Storage and Packaging Effects on the Protein Oxidative Stability, Functional and Digestion Characteristics of Yak Rumen Smooth Muscle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. Packaging Treatments
2.3. Extraction of Yak Rumen Smooth Muscle Protein
2.4. Oxidative Stability
2.4.1. Determination of Carbonyl Content
2.4.2. Determination of Total Sulfhydryl Group
2.4.3. Determination of Disulfide Bond
2.4.4. Determination of Surface Hydrophobicity
2.5. Functional Characteristics
2.5.1. Determination of Solubility
2.5.2. Determination of Emulsify Properties
2.5.3. Determination of Foaming Properties
2.5.4. Determination of Turbidity
2.6. In Vitro Digestion
2.7. Statistical Analysis
3. Results
3.1. Oxidative Stability
3.1.1. Carbonyl
3.1.2. Total Sulfhydryl
3.1.3. Disulfide Bond
3.1.4. Surface Hydrophobicity
3.2. Functional Characteristics
3.2.1. Solubility
3.2.2. Emulsifying Properties
3.2.3. Foaming Properties
3.2.4. Turbidity
3.3. In Vitro Digestibility
3.4. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahhmed, A.; Nasu, T.; Muguruma, M. Impact of transglutaminase on the textural, physicochemical, and structural properties of chicken skeletal, smooth, and cardiac muscles. Meat Sci. 2009, 83, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yu, Q.; Han, L.; Zhang, Y.; Tian, X.; Zhao, S. Effects of proteome changes on the tenderness of yak rumen smooth muscle during postmortem storage based on the label-free mass spectrometry. Food Res. Int. 2019, 116, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Anandh, M.; Lakshmanan, V.; Radha, K.; Singh, R.; Mendiratta, S.; Anjaneyulu, A.S.R. Effect of blade tenderization and sodium bicarbonate on quality of buffalo rumen meat. J. Food Sci. Technol. 2007, 44, 437–439. [Google Scholar]
- Chang, Y.; Stromer, M.; Chou, R. μ-Calpain is involved in the postmortem proteolysis of gizzard smooth muscle. Food Chem. 2013, 139, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Nollet, L.; Toldrá, F. Introduction-Offal meat: Definitions, regions, cultures, generalities. In Handbook of Analysis of Edible Animal By-Products; Nollet, L., Toldrá, F., Eds.; CRC Press: New York, NY, USA, 2017; pp. 105–121. [Google Scholar]
- Japanese Food Standard Ingredient List 2020 Edition. Available online: https://fooddb.mext.go.jp/details/details.pl?ITEM_NO=11_11094_7 (accessed on 4 August 2021).
- Munekata, P. Improving the sensory, nutritional and physicochemical quality of fresh meat. Foods 2021, 10, 2060. [Google Scholar] [CrossRef]
- Parivell, B.R. Quality characteristics and utilization of rumen meats from goat, sheep and buffalo. Ph.D. Thesis, Deemed University, Izat Nagar, India, 1999. [Google Scholar]
- Anandh, M.; Radha, K.; Lakshmanan, V.; Mendiratta, S. Development and quality evaluation of cooked buffalo tripe rolls. Meat Sci. 2008, 80, 1194–1199. [Google Scholar] [CrossRef]
- Wang, B.; Du, X.; Kong, B.; Liu, Q.; Li, F.; Pan, N. Effect of ultrasound thawing, vacuum thawing, and microwave thawing on gelling properties of protein from porcine longissimus dorsi. Ultrason. Sonochem. 2020, 64, 104860. [Google Scholar] [CrossRef]
