Systematic Review and Meta-Analysis of the Efficacy of Interventions Applied during Primary Processing to Reduce Microbial Contamination on Pig Carcasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Review Protocol and Research Question
2.2. Review Team and Search Strategy
2.3. Relevance Screening and Eligibility Criteria for Prioritisation
2.4. Risk of Bias Assessment and Data Extraction
2.5. Random-Effect Meta-Analysis and Reporting
3. Results
3.1. Study Characteristics and Risk of Bias Assessment
3.2. Random-Effects Meta-Analysis
3.2.1. Preslaughter and Lairage Interventions
3.2.2. Standard Processing Procedures and GHP-Based Measures
Intervention | Microorganism a | Study Design/ Conditions (No. of Studies/Trials) ‡ | RR (95% CI) or MD (95% CI) | Heterogeneity I2 (%) * | p-Value * | Reference(s) |
---|---|---|---|---|---|---|
Scalding | EBC | BA/Comm (1/8) | RR 0.05 (0.02, 0.12) | High (87%) | <0.01 | [15] |
Scalding | ACC | BA/Comm (4/14) | MD −2.48 (−3.50, −2.18) | High (99%) | 0 | [11,15,31,32] |
Dehairing | EBC | BA/Comm (1/8) | RR 17.36 (6.88, 43.75) | High (89%) | <0.01 | [15] |
Dehairing | ACC | BA/Comm (3/12) | MD 1.94 (1.67, 2.21) | High (97%) | <0.01 | [11,15,31] |
Singeing | EBC | BA/Comm (1/4) | RR 0.25 (0.14, 0.44) | High (90%) | <0.01 | [15] |
Singeing | ACC | BA/Comm (3/9) | MD −1.95 (−2.4, −1.5) | High (96%) | <0.01 | [11,15,32] |
Polishing | EBC | BA/Comm (1/8) | RR 1.01 (0.8, 1.28) | High (86%) | <0.01 | [15] |
Polishing | ACC | BA/Comm (3/12) | MD 0.19 (−0.51, 0.89) | High (100%) | 0 | [11,14,15] |
Water washing | ACC | CT_BA/Comm (4/20) | MD −0.12 (−0.35, 0.11) | High (90%) | <0.01 | [14,15,31,33] |
Water washing | EBC | BA/Comm (1/8) | RR 0.87 (0.8, 0.94) | Low (19%) | 0.28 | [15] |
Water washing | Generic E. coli | BA/Comm (1/8) | RR 1.09 (0.94, 1.27) | Low (26%) | 0.22 | [33] |
Rectum sealing | Yersinia pseudotuberculosis | CT/Comm (1/5) | RR 1.33 (0.24, 7.49) | Low (38%) | 0.17 | [12] |
Rectum sealing | Yersinia enterocolitica | CT/Comm (2/18) | RR 0.6 (0.41, 0.89) | Low (0%) | 0.88 | [12,34] |
Pluck removal | EBC | CT/Comm (1/3) | RR 0.98 (0.94, 1.03) | Low (0%) | 0.56 | [13] |
Pluck removal | Yersinia enterocolitica | CT/Comm (1/3) | RR 0.33 (0.03, 3.18) | Low (0%) | 1.00 | [13] |
Pluck removal | Generic E. coli | CT/Comm (1/3) | RR 0.87 (0.68, 1.11) | High (71%) | 0.03 | [13] |
Pluck removal | ACC | CT/Comm (1/3) | MD −0.04 (−0.3, 0.21) | Low (34%) | 0.22 | [13] |
Standard fat trimming | EBC | BA/Comm (1/8) | RR 1.16 (1.01, 1.33) | High (71%) | <0.01 | [15] |
Standard fat trimming | ACC | BA/Comm (1/8) | MD 0.06 (−0.16, 0.27) | High (95%) | <0.01 | [15] |
3.2.3. Prechilling Carcass Interventions
Intervention | Microorganism a | Study Design/ Conditions (No. of Studies/Trials) ‡ | RR (95% CI) or MD (95% CI) | Heterogeneity I2 (%) * | p-Value * | Reference(s) |
---|---|---|---|---|---|---|
Hot water washing | Generic E. coli | CT_BA/Comm (3/6) | RR 0.31 (0.15, 0.64) | High (91%) | <0.01 | [36,37,38] |
Hot water washing | Generic E. coli | CT_BA/Comm (2/4) | MD −1.23 (−1.89, −0.57) | Moderate (61%) | 0.05 | [36,38] |
Hot water washing | ACC | CT_BA/Comm (3/8) | MD −1.32 (−1.93, −0.71) | High (93%) | <0.01 | [36,37,38] |
Lactic acid washing | EBC | ChT/Lab (2/6) | MD −0.72 (−1.40, −0.05) | High (98%) | <0.01 | [39,40] |
