Carter, T.; Hailey, A.; Hubrecht, R.; Jennings, D.; Metcalfe, N.; Pitcher, T.; Peron, F.; et al. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 2012, 83, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Latimer, G.W. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Regulation (EU) No 1169/2011. European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Off. J. Eur. Union 2011, 304, 18–63. Available online: http://data.europa.eu/eli/reg/2011/1169/oj. (accessed on 22 September 2020).
- Fernández, M.; Ordoñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; De la Hoz, L. Fatty acid composition of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fehily, A.M.; Pickering, J.E.; Yarnell, J.W.G.; Elwood, P.C. Dietary indexes of atherogenicity and thrombogenicity and ischaemic heart disease risk: The Caerphilly Prospective Study. Br. J. Nutr. 1994, 71, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burck, H.C. Histological Techniques; Państwowy Zakład Wydawnictw Lekarskich: Warszawa, Poland, 1975; pp. 62–63. [Google Scholar]
- Bourne, M.C. Food Texture and Viscosity: Concept and Measurement; Academic Press: New York, NY, USA, 1982; pp. 106–117. [Google Scholar]
- PN-ISO 11036:1999; Analiza Sensoryczna—Metodologia—Profilowanie Tekstury. Polski Komitet Normalizacyjny: Warsaw, Poland, 1999.
- Chwastowska-Siwiecka, I.; Skiepko, N.; Baryczka, M.J.; Pomianowski, J.F. Wpływ płci na cechy biometryczne i wydajność rzeźną suma afrykańskiego (Clarias gariepinus Burchell, 1822). Komun. Ryb. 2015, 5, 6–11. [Google Scholar]
- Johnston, I.A. Muscle development and growth: Potential implications for flesh quality in fish. Aquaculture 1999, 177, 99–115. [Google Scholar] [CrossRef]
- Kiessling, A.; Ruohonen, K.; Bjørnevik, M. Muscle fibre growth and quality in fish. Arch. Tierz. Dummerstorf 2006, 49, 137–146. [Google Scholar]
- Rosa, R.; Bandarra, N.M.; Nunes, M.L. Nutritional Quality of African catfish Clarais gariepinus (Burchell 1822): A positive criterion for the future development of the European production of Siluroidei. Int. J. Food Sci. Technol. 2007, 42, 342–351. [Google Scholar] [CrossRef]
- Nwali, B.U.; Egesimba, G.I.; Okechukwu Ugwu, P.C.; Ogbanshi, M.E. Assessment of the nutritional value of wild and farmed Clarias gariepinus. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 179–182. [Google Scholar]
- Olaniyi, W.A.; Makinde, O.A.; Omitogun, O.G. Comparison of proximate composition and sensory attributes of Clariid catfish species of Clarias gariepinus, Heterobranchus bidorsalis, and their hybrids. Food Sci. Nutr. 2017, 5, 285–291. [Google Scholar] [CrossRef]
- Toko, I.; Fiogbe, E.D.; Koukpode, B.; Kestemont, P. Rearing of African catfish (Clarias gariepinus) and vundu catfish (Heterobranchus longifilis) in traditional fish ponds (whedos): Effect of stocking density on growth, production and body composition. Aquaculture 2007, 262, 65–72. [Google Scholar] [CrossRef]
- Ackman, R.G. Nutritional composition of fats in seafoods in progress. Food Nutr. Sci. 1989, 13, 161–241. [Google Scholar]
- Chwastowska-Siwiecka, I.; Baryczka, M.J.; Kondratowicz, J.; Winiarski, R. Comparison of chemical composition and physicochemical properties of meat of African catfish (Clarias gariepinus Burchell, 1822). Bulg. J. Agric. Sci. 2019, 25, 1044–1051. [Google Scholar]