- Li, F.; Zhong, Q.; Kong, B.; Wang, B.; Pan, N.; Xia, X. Deterioration in quality of quick-frozen pork patties induced by changes in protein structure and lipid and protein oxidation during frozen storage. Food Res. Int. 2020, 133, 109142. [Google Scholar] [CrossRef]
- Kabisch, J.; Erl-Honing, C.; Wenning, M.; Bohnlein, C.; Gareis, M.; Pichner, R. Spoilage of vacuum-packed beef by the yeast Kazachstania psychrophila. Food Microbiol. 2016, 53, 15–23. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, D.W.; Pu, H.; Wei, Q. Heterospectral two-dimensional correlation analysis with near-infrared hyperspectral imaging for monitoring oxidative damage of pork myofibrils during frozen storage. Food Chem. 2018, 248, 119–127. [Google Scholar] [CrossRef]
- Wang, F.; Liang, R.; Zhang, Y.; Gao, S.; Hopkins, D.L. Effects of packaging methods combined with frozen temperature on the color of frozen beef rolls. Meat Sci. 2021, 171, 108292. [Google Scholar] [CrossRef] [PubMed]
- Lorido, L.; Ventanas, S.; Akcan, T.; Estévez, M. Effect of protein oxidation on the impaired quality of dry-cured loins produced from frozen pork meat. Food Chem. 2016, 196, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Sørensen, K.; Engelsen, S.; Sun, D.; Pu, H. Lipid oxidation degree of pork meat during frozen storage investigated by near-infrared hyperspectral imaging: Effect of ice crystal growth and distribution. J. Food Eng. 2019, 263, 311–319. [Google Scholar] [CrossRef]
- Katiyo, W.; Kock, H.; Coorey, R.; Buys, E. Sensory implications of chicken meat spoilage in relation to microbial and physicochemical characteristics during refrigerated storage. LWT-Food Sci. Technol. 2020, 128, 109468. [Google Scholar] [CrossRef]
- Moczkowska, M.; Półtorak, A.; Montowska, M.; Pospiech, E.; Wierzbicka, A. The effect of the packaging system and storage time on myofibrillar protein degradation and oxidation process in relation to beef tenderness. Meat Sci. 2017, 130, 7–15. [Google Scholar] [CrossRef]
- Kaur, M.; Williams, M.; Bissett, A.; Ross, T.; Bowman, J.P. Effect of abattoir, livestock species and storage temperature on bacterial community dynamics and sensory properties of vacuum packaged red meat. Food Microbiol. 2021, 94, 103648. [Google Scholar] [CrossRef]
- Cieri, R.L. Pulmonary smooth muscle in vertebrates: A comparative review of structure and function. Integr. Comp. Biol. 2019, 59, 10–28. [Google Scholar] [CrossRef]
- Dang, H.; Gudjónsdóttir, M.; Tómasson, T.; Nguyen, M.; Magnea, G.; Arason, S. Influence of processing additives, packaging and storage conditions on the physicochemical stability of frozen Tra catfish (Pangasius hypophthalmus) fillets. J. Food Eng. 2018, 238, 148–155. [Google Scholar] [CrossRef]
- Rafael, S.; Caroline, L.; Diego, M.; Hirasilva, B. Meat quality of santa inês lamb chilled-then-frozen storage up to 12 months. Meat Sci. 2018, 148, 72–78. [Google Scholar]
- GB/T 19477-2018; Operating Procedure of Livestock and Poultry Slaughtering–Cattle. Standards Press of China: Beijing, China, 2018.