Lactic acid washing | ACC | ChT/Lab (2/12) | MD −1.07 (−1.33, −0.81) | High (93%) | <0.01 | [39,40] |
Pulsed light treatment | Yersinia enterocolitica | ChT/Lab (1/36) | MD −1.68 (−1.99, −1.37) | High (97%) | <0.01 | [41] |
3.2.4. Chilling
Intervention | Microorganism a | Study Design/ Conditions (No. of Studies/Trials) ‡ | RR (95% CI) or MD (95% CI) | Heterogeneity I2 (%) * | p-Value * | Reference(s) |
---|---|---|---|---|---|---|
Conventional dry chilling | EBC | BA/Comm (1/4) | RR 0.32 (0.21, 0.48) | High (81%) | <0.01 | [15] |
Conventional dry chilling | ACC | BA/Comm (4/15) | MD −0.36 (−0.61, −0.12) | High (94%) | <0.01 | [11,15,33,42] |
Blast and conventional chilling | EBC | BA/Comm (1/4) | RR 0.1 (0.02, 0.47) | High (78%) | <0.01 | [15] |
Blast and conventional chilling | Generic E. coli | BA/Comm (1/4) | RR 0.61 (0.34, 1.11) | Low (50%) | 0.11 | [33] |
Blast and conventional chilling | ACC | BA/Comm (3/10) | MD −0.17 (−0.47, 0.12) | High (93%) | <0.01 | [15,32,33] |
Blast and water spray chilling | EBC | BA/Comm (2/3) | RR 0.55 (0.34, 0.9) | Low (46%) | 0.16 | [33,43] |
Blast and water spray chilling | ACC | BA/Comm (2/3) | MD 0.01 (−1.0, 2.22) | High (88%) | <0.01 | [33,43] |
Blast chilling | Generic E. coli | ChT/Lab (1/4) | MD −2.64 (−4.56, −0.73) | High (94%) | <0.01 | [44] |
Blast chilling | ACC | ChT/Lab (1.4) | MD −1.7 (−2.81, −0.59) | Low (57%) | 0.07 | [44] |
Blast vs conventional chilling | ACC | ChT/Lab (1.4) | MD −0.04 (−1.02, 0.94) | Low (30%) | 0.23 | [44] |
Conventional dry chilling | ACC | ChT/Lab (1/4) | MD −1.77 (−2.54, −1.01) | Low (35%) | 0.20 | [44] |
Conventional dry chilling | Generic E. coli | ChT/Lab (1/4) | MD −2.44 (−3.93, −0.95) | High (89%) | <0.01 | [44] |
3.2.5. Multiple Interventions
Intervention | Microorganism a | Study Design/ Conditions (No. of Studies/Trials) ‡ | RR (95% CI) or MD (95% CI) | Heterogeneity I2 (%) * | p-Value * | Reference(s) |
---|---|---|---|---|---|---|
Multiple ** | EBC | BA/Comm (1/8) | RR 0.11 (0.05, 0.23) | High (94%) | <0.01 | [15] |
Multiple *** | ACC | BA/Comm (4/15) | MD −2.85 (−3.33, −2.37) | High (97%) | <0.01 | [11,15,32,35] |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buncic, S.; Sofos, J. Interventions to control Salmonella contamination during poultry, cattle and pig slaughter. Food Res. Int. 2012, 45, 641–655. [Google Scholar] [CrossRef]
- Houf, K. Control of Salmonella in pigs. Wien Tierarztl. Monatsschr. 2012, 99, 278–285. [Google Scholar]
- De Busser, E.V.; De Zutter, L.; Dewulf, J.; Houf, K.; Maes, D. Salmonella control in live pigs and at slaughter. Vet. J. 2013, 196, 20–27. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and Council of the European Union. Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Off. J. Eur. Union 2005, 338, 1–26. [Google Scholar]
- EFSA. Scientific Opinion on the public health hazards to be covered by inspection of meat (swine). EFSA J. 2011, 9, 2351. [Google Scholar] [CrossRef] [Green Version]
- Bonardi, S. Salmonella in the pork production chain and its impact on human health in the European Union. Epidemiol. Infect. 2017, 145, 1513–1526. [Google Scholar] [CrossRef] [Green Version]
- Laukkanen-Ninios, R.; Fredriksson-Ahomaa, M.; Korkeala, H. Enteropathogenic Yersinia in the pork production chain: Challenges for control. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1165–1191. [Google Scholar] [CrossRef]