- Calder, P.C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83, 1505S–1519S. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ma, D. The role of n-3 polyunsaturated fatty acids in the prevention and treatment of breast cancer. Nutrients 2014, 6, 5184–5223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitajka, K.; Puskás, L.G.; Zvara, Á.; Hackler Jr., L.; Barceló-Coblijn, G.; Yeo, Y.K.; Farkas, T. The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proc. Natl. Acad. Sci. USA 2002, 99, 2619–2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abouel-Yazeed, A. MFatty acids profile of some marine water and freshwater fish. J. Arab. Aquac. Soc. 2013, 8, 283–292. [Google Scholar]
- Jabeen, F.; Chaudhry, A.S. Nutritional composition of seven commercially important freshwater fish species and the use of cluster analysis as a tool for their classification. J. Anim. Plant Sci. 2016, 26, 282–290. [Google Scholar]
- Iverson, S.J.; Frost, K.J.; Lang, S.L.C. Fat content and fatty acid composition of forage fish and invertebrates in Prince William Sound, Alaska: Factors contributing to among and within species variability. Mar. Ecol. Prog. Ser. 2002, 241, 161–181. [Google Scholar] [CrossRef] [Green Version]
- Ling, S.; Hashim, R.; Kolkovski, S.; Shu-Chien, A.S. Effect of varying dietary lipid and protein levels on growth and reproductive performance of female swordtails Xiphophorus helleri (Poeciliidae). Aquac. Res. 2006, 37, 1267–1275. [Google Scholar] [CrossRef]
- Hixson, S.M. Fish nutrition and current issues in aquaculture: The balance in providing safe and nutritious seafood, in an environmentally manner. J. Aquac. Res. Dev. 2014, 5, 234. [Google Scholar] [CrossRef] [Green Version]
- Okomoda, V.T.; Tiamiyu, L.O.; Chado, R.T. Growth performance of Clarias gariepinus fingerlings fed diets containing varying levels of groundnuts oil. Ege J. Fish. Aquat. Sci. 2017, 34, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, M.; Pereira, T.G.; Carvalho, L.M.; Pousão-Ferreira, P.; Grade, A.; Teixeira, B.; Quental-Ferreira, H.; Mendes, R.; Bandarra, N.; Gonçalves, A. Wild and farmed meagre, Argyrosomus regius: A nutritional, sensory and histological assessment of quality differences. J. Food Compos. Anal. 2017, 63, 8–14. [Google Scholar] [CrossRef]
- Department of Health and Social Security. Diet and Cardiovascular Disease; Report on Health and Social Subjects, 28; Her Majesty’s Stationery Office: London, UK, 1984. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/743801/Diet_and_Cardiovascular_Disease__1984_.pdf (accessed on 22 September 2020).
- Department of Health and Social Security—DHSS. Diet and Cardiovascular Disease; Report on Health and Social Subjects, 46; Her Majesty’s Stationery Office: London, UK, 1994. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/743527/Nutritional_Aspects_of_Cardiovascular_Disease__1994_.pdf (accessed on 22 September 2020).