- Young, R.; Lawrie, R. Utilization of edible protein from meat industry by-products and waste: II. The spinning of blood plasma proteins. Int. J. Food Sci. Technol. 2007, 9, 171–177. [Google Scholar] [CrossRef]
- Levine, R.; Williams, J.; Stadtman, E.; Shacter, E. Carbonyl assays for determination of oxidatively modified proteins. Method Enzymol. 1994, 233, 346–357. [Google Scholar]
- Li, B.; Xu, Y.; Li, J.; Niu, S.; Wang, C.; Zhang, N.; Yang, Y. Effect of oxidized lipids stored under different temperatures on muscle protein oxidation in Sichuan-style sausages during ripening. Meat Sci. 2019, 147, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Thannhauser, T.W.; Konishi, Y.; Scheraga, H.A. Analysis for disulfide bonds in peptides and proteins. Method Enzymol. 1987, 143, 115–119. [Google Scholar]
- Chelh, I.; Gatellier, P.; Santé-Lhoutellier, V. Technical note: A simplified procedure for myofibril hydrophobicity determination. Meat Sci. 2006, 74, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; He, L.; Ma, S.; Wu, W.; Yang, H.; Sun, X.; Peng, A.; Wang, L.; Jin, G.; Zhang, J.; et al. Effect of irradiation modification on conformation and gelation properties of pork myofibrillar and sarcoplasmic protein. Food Hydrocol. 2018, 84, 181–192. [Google Scholar] [CrossRef]
- Joo, S.T.; Kauffman, R.G.; Kim, B.C.; Park, G.B. The relationship of sarcoplasmic and myofibrillar protein solubility to colour and water-holding capacity in porcine longissimus muscle. Meat Sci. 1999, 52, 291–297. [Google Scholar] [CrossRef]
- Li, S.; Huang, Y.; An, F.; Huang, Q.; Huang, F.; Ma, M. Hydroxyl radical-induced early stage oxidation improves the foaming and emulsifying properties of ovalbumin. Poul. Sci. 2018, 98, 1047–1054. [Google Scholar] [CrossRef]
- Plancken, I.V.D.; Loey, A.V.; Hendrickx, M.E. Foaming properties of egg white proteins affected by heat or high pressure treatment. J. Food Eng. 2007, 78, 1410–1426. [Google Scholar] [CrossRef]
- Benjakul, S.; Visessanguan, W.; Ishizaki, S.; Tanaka, M. Differences in gelation characteristics of natural actomyosin from two species of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus. J. Food Sci. 2001, 66, 1311–1318. [Google Scholar] [CrossRef]
- Escudero, E.; Sentandreu, M.; Toldrá, F. Characterization of peptides released by in vitro digestion of pork meat. J. Agric. Food Chem. 2010, 58, 5160–5165. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, G.; Li, L.; Xu, X.; Li, C. Effect of cooking on in vitro digestion of pork proteins: A peptidomic perspective. J. Agric. Food Chem. 2015, 63, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, Y.; Luo, X. Influence of oxygen concentration on the fresh and internal cooked color of modified atmosphere packaged dark-cutting beef stored under chilled and superchilled conditions. Meat Sci. 2022, 188, 108773. [Google Scholar] [CrossRef] [PubMed]
- Soyer, A.; ÖZalp, B.; Dalm, Ü.; Bilgin, V. Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chem. 2010, 120, 1025–1030. [Google Scholar] [CrossRef]
- Sante-Lhoutellier, V.; Aubry, L.; Gatellier, P. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. J. Agric. Food Chem. 2007, 55, 5343–5348. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.; Lametsch, R.; Hviid, M.; Jensen, O.; Skibsted, L. High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine Longissimus dorsi during chill storage. Meat Sci. 2007, 77, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shan, Y.; Hong, H.; Luo, Y.; Hong, X.; Ye, W. Prevention of protein and lipid oxidation in freeze-thawed bighead carp (Hypophthalmichthys nobilis) fillets using silver carp (Hypophthalmichthys molitrix) fin hydrolysates. LWT-Food Sci. Technol. 2020, 123, 109050. [Google Scholar] [CrossRef]
