Simultaneous Mass Spectrometric Detection of Proteins of Ten Oilseed Species in Meat Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemical Material
2.1.2. Sample Material
2.2. Methods
2.2.1. Sample Preparation for Mass Spectrometry
2.2.2. HPLC-MS/MS-Identification of Peptides for Chia, Coconut, Flaxseed, Hemp, Pumpkin, Rapeseed, Sesame and Sunflower
Liquid Chromatography–High-Resolution Mass Spectrometry
Data Analysis for Marker Peptide Identification
2.2.3. Synthesis of Peptides
2.2.4. UHPLC-MS/MS-Detection of Marker Peptides for the Ten Oilseed Species in Emulsion-Type Sausages
Liquid Chromatography–Triple Quadrupole Mass Spectrometry
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Determination of Suitable Marker Peptides for Chia, Coconut, Flaxseed, Hemp, Pumpkin, Rapeseed, Sesame and Sunflower in Plant Material
3.2. Detection of Oilseed Peptide Markers and Quantification of Protein Addition by Oilseed Proteins in Emulsion-Type Sausages
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worldometers. From 1950 to Current Year: Elaboration of Data by United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2019 Revision (Medium-Fertility Variant). Available online: https://www.worldometers.info/world-population/world-population-projections/ (accessed on 23 May 2022).
- Nadathur, S.S.R.; Wanasundara, J.P.D.; Scanlin, L. Proteins in the Diet: Challenges in Feeding the Global Population. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–19. [Google Scholar] [CrossRef]
- Chardigny, J.-M.; Walrand, S. Plant protein for food: Opportunities and bottlenecks. OCL 2016, 23, D404. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals; Acosta, A., Ed.; UN: Rome, Italy, 2018. [Google Scholar]
- Arrutia, F.; Binner, E.; Williams, P.; Waldron, K.W. Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Trends Food Sci. Technol. 2020, 100, 88–102. [Google Scholar] [CrossRef]
- Anzani, C.; Boukid, F.; Drummond, L.; Mullen, A.M.; Álvarez, C. Optimising the use of proteins from rich meat co-products and non-meat alternatives: Nutritional, technological and allergenicity challenges. Food Res. Int. 2020, 137, 109575. [Google Scholar] [CrossRef]
- Pojić, M.; Mišan, A.; Tiwari, B. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci. Technol. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Fasolin, L.; Pereira, R.; Pinheiro, A.; Martins, J.; Andrade, C.; Ramos, O.; Vicente, A. Emergent food proteins—Towards sustainability, health and innovation. Food Res. Int. 2019, 125, 108586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidalgo, F.J.; Zamora, R. Peptides and proteins in edible oils: Stability, allergenicity, and new processing trends. Trends Food Sci. Technol. 2006, 17, 56–63. [Google Scholar] [CrossRef]
- Lomascolo, A.; Uzan-Boukhris, E.; Sigoillot, J.-C.; Fine, F. Rapeseed and sunflower meal: A review on biotechnology status and challenges. Appl. Microbiol. Biotechnol. 2012, 95, 1105–1114. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 9 April 2022).
- LMC International. Outlook for Global Protein Demand. Forecasts by Protein Type, End Use and Country; LMC International: Oxford, UK, 2017. [Google Scholar]
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Food Chemistry, 4th ed.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Zhang, J.; Liu, L.; Jiang, Y.; Faisal, S.; Wei, L.; Cao, C.; Yan, W.; Wang, Q. Converting Peanut Protein Biomass Waste into “Double Green” Meat Substitutes Using a High-Moisture Extrusion Process: A Multiscale Method to Explore a Process for Forming a Meat-Like Fibrous Structure. J. Agric. Food Chem. 2019, 67, 10713–10725. [Google Scholar] [CrossRef]
- Nahashon, S.N.; Kilonzo-Nthenge, A.K. Advances in soybean and soybean by-products in monogastric nutrition and health. In Soybean and Nutrition; El-shemy, H., Ed.; IntechOpen: London, UK, 2011. [Google Scholar]
- Ternes, W.; Täufel, A.; Tunger, L.; Zobel, M. Lexikon der Lebensmittel und der Lebensmittelchemie, 4th ed.; Wissenschaftliche Verlagsgesellschaft mbH: Stuttgart, Germany, 2005. [Google Scholar]
- Shoaib, A.; Sahar, A.; Sameen, A.; Saleem, A.; Tahir, A.T. Use of pea and rice protein isolates as source of meat extenders in the development of chicken nuggets. J. Food Process. Preserv. 2018, 42, e13763. [Google Scholar] [CrossRef]