- Zuraida, I.; Raharjo, S.; Hastuti, P.; Indrati, R. Catfish (Clarias gariepinus): A potential alternative raw material for surimi production. Pak. J. Nutr. 2017, 16, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Oladipo, I.C.; Bankole, S.O. Nutritional and microbial quality of fresh and dried Clarias gariepinus and Oreochromis niloticus. Int. J. App. Microbiol. Biotechol. Res. 2013, 1, 1–6. [Google Scholar]
- Bugeon, J.; Lefevre, F.; Fauconneau, B. Fillet texture and muscle structure in brown trout (Salmo trutta) subjected to long-term exercise. Aquac. Res. 2003, 34, 1287–1295. [Google Scholar] [CrossRef]
- Mørkøre, T.; Ruohonen, K.; Kiessling, A. Variation in the texture of farmed atlantic salmon (Salmo salar L.) relevance of muscle fiber cross-sectional area. J. Texture Stud. 2009, 40, 1–15. [Google Scholar] [CrossRef]
- Periago, M.J.; Ayala, M.D.; López-Albors, O.; Abdel, I.; Martínez, C.; García-Alcázar, A.; Ros, G.; Gil, F. Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L. Aquaculture 2005, 249, 175–188. [Google Scholar] [CrossRef]
- Johnston, I.A.; Alderson, R.; Sandham, C.; Dingwall, A.; Mitchell, D.; Selkirk, C.; Nickell, D.; Baker, R.; Robertson, B.; Whyte, D.; et al. Muscle fibre density in relation to the colour and texture of smoked Atlantic salmon (Salmo salar L.). Aquaculture 2000, 189, 335–349. [Google Scholar] [CrossRef]
- Lazo, O.; Guerrero, L.; Alexi, N.; Grigorakis, K.; Claret, A.; Pérez, J.A. Sensory characterization, physico-chemical properties and somatic yields of five emerging fish species. Food Res. Int. 2017, 100, 396–406. [Google Scholar] [CrossRef]
- Fletcher, D.L.; Qiao, M.; Smith, D.P. The relationship of raw broiler breast meat color and pH to cooked meat color and pH. Poult. Sci. 2000, 79, 784–788. [Google Scholar] [CrossRef]
- Kralik, G.; Djurkin, I.; Kralik, Z.; Skrtic, Z.; Radisic, Z. Quality indicators of broiler breast meat in relation to colour. Anim. Sci. Pap. Rep. 2014, 32, 173–178. [Google Scholar]
- Saláková, A.; Straková, E.; Válková, V.; Buchtová, H.; Steinhauserová, I. Quality indicators of chicken broiler raw and cooked meat depending on their sex. Acta Vet. Brno 2009, 78, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Biró, J.; Hancz, C.; Szabó, A.; Molnár, T. Effect of sex on the fillet quality of Nile tilapia fed varying lipid sources. Ital. J. Anim. Sci. 2009, 8, 225–227. [Google Scholar] [CrossRef] [Green Version]
- Akpinar, M.A.; Görgün, S.; Akpinar, A.E. A comparative analysis of the fatty acid profiles in the liver and muscles of male and female Salmo trutta macrostigma. Food Chem. 2009, 112, 6–8. [Google Scholar] [CrossRef]
Fish Group (F) | Sex (S) | Significance of Influence | |||||
---|---|---|---|---|---|---|---|
Traits | C. gariepinus | Heteroclarias | Male | Female | F | S | F × S |
BW (g) | 1138 ± 156.7 | 1170 ± 76.3 | 1137 ± 149.1 | 1169 ± 89.9 | n.s. | n.s. | n.s. |
CW (g) | 688 ± 109.9 | 763 ± 52.9 | 732 ± 97.5 | 719.1 ± 91.8 | n.s. | n.s. | n.s. |
FW (g) | 280 ± 45.7 | 315 ± 28.6 | 293 ± 42.6 | 301.8 ± 42.1 | n.s. | n.s. | n.s. |
Carcass yield (%) | 60.4 a ± 3.96 | 68.3 b ± 1.75 | 64.4 ± 1.98 | 61.3 ± 4.76 | ** | n.s. | * |
Fillets yield (%) | 49.1 a ± 2.92 | 53.9 b ± 1.27 | 51.6 ± 2.49 | 51.4 ± 4.49 | * | n.s. | n.s. |
Fish Group (F) | Sex (S) | Significance of Influence | |||||
---|---|---|---|---|---|---|---|