- Li, F.; Wang, B.; Liu, Q.; Chen, Q.; Zhang, H.; Xia, X.; Kong, B. Changes in myofibrillar protein gel quality of porcine longissimus muscle induced by its stuctural modification under different thawing methods. Meat Sci. 2019, 147, 108–115. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, L.; Xiang, R.; Liu, X.; Zhu, M. Effects of mulberry polyphenols on oxidation stability of sarcoplasmic and myofibrillar proteins in dried minced pork slices during processing and storage. Meat Sci. 2020, 160, 107973. [Google Scholar] [CrossRef]
- Grossi, A.; Bolumar, T.; Søltoft-Jensen, J.; Orlien, V. High-pressure treatment of brine enhanced pork semitendinosus: Effect on microbial stability, drip loss, lipid and protein oxidation, and sensory properties. Innov. Food Sci. Emerg. Technol. 2014, 22, 11–21. [Google Scholar] [CrossRef]
- Li, Y.; Kong, B.; Xia, X.; Qian, L.; Li, P. Inhibition of frozen storage-induced oxidation and structural changes in myofibril of common carp (Cyprinus carpio) surimi by cryoprotectant and hydrolysed whey protein addition. Int. J. Food Sci. Technol. 2013, 48, 1916–1923. [Google Scholar] [CrossRef]
- Zhang, D.; Li, H.; Emara, A.M.; Hu, Y.; Wang, Z.; Wang, M.; He, Z. Effect of in vitro oxidation on the water retention mechanism of myofibrillar proteins gel from pork muscles. Food Chem. 2020, 315, 126226. [Google Scholar] [CrossRef] [PubMed]
- Gao, F. Study on Processing Functionalities of Beef Tripe Smooth Muscle. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2012. [Google Scholar]
- Small, J.; Sobieszek, A. The contractile apparatus of smooth muscle. Int. Rev. Cytol. 1980, 64, 241–306. [Google Scholar] [PubMed]
- Umeji, M.; Koki, U. Contents of myofibrillar proteins in cardiac, skeletal, and smooth muscles. J. Biochem. 1985, 98, 187–197. [Google Scholar]
- Cohen, D.; Murphy, R. Differences in cellular contractile protein contents among porcine smooth muscles: Evidence for variation in the contractile system. J. Gen. Physiol. 1978, 72, 369–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badii, F.; Howell, N. A comparison of biochemical changes in cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) fillets during frozen storage. J. Sci. Food Agric. 2002, 82, 87–97. [Google Scholar] [CrossRef]
- Xia, X.; Kong, B.; Xiong, Y.; Ren, Y. Decreased gelling and emulsifying properties of myofibrillar protein from repeatedly frozen-thawed porcine longissimus muscle are due to protein denaturation and susceptibility to aggregation. Meat Sci. 2010, 85, 481–486. [Google Scholar] [CrossRef]
- Pan, N.; Wan, W.; Du, X. Mechanisms of change in emulsifying capacity induced by protein denaturation and aggregation in quick-frozen pork patties with different fat levels and freeze–thaw cycles. Foods 2021, 11, 44. [Google Scholar] [CrossRef]
- Du, X.; Li, H.; Pan, N. Effectiveness of ice structuring protein on the myofibrillar protein from mirror carp (Cyprinus carpio L.) during cryopreservation: Reduction of aggregation and improvement of emulsifying properties. Int. J. Refrig. 2022, 133, 1–8. [Google Scholar] [CrossRef]
- Du, J.; Zhou, C.; Xia, Q. The effect of fibrin on rheological behavior, gelling properties and microstructure of myofibrillar proteins. LWT-Food Sci. Technol. 2022, 153, 112457. [Google Scholar] [CrossRef]
- Peng, X.; Kong, B.; Xia, X.; Qian, L. Reducing and radical-scavenging activities of whey protein hydrolysates prepared with Alcalase. Inter. Dairy J. 2009, 20, 360–365. [Google Scholar] [CrossRef]