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Oilseed proteins—Properties and application as a food ingredient. Trends Food Sci. Technol. 2020, 106, 160–170. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M.; Sayas-Barberá, M.E.; de Vera, C.N.-R.; Lucas-González, R.; Roldán-Verdú, A.; Botella-Martínez, C.; Pérez-Alvarez, J.A. Chia, Quinoa, and Their Coproducts as Potential Antioxidants for the Meat Industry. Plants 2020, 9, 1359. [Google Scholar] [CrossRef] [PubMed]
- European Union. Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 Establishing the Union List of Novel Foods in Accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods; European Union: Brussels, Belgium, 2017. [Google Scholar]
- Grasso, S.; Jaworska, S. Part Meat and Part Plant: Are Hybrid Meat Products Fad or Future? Foods 2020, 9, 1888. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulou, K.; Keppler, J.; van der Goot, A. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef]
- Zahari, I.; Ferawati, F.; Helstad, A.; Ahlström, C.; Östbring, K.; Rayner, M.; Purhagen, J.K. Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion. Foods 2020, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Baune, M.C.; Baron, M.; Profeta, A.; Smetana, S.; Weiss, J.; Heinz, V.; Terjung, N. Impact of textured plant proteins on the technological and sensory properties of hybrid chicken nugget batters. Fleischwirtschaft 2020, 100, 82–88. [Google Scholar]
- Boukid, F. Plant-based meat analogues: From niche to mainstream. Eur. Food Res. Technol. 2021, 247, 297–308. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.-H.; Joo, S.-T. Meat analog as future food: A review. J. Anim. Sci. Technol. 2020, 62, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Union. Regulation (EU) No 1169/2011. Off. J. Eur. Union 2011, 304, 18–63. [Google Scholar]
- European Union. Commission directive 2007/68/EC. Off. J. Eur. Union 2007, 310, 11–14. [Google Scholar]
- Monaci, L.; De Angelis, E.; Montemurro, N.; Pilolli, R. Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. TrAC Trends Anal. Chem. 2018, 106, 21–36. [Google Scholar] [CrossRef]
- Pilolli, R.; Nitride, C.; Gillard, N.; Huet, A.-C.; van Poucke, C.; de Loose, M.; Tranquet, O.; Larré, C.; Adel-Patient, K.; Bernard, H.; et al. Critical review on proteotypic peptide marker tracing for six allergenic ingredients in incurred foods by mass spectrometry. Food Res. Int. 2020, 128, 108747. [Google Scholar] [CrossRef] [PubMed]
- Kotecka-Majchrzak, K.; Kasałka-Czarna, N.; Sumara, A.; Fornal, E.; Montowska, M. Multispecies Identification of Oilseed- and Meat-Specific Proteins and Heat-Stable Peptide Markers in Food Products. Molecules 2021, 26, 1577. [Google Scholar] [CrossRef]
- Spörl, J.; Speer, K.; Jira, W. A UHPLC-MS/MS Method for the Detection of Meat Substitution by Nine Legume Species in Emulsion-Type Sausages. Foods 2021, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Li, H.; Zhao, W.; Guo, W.; Wang, S. Simultaneous determination of heat stable peptides for eight animal and plant species in meat products using UPLC-MS/MS method. Food Chem. 2018, 245, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Proteomic analysis of oilseed cake: A comparative study of species-specific proteins and peptides extracted from ten seed species. J. Sci. Food Agric. 2021, 101, 297–306. [Google Scholar] [CrossRef]
- Jira, W.; Münch, S. A sensitive HPLC-MS/MS screening method for the simultaneous detection of barley, maize, oats, rice, rye and wheat proteins in meat products. Food Chem. 2019, 275, 214–223. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef]
- Häfner, L.; Kalkhof, S.; Jira, W. Authentication of nine poultry species using high-performance liquid chromatography–tandem mass spectrometry. Food Control 2021, 122, 107803. [Google Scholar] [CrossRef]
- Boo, C.C.; Parker, C.H.; Jackson, L.S. A Targeted LC-MS/MS Method for the Simultaneous Detection and Quantitation of Egg, Milk, and Peanut Allergens in Sugar Cookies. J. AOAC Int. 2018, 101, 108–117. [Google Scholar] [CrossRef]
- Gu, S.; Chen, N.; Zhou, Y.; Zhao, C.; Zhan, L.; Qu, L.; Cao, C.; Han, L.; Deng, X.; Ding, T.; et al. A rapid solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for simultaneous screening of multiple allergens in chocolates. Food Control 2018, 84, 89–96. [Google Scholar] [CrossRef]