- Buncic, S.; Alban, L.; Blagojevic, B. From traditional meat inspection to development of meat safety assurance programs in pig abattoirs–the European situation. Food Control 2019, 106, 106705. [Google Scholar] [CrossRef]
- Cegar, S.; Kuruca, L.; Vidovic, B.; Antic, D.; Hauge, S.J.; Alvseike, O.; Blagojevic, B. Risk categorisation of poultry abattoirs on the basis of the current process hygiene criteria and indicator microorganisms. Food Control 2021, 132, 108530. [Google Scholar] [CrossRef]
- Belluco, S.; Barco, L.; Roccato, A.; Ricci, A. Variability of Escherichia coli and Enterobacteriaceae counts on pig carcasses: A systematic review. Food Control 2015, 55, 115–126. [Google Scholar] [CrossRef]
- Pearce, R.A.; Bolton, D.J.; Sheridan, J.J.; McDowell, D.A.; Blair, I.S.; Harrington, D. Studies to determine the critical control points in pork slaughter hazard analysis and critical control point systems. Int. J. Microbiol. 2004, 90, 331–339. [Google Scholar] [CrossRef]
- Laukkanen, R.; Ranta, J.; Dong, X.; Hakkinen, M.; Martínez, P.O.; Lundén, J.; Johansson, T.; Korkeala, H. Reduction of enteropathogenic Yersinia in the pig slaughterhouse by using bagging of the rectum. J. Food Protect. 2010, 73, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Biasino, W.; De Zutter, L.; Woollard, J.; Mattheus, W.; Bertrand, S.; Uyttendaele, M.; Van Damme, I. Reduced contamination of pig carcasses using an alternative pluck set removal procedure during slaughter. Meat Sci. 2018, 145, 23–30. [Google Scholar] [CrossRef]
- Yu, S.; Bolton, D.; Laubach, C.; Kline, P.; Oser, A.; Palumbo, S.A. Effect of dehairing operations on microbiological quality of swine carcasses. J. Food Protect. 1999, 62, 1478–1481. [Google Scholar] [CrossRef] [PubMed]
- Spescha, C.; Stephan, R.; Zweifel, C. Microbiological contamination of pig carcases at different stages of slaughter in two Europian Union-approved abattoirs. J. Food Protect. 2006, 69, 2568–2575. [Google Scholar] [CrossRef]
- Antic, D.; Houf, K.; Michalopoulou, E.; Blagojevic, B. Beef abattoir interventions in a risk-based meat safety assurance system. Meat Sci. 2021, 182, 108622. [Google Scholar] [CrossRef]
- O’Connor, A.; Sargeant, J.; Wang, C. Conducting systematic reviews of intervention questions III: Synthesizing data from intervention studies using meta-analysis. Zoonoses Public Health 2014, 61, 52–63. [Google Scholar] [CrossRef]
- Young, I.; Wilhelm, B.J.; Cahill, S.; Nakagawa, R.; Desmarchelier, P.; Rajić, A. A rapid systematic review and meta-analysis of the efficacy of slaughter and processing interventions to control nontyphoidal Salmonella in beef and pork. J. Food Protect. 2016, 79, 2196–2210. [Google Scholar] [CrossRef] [Green Version]
- Gonzales-Barron, U.; Cadavez, V.; Sheridan, J.J.; Butler, F. Modelling the effect of chilling on the occurrence of Salmonella on pig carcasses at study, abattoir and batch levels by meta-analysis. Int. J. Microbiol. 2013, 163, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, L.; Higgins, J. Risk-of-bias VISualization (robvis): An R package and shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2020, 12, 55–61. [Google Scholar] [CrossRef]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, 14898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 March 2022).