- Santé-Lhoutellier, V.; Astruc, T.; Marinova, P.; Greve, E.; Gatellier, P. Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. J. Agric. Food Chem. 2008, 56, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, W.; Zhou, G.; Xu, X.; Li, C. Changes in in vitro protein digestion of retort-pouched pork belly during 120-day storage. Int. J. Food Sci. Technol. 2017, 52, 2684–2694. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, F.; Zhao, M.; Yang, B.; Cui, C. Physicochemical changes of myofibrillar proteins during processing of Cantonese sausage in relation to their aggregation behaviour and in vitro digestibility. Food Chem. 2011, 129, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Du, X.; Wang, B. Inhibiting effect of ice structuring protein on the decreased gelling properties of protein from quick-frozen pork patty subjected to frozen storage. Food Chem. 2021, 353, 129104. [Google Scholar] [CrossRef] [PubMed]
Digestion Pattern | Packaging | Storage Time (Days) | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 7 | 14 | 28 | 42 | 56 | 84 | 168 | 364 | |||
Pepsin digestion | OWP | 55.76 ± 0.77 bc | 56.90 ± 0.18 b | 57.89 ± 0.42 ab | 59.49 ± 0.07 a | 56.29 ± 0.28 b | 55.74 ± 0.60 bc | 53.65 ± 0.84 c | 50.06 ± 0.40 d | 45.49 ± 0.61 e | <0.01 |
VP | 55.76 ± 0.77 b | 57.58 ± 0.36 ab | 59.21 ± 0.70 a | 60.04 ± 0.30 a | 57.74 ± 0.73 ab | 55.14 ± 0.29 bc | 52.99 ± 0.87 c | 48.59 ± 0.50 d | 47.25 ± 0.45 d | <0.01 | |
p value | 1.000 | 0.299 | 0.316 | 0.280 | 0.263 | 0.558 | 0.717 | 0.184 | 0.177 | ||
Trypsin digestion | OWP | 67.59 ± 0.28 e | 70.54 ± 0.21 d | 73.42 ± 0.42 b | 75.10 ± 0.06 a | 72.78 ± 0.40 bc | 71.77 ± 0.43 cd | 67.73 ± 0.17 e | 63.45 ± 0.23 f | 60.49 ± 0.32 g | <0.01 |
VP | 67.59 ± 0.28 d | 72.58 ± 0.28 bc | 74.11 ± 0.39 ab | 75.56 ± 0.54 a | 73.99 ± 0.31 ab | 71.66 ± 0.43 c | 67.07 ± 0.43 d | 64.87 ± 0.81 e | 61.17 ± 0.32 f | <0.01 | |
p value | 1.000 | 0.014 | 0.042 | 0.586 | 0.165 | 0.909 | 0.366 | 0.298 | 0.348 | ||
Total digestion | OWP | 74.92 ± 0.05 e | 81.17 ± 0.44 c | 83.94 ± 0.23 b | 87.89 ± 0.65 a | 83.68 ± 0.18 b | 77.66 ± 0.46 d | 73.91 ± 0.75 e | 71.14 ± 0.37 f | 67.28 ± 0.45 g | <0.01 |
VP | 74.92 ± 0.05 g | 75.51 ± 0.19 fg | 81.10 ± 0.46 bc | 87.69 ± 0.29 a | 81.98 ± 0.40 b | 78.49 ± 0.31 de | 77.70 ± 0.65 e | 79.74 ± 0.45 cd | 77.00 ± 0.24 ef | <0.01 | |
p value | 1.000 | 0.001 | 0.018 | 0.853 | 0.051 | 0.344 | 0.055 | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liu, X.; Ojangba, T.; Zhang, L.; Yu, Q.; Han, L. Storage and Packaging Effects on the Protein Oxidative Stability, Functional and Digestion Characteristics of Yak Rumen Smooth Muscle. Foods 2022, 11, 2099. https://doi.org/10.3390/foods11142099
Wang Z, Liu X, Ojangba T, Zhang L, Yu Q, Han L. Storage and Packaging Effects on the Protein Oxidative Stability, Functional and Digestion Characteristics of Yak Rumen Smooth Muscle. Foods. 2022; 11(14):2099. https://doi.org/10.3390/foods11142099
Chicago/Turabian StyleWang, Zhuo, Xiaobo Liu, Theodora Ojangba, Li Zhang, Qunli Yu, and Ling Han. 2022. "Storage and Packaging Effects on the Protein Oxidative Stability, Functional and Digestion Characteristics of Yak Rumen Smooth Muscle" Foods 11, no. 14: 2099. https://doi.org/10.3390/foods11142099
APA StyleWang, Z., Liu, X., Ojangba, T., Zhang, L., Yu, Q., & Han, L. (2022). Storage and Packaging Effects on the Protein Oxidative Stability, Functional and Digestion Characteristics of Yak Rumen Smooth Muscle. Foods, 11(14), 2099. https://doi.org/10.3390/foods11142099