Component (% of Wet Weight) | C. gariepinus | Heteroclarias | Male | Female | F | S | F × S |
Protein | 16.8 ± 1.24 | 17.0 ± 1.37 | 16.0 A ± 0.04 | 17.8 B ± 0.18 | n.s. | ** | n.s. |
Dry matter | 22.4 ± 0.68 | 23.5 ± 1.59 | 22.2 ± 0.30 | 23.8 ± 1.22 | n.s. | n.s. | n.s. |
Fat | 4.0 ± 2.31 | 3.0 ± 0.86 | 2.4 A ± 0.01 | 4.6 B ± 1.46 | n.s. | * | n.s. |
Ash | 1.13 a ± 0.02 | 1.21 b ± 0.01 | 1.17 ± 0.07 | 1.17 ± 0.05 | * | n.s. | n.s. |
Energy value | |||||||
(kcal 100 g−1) | 102.5 ± 27.11 | 94.7 ± 13.18 | 84.38 A ± 1.46 | 112.9 B ± 12.47 | n.s. | * | n.s. |
(kJ 100 g−1) | 434.9 ± 106.33 | 398.9 ± 54.95 | 359.9 A ± 10.23 | 473.9 B ± 51.15 | n.s. | * | n.s. |
Fish Group (F) | Sex (S) | Significance of Influence | |||||
---|---|---|---|---|---|---|---|
Traits | C. gariepinus | Heteroclarias | Male | Female | F | S | F × S |
SFA (% FA in fat) | 22.2 a ± 0.84 | 25.9 b ± 1.18 | 22.5 A ± 1.24 | 24.4 B ± 2.31 | ** | ** | n.s. |
MUFA (% FA in fat) | 49.9 a ± 0.87 | 48.4 b ± 0.70 | 49.3 ± 1.03 | 49.5 ± 1.22 | ** | n.s. | n.s. |
PUFA (% FA in fat) | 27.8 a ± 0.53 | 25.6 b ± 1.11 | 28.1 A ± 0.25 | 26.0 B ± 1.53 | ** | ** | ** |
n − 3 (% FA in fat) | 6.92 ± 0.31 | 6.93 ± 0.43 | 7.14 A ± 0.16 | 6.68 B ± 0.03 | n.s. | ** | n.s. |
EPA (% FA in fat) | 0.70 a ± 0.03 | 0.73 b ± 0.01 | 0.69 A ± 0.03 | 0.73 B ± 0.01 | ** | ** | ** |
DHA (% FA in fat) | 2.68 ± 0.29 | 2.50 ± 0.37 | 2.87 A ± 0.04 | 2.34 B ± 0.24 | n.s. | ** | n.s. |
EPA + DHA (% FA in fat) | 3.38 ± 0.28 | 3.23 ± 0.37 | 3.56 A ± 0.06 | 3.07 B ± 0.25 | n.s. | ** | n.s. |
EPA + DHA (g 100g −1 ww) | 0.110 ± 0.04 | 0.098 ± 0.01 | 0.085 A ± 0.001 | 0.130 B ± 0.04 | n.s. | ** | n.s. |
n − 6 (% FA in fat) | 20.87 a ± 0.36 | 18.77 b ± 1.39 | 20.91 A ± 0.40 | 19.32 B ± 1.47 | ** | ** | ** |
n − 9 (% FA in fat) | 47.76 a ± 0.84 | 46.17 b ± 0.67 | 47.21 ± 1.10 | 47.25 ± 1.16 | ** | n.s. | n.s. |
PUFA:SFA | 1.25 a ± 0.05 | 1.0 b ± 0.12 | 1.24 A ± 0.07 | 1.08 B ± 0.16 | ** | ** | ** |
n − 6:n − 3 | 3.02 a ± 0.13 | 2.71 b ± 0.03 | 2.93 ± 0.12 | 2.90 ± 0.25 | ** | n.s. | n.s. |
n − 3:n − 6 | 0.33 a ± 0.01 | 0.37 b ± 0.004 | 0.34 ± 0.01 | 0.34 ± 0.03 | ** | n.s. | n.s. |
IA | 0.25 a ± 0.01 | 0.30 b ± 0.01 | 0.25 A ± 0.02 | 0.28 B ± 0.03 | ** | ** | n.s. |
IT | 0.37 a ± 0.02 | 0.45 b ± 0.04 | 0.38 A ± 0.02 | 0.43 B ± 0.05 | ** | ** | ** |
h:H | 4.42 a ± 0.21 | 3.64 b ± 0.19 | 4.35 A ± 0.31 | 3.94 B ± 0.46 | ** | ** | n.s. |
Fish Group (F) | Sex (S) | Significance of Influence | |||||
---|---|---|---|---|---|---|---|
Traits | C. gariepinus | Heteroclarias | Male | Female | F | S | F × S |
L* | 47.6 ± 1.57 | 49.3 ± 4.40 | 46.1 A ± 1.43 | 50.8 B ± 2.82 | n.s. | ** | n.s. |
a* | 12.0 ± 1.72 | 10.2 ± 1.43 | 12.3 A ± 1.26 | 9.9 B ± 1.32 | n.s. | ** | n.s. |
b* | 5.6 ± 0.71 | 5.1 ± 0.68 | 5.1 ± 0.78 | 5.7 ± 0.55 | n.s. | n.s. | n.s. |
WI | 46.0 ± 1.65 | 48.0 ± 4.50 | 44.4 A ± 1.21 | 49.5 B ± 2.95 | n.s. | ** | n.s. |
C | 13.3 a ± 1.60 | 11.4 b ± 1.16 | 13.3 A ± 1.32 | 11.4 B ± 1.38 | * | * | n.s. |
pH | 7.08 a ± 0.05 | 7.48 b ± 0.08 | 7.32 ± 0.25 | 7.27 ± 0.21 | ** | n.s. | n.s. |
Cooking loss (%) | 17.6 ± 1.59 | 15.7 ± 1.39 | 17.7 ± 1.47 | 15.6 ± 1.27 | n.s. | n.s. | n.s. |
Fish Group (F) | Sex (S) | Significance of Influence | |||||
---|---|---|---|---|---|---|---|