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. EBMH 2019, 22, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Lin, L. Comparison of four heterogeneity measures for meta-analysis. J. Eval. Clin. Pract. 2020, 26, 376–384. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Martín-Peláez, S.; Martín-Orúe, S.M.; Pérez, J.F.; Fàbrega, E.; Tibau, J.; Gasa, J. Increasing feed withdrawal and lairage times prior to slaughter decreases the gastrointestinal tract weight but favours the growth of cecal Enterobacteriaceae in pigs. Livest. Sci. 2008, 119, 70–76. [Google Scholar] [CrossRef]
- Walia, K.; Lynch, H.; Grant, J.; Duffy, G.; Leonard, F.C.; Lawlor, P.G.; Gardiner, G.E. The efficacy of disinfectant misting in the lairage of a pig abattoir to reduce Salmonella and Enterobacteriaceae on pigs prior to slaughter. Food Control 2017, 75, 55–61. [Google Scholar] [CrossRef]
- Purnell, G.; James, C.; Wilkin, C.A.; James, S.J. An evaluation of improvements in carcass hygiene through the use of anal plugging of pig carcasses prior to scalding and dehairing. J. Food Protect. 2010, 73, 1108–1110. [Google Scholar] [CrossRef]
- Rivas, T.; Vizcaíno, J.A.; Herrera, F.J. Microbial contamination of carcasses and equipment from an Iberian pig slaughterhouse. J. Food Protect. 2000, 63, 1670–1675. [Google Scholar] [CrossRef]
- Rahkio, M.; Korkeala, H.; Sippola, I.; Peltonen, M. Effect of pre-scalding brushing on contamination level of pork carcasses during the slaughtering process. Meat Sci. 1992, 32, 173–183. [Google Scholar] [CrossRef]
- Gill, C.O.; Dussault, F.; Holley, R.A.; Houde, A.; Jones, T.; Rheault, N.; Rosales, A.; Quessy, S. Evaluation of the hygienic performances of the processes for cleaning, dressing and cooling pig carcasses at eight packing plants. Int. J. Microbiol. 2000, 58, 65–72. [Google Scholar] [CrossRef]
- Nesbakken, T.; Nerbrink, E.; Røtterud, O.J.; Borch, E. Reduction of Yersinia enterocolitica and Listeria spp. on pig carcasses by enclosure of the rectum during slaughter. Int. J. Microbiol. 1994, 23, 197–208. [Google Scholar] [CrossRef]
- Van Ba, H.; Seo, H.W.; Seong, P.N.; Kang, S.M.; Cho, S.H.; Kim, Y.S.; Park, B.Y.; Moon, S.S.; Kang, S.J.; Choi, Y.M.; et al. The fates of microbial populations on pig carcasses during slaughtering process, on retail cuts after slaughter, and intervention efficiency of lactic acid spraying. Int. J. Microbiol. 2019, 294, 10–17. [Google Scholar] [CrossRef]
- Hamilton, D.; Holds, G.; Lorimer, M.; Kiermeier, A.; Kidd, C.; Slade, J.; Pointon, A. Slaughterfloor decontamination of pork carcases with hot water or acidified sodium chlorite—A comparison in two Australian abattoirs. Zoonoses Public Health 2010, 57, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.O.; Jones, T.; Badoni, M. The effects of hot water pasteurizing treatments on the microbiological conditions and appearances of pig and sheep carcasses. Food Res. Int. 1998, 31, 273–278. [Google Scholar] [CrossRef]
- Gill, C.; Bedard, D.; Jones, T. The decontaminating performance of a commercial apparatus for pasteurizing polished pig carcasses. Food Microbiol. 1997, 14, 71–79. [Google Scholar] [CrossRef]
- Van Netten, P.; Mossel, D.A.A.; Huis, J.H.J. Microbial changes on freshly slaughtered pork carcasses due to "hot" lactic acid decontamination. J. Food Saf. 1997, 17, 89–111. [Google Scholar] [CrossRef]
- Van Netten, P.; Valentijn, A.; Mossel, D.A.A.; Huis, J.H.J. Fate of low temperature and acid-adapted Yersinia enterocolitica and Listeria monocytogenes that contaminate lactic acid decontaminated meat during chill storage. J. Appl. Microbiol. 1997, 82, 769–779. [Google Scholar] [CrossRef]
- Koch, F.; Wiacek, C.; Braun, P.G. Pulsed light treatment for the reduction of Salmonella typhimurium and Yersinia enterocolitica on pork skin and pork loin. Int. J. Microbiol. 2019, 292, 64–71. [Google Scholar] [CrossRef]
- Langkabel, N.; Großpietsch, R.; Oetjen, M.; Bräutigam, L.; Irsigler, H.; Jaeger, D.; Ludewig, R.; Fries, R. Microbiological status of pig carcasses in mobile chilling vehicles. Arch. Lebensmittelhyg. 2014, 65, 45–49. [Google Scholar]
- Gill, C.O.; Jones, T. Assessment of the hygienic performances of an air-cooling process for lamb carcasses and a spray-cooling process for pig carcasses. Int. J. Microbiol. 1997, 38, 85–93. [Google Scholar] [CrossRef]
- Chang, V.P.; Mills, E.W.; Cutter, C.N. Reduction of bacteria on pork carcasses associated with chilling method. J. Food Protect. 2003, 66, 1019–1024. [Google Scholar] [CrossRef]
- Argüello, H.; Carvajal, A.; Álvarez-Ordóñez, A.; Jaramillo-Torres, H.A.; Rubio, P. Effect of logistic slaughter on Salmonella contamination on pig carcasses. Food Res. Int. 2014, 55, 77–82. [Google Scholar] [CrossRef]
- De Busser, E.V.; Maes, D.; Houf, K.; Dewulf, J.; Imberechts, H.; Bertrand, S.; De Zutter, L. Detection and characterization of Salmonella in lairage, on pig carcasses and intestines in five slaughterhouses. Int. J. Microbiol. 2011, 145, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Zdolec, N.; Kiš, M.; Jankuloski, D.; Blagoevska, K.; Kazazić, S.; Pavlak, M.; Blagojević, B.; Antić, D.; Fredriksson-Ahomaa, M.; Pažin, V. Prevalence and persistence of multidrug-resistant Yersinia enterocolitica 4/O:3 in slaughter pigs from different housing systems in Croatia. Foods 2022, 11, 1459. [Google Scholar] [CrossRef]
- Mannion, C.; Fanning, J.; McLernon, J.; Lendrum, L.; Gutierrez, M.; Duggan, S.; Egan, J. The role of transport, lairage and slaughter processes in the dissemination of Salmonella spp. in pigs in Ireland. Food Res. Int. 2012, 45, 871–879. [Google Scholar] [CrossRef]
- Zeng, H.; Rasschaert, G.; De Zutter, L.; Mattheus, W.; De Reu, K. Identification of the source for Salmonella contamination of carcasses in a large pig slaughterhouse. Pathogens 2021, 10, 77. [Google Scholar] [CrossRef]
- Zdolec, N.; Kiš, M. Meat safety from farm to slaughter—Risk-based control of Yersinia enterocolitica and Toxoplasma gondii. Processes 2021, 9, 815. [Google Scholar] [CrossRef]
- Van Damme, I.; Berkvens, D.; Vanantwerpen, G.; Baré, J.; Houf, K.; Wauters, G.; De Zutter, L. Contamination of freshly slaughtered pig carcasses with enteropathogenic Yersinia spp.: Distribution, quantification and identification of risk factors. Int. J. Microbiol. 2015, 204, 33–40. [Google Scholar] [CrossRef]
- Lawson, L.G.; Jensen, J.D.; Christiansen, P.; Lund, M. Cost-effectiveness of Salmonella reduction in Danish abattoirs. Int. J. Microbiol. 2009, 134, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Alban, L.; Sørensen, L.L. Hot-water decontamination is an effective way of reducing risk of Salmonella in pork. Fleischwirtschaft 2010, 90, 109–113. [Google Scholar]
- EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP); Silano, V.; Barat Baviera, J.M.; Bolognesi, C.; Brüschweiler, B.J.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; et al. Evaluation of the safety and efficacy of the organic acids lactic and acetic acids to reduce microbiological surface contamination on pork carcasses and pork cuts. EFSA J. 2018, 16, e05482. [Google Scholar] [PubMed]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on the evaluation of the safety and efficacy of lactic acid for the removal of microbial surface contamination of beef carcasses, cuts and trimmings. EFSA J. 2011, 9, 2317. [Google Scholar]