Structure Element | C. gariepinus | Heteroclarias | Male | Female | F | S | F × S |
Muscle fibre: | |||||||
CSA (µm2) | 2148 a ± 203.1 | 1771 b ± 147.1 | 1758 A ± 122.9 | 2161 B ± 197.7 | ** | ** | ** |
Shape (-) | 0.90 ± 0.07 | 0.90 ± 0.06 | 0.92 A ± 0.02 | 0.87 B ± 0.02 | n.s. | * | n.s. |
Connective tissue (myocommata) | |||||||
Endomysium thickness (µm) | 1.10 ± 0.16 | 1.04 ± 0.11 | 1.05 ± 0.11 | 1.09 ± 0.16 | n.s. | n.s. | n.s. |
Fish Group (F) | Sex (S) | Significance of Influence | |||||
---|---|---|---|---|---|---|---|
Parameter | C. gariepinus | Heteroclarias | Male | Female | F | S | F × S |
Hardness (N) | 1.50 a ± 0.13 | 1.95 b ± 0.25 | 1.71 ± 0.66 | 1.72 ± 0.45 | * | n.s. | n.s. |
Cohesiveness (-) | 0.22 ± 0.09 | 0.23 ± 0.09 | 0.21 ± 0.08 | 0.24 ± 0.10 | n.s. | n.s. | n.s. |
Springiness (cm) | 1.11 ± 0.19 | 1.02 ± 0.11 | 1.01 ± 0.14 | 1.11 ± 0.17 | n.s. | n.s. | n.s. |
Chewiness (N × cm) | 0.39 ± 0.18 | 0.48 ± 0.25 | 0.30 ± 0.14 | 0.50 ± 0.22 | n.s. | n.s. | n.s. |
Fish Group (F) | Sex (S) | Significance of Influence | |||||
---|---|---|---|---|---|---|---|
Traits (pt.) | C. gariepinus | Heteroclarias | Male | Female | F | S | F × S |
Tenderness | 2.28 ± 0.73 | 2.03 ± 0.62 | 2.19 ± 0.68 | 2.13 ± 0.70 | n.s. | n.s. | n.s. |
Juiciness | 2.19 ± 0.70 | 1.84 ± 0.60 | 2.09 ± 0.74 | 1.94 ± 0.60 | n.s. | n.s. | n.s. |
Perceptible of connective tissue | 2.22 ± 0.58 | 2.09 ± 0.55 | 2.44 a ± 0.44 | 1.88 b ± 0.11 | n.s. | ** | n.s. |
Chewiness | 2.31 ± 0.57 | 2.28 ± 0.55 | 2.53 a ± 0.19 | 2.06 b ± 0.20 | n.s. | * | n.s. |
Fattiness | 1.88 ± 0.74 | 1.63 ± 0.65 | 1.78 ± 0.73 | 1.72 ± 0.68 | n.s. | n.s. | n.s. |
Gaping | 1.88 ± 0.70 | 1.59 ± 0.42 | 1.84 ± 0.68 | 1.63 ± 0.47 | n.s. | n.s. | n.s. |
Fish odour | 1.75 ± 0.68 | 1.72 ± 0.48 | 1.72 ± 0.68 | 1.75 ± 0.48 | n.s. | n.s. | n.s. |
Geosmine odour | 1.09 ± 0.27 | 1.09 ± 0.20 | 1.06 ± 0.17 | 1.13 ± 0.29 | n.s. | n.s. | n.s. |
Fish taste | 2.19 ± 0.66 | 1.97 ± 0.50 | 2.19 ± 0.60 | 1.97 ± 0.56 | n.s. | n.s. | n.s. |
Geosmine taste | 1.28 ± 0.45 | 1.22 ± 0.31 | 1.34 ± 0.44 | 1.16 ± 0.30 | n.s. | n.s. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobczak, M.; Panicz, R.; Sadowski, J.; Półgęsek, M.; Żochowska-Kujawska, J. Does Production of Clarias gariepinus × Heterobranchus longifilis Hybrids Influence Quality Attributes of Fillets? Foods 2022, 11, 2074. https://doi.org/10.3390/foods11142074
Sobczak M, Panicz R, Sadowski J, Półgęsek M, Żochowska-Kujawska J. Does Production of Clarias gariepinus × Heterobranchus longifilis Hybrids Influence Quality Attributes of Fillets? Foods. 2022; 11(14):2074. https://doi.org/10.3390/foods11142074
Chicago/Turabian StyleSobczak, Małgorzata, Remigiusz Panicz, Jacek Sadowski, Mirosław Półgęsek, and Joanna Żochowska-Kujawska. 2022. "Does Production of Clarias gariepinus × Heterobranchus longifilis Hybrids Influence Quality Attributes of Fillets?" Foods 11, no. 14: 2074. https://doi.org/10.3390/foods11142074
APA StyleSobczak, M., Panicz, R., Sadowski, J., Półgęsek, M., & Żochowska-Kujawska, J. (2022). Does Production of Clarias gariepinus × Heterobranchus longifilis Hybrids Influence Quality Attributes of Fillets? Foods, 11(14), 2074. https://doi.org/10.3390/foods11142074