- European Parliament and Council of the European Union. Regulation (EC) No 101/2013, Concerning the use of lactic acid to reduce microbiological surface contamination on bovine carcasses. Off. J. Eur. Union 2013, L 34, 1–3. [Google Scholar]
- Blagojevic, B.; Antic, D.; Adzic, B.; Tasic, T.; Ikonic, P.; Buncic, S. Decontamination of incoming beef trimmings with hot lactic acid solution to improve microbial safety of resulting dry fermented sausages—A pilot study. Food Control 2015, 54, 144–149. [Google Scholar] [CrossRef] [Green Version]
Article Characteristic | Number of Articles 1 | % |
---|---|---|
Region | ||
North America | 6 | 24% |
Europe | 16 | 64% |
Australia/South Pacific | 1 | 4% |
Asia/Middle East | 2 | 8% |
Central and South America/Caribbean | 0 | 0 |
Africa | 0 | 0 |
Document type | ||
Journal article | 25 | 100% |
Thesis | 0 | 0 |
Conference paper | 0 | 0 |
Government or research report | 0 | 0 |
Study design | ||
Challenge trial | 7 | 24.1% |
Before-and-after trial | 12 | 41.4% |
Controlled trial | 9 | 31% |
Cohort study | 1 | 3.4% |
Study conditions | ||
Laboratory conditions | 6 | 23.1% |
Commercial abattoir conditions | 18 | 69.2% |
Research/pilot plant | 2 | 7.7% |
Intervention category/subcategory | ||
Pig handling in lairage | 2 | 5.1% |
Scalding | 4 | 10.3% |
Singeing | 4 | 10.3% |
Other standard processing procedures/GHP | 8 | 20.5% |
Carcass prechilling interventions | 12 | 30.8% |
Chilling, spray chilling, blast chilling | 9 | 23.1% |
Outcomes investigated | ||
Aerobic colony count | 17 | 37.7% |
Enterobacteriaceae count/prevalence | 9 | 20.0% |
Generic E. coli count/prevalence | 12 | 26.6% |
Yersinia enterocolitica count/prevalence | 6 | 13.3% |
Yersinia pseudotuberculosis prevalence | 1 | 2.2% |
Risk-of-bias concerns | ||
Low | 22 | 88% |
Some concerns | 2 | 8% |
High | 1 | 4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdolec, N.; Kotsiri, A.; Houf, K.; Alvarez-Ordóñez, A.; Blagojevic, B.; Karabasil, N.; Salines, M.; Antic, D. Systematic Review and Meta-Analysis of the Efficacy of Interventions Applied during Primary Processing to Reduce Microbial Contamination on Pig Carcasses. Foods 2022, 11, 2110. https://doi.org/10.3390/foods11142110
Zdolec N, Kotsiri A, Houf K, Alvarez-Ordóñez A, Blagojevic B, Karabasil N, Salines M, Antic D. Systematic Review and Meta-Analysis of the Efficacy of Interventions Applied during Primary Processing to Reduce Microbial Contamination on Pig Carcasses. Foods. 2022; 11(14):2110. https://doi.org/10.3390/foods11142110
Chicago/Turabian StyleZdolec, Nevijo, Aurelia Kotsiri, Kurt Houf, Avelino Alvarez-Ordóñez, Bojan Blagojevic, Nedjeljko Karabasil, Morgane Salines, and Dragan Antic. 2022. "Systematic Review and Meta-Analysis of the Efficacy of Interventions Applied during Primary Processing to Reduce Microbial Contamination on Pig Carcasses" Foods 11, no. 14: 2110. https://doi.org/10.3390/foods11142110
APA StyleZdolec, N., Kotsiri, A., Houf, K., Alvarez-Ordóñez, A., Blagojevic, B., Karabasil, N., Salines, M., & Antic, D. (2022). Systematic Review and Meta-Analysis of the Efficacy of Interventions Applied during Primary Processing to Reduce Microbial Contamination on Pig Carcasses. Foods, 11(14), 2110. https://doi.org/10.3390/foods11142110