- Korte, R.; Brockmeyer, J. MRM3-based LC-MS multi-method for the detection and quantification of nut allergens. Anal. Bioanal. Chem. 2016, 408, 7845–7855. [Google Scholar] [CrossRef]
- Planque, M.; Arnould, T.; Delahaut, P.; Renard, P.; Dieu, M.; Gillard, N. Development of a strategy for the quantification of food allergens in several food products by mass spectrometry in a routine laboratory. Food Chem. 2019, 274, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Heick, J.; Fischer, M.; Pöpping, B. First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry. J. Chromatogr. A 2011, 1218, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Huschek, G.; Bönick, J.; Löwenstein, Y.; Sievers, S.; Rawel, H. Quantification of allergenic plant traces in baked products by targeted proteomics using isotope marked peptides. LWT—Food Sci. Technol. 2016, 74, 286–293. [Google Scholar] [CrossRef]
- Montowska, M.; Fornal, E. Absolute quantification of targeted meat and allergenic protein additive peptide markers in meat products. Food Chem. 2019, 274, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Montowska, M.; Fornal, E.; Piątek, M.; Krzywdzińska-Bartkowiak, M. Mass spectrometry detection of protein allergenic additives in emulsion-type pork sausages. Food Control 2019, 104, 122–131. [Google Scholar] [CrossRef]
- Hoffmann, B.; Münch, S.; Schwägele, F.; Neusüß, C.; Jira, W. A sensitive HPLC-MS/MS screening method for the simultaneous detection of lupine, pea, and soy proteins in meat products. Food Control 2017, 71, 200–209. [Google Scholar] [CrossRef]
- Pilolli, R.; de Angelis, E.; Monaci, L. In house validation of a high resolution mass spectrometry Orbitrap-based method for multiple allergen detection in a processed model food. Anal. Bioanal. Chem. 2018, 410, 5653–5662. [Google Scholar] [CrossRef]
- Planque, M.; Arnould, T.; Dieu, M.; Delahaut, P.; Renard, P.; Gillard, N. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs. J. Chromatogr. A 2016, 1464, 115–123. [Google Scholar] [CrossRef]
- Montowska, M.; Fornal, E. Detection of peptide markers of soy, milk and egg white allergenic proteins in poultry products by LC-Q-TOF-MS/MS. LWT—Food Sci. Technol. 2018, 87, 310–317. [Google Scholar] [CrossRef]
- Johnson, P.E.; Baumgartner, S.; Aldick, T.; Bessant, C.; Giosafatto, V.; Heick, J.; Mamone, G.; O’Connor, G.; Poms, R.; Popping, B.; et al. Current Perspectives and Recommendations for the Development of Mass Spectrometry Methods for the Determination of Allergens in Foods. J. AOAC Int. 2011, 94, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Croote, D.; Braslavsky, I.; Quake, S.R. Addressing Complex Matrix Interference Improves Multiplex Food Allergen Detection by Targeted LC–MS/MS. Anal. Chem. 2019, 91, 9760–9769. [Google Scholar] [CrossRef] [PubMed]
- Sandjo, L.P.; Zingue, S.; Nascimento, M.; de Moraes, M.H.; Vicente, G.; Amoah, S.K.S.; Dalmarco, E.M.; Frode, T.S.; Creczynski-Pasa, T.B.; Steindel, M. Cytotoxicity, antiprotozoal, and anti-inflammatory activities of eight curry powders and comparison of their UPLC-ESI-QTOF-MS chemical profiles. J. Sci. Food Agric. 2019, 99, 2987–2997. [Google Scholar] [CrossRef]
- Federal Office for Information Security. Draft BS EN 17644 Foodstuffs—Detection of Food Allergens by Liquid Chromatography—Mass Spectrometry (LC-MS) Methods—General Considerations. Available online: https://www.beuth.de/en/draft-standard/oenorm-en-17644/339045979 (accessed on 23 May 2022).
- Bekhit, A.A.; Hopkins, D.L.; Geesink, G.; Bekhit, A.A.; Franks, P. Exogenous Proteases for Meat Tenderization. Crit. Rev. Food Sci. Nutr. 2014, 54, 1012–1031. [Google Scholar] [CrossRef] [PubMed]
- Von Bargen, C.; Dojahn, J.; Waidelich, D.; Humpf, H.-U.; Brockmeyer, J. New Sensitive High-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for the Detection of Horse and Pork in Halal Beef. J. Agric. Food Chem. 2013, 61, 11986–11994. [Google Scholar] [CrossRef] [PubMed]
- Stachniuk, A.; Sumara, A.; Montowska, M.; Fornal, E. Liquid chromatography–mass spectrometry bottom-up proteomic methods in animal species analysis of processed meat for food authentication and the detection of adulterations. Mass Spectrom. Rev. 2021, 40, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, Y.; Zhang, Y.; Kang, C.; Zhao, W.; Ren, N.; Guo, W.; Wang, S. Rapid LC-MS/MS method for the detection of seven animal species in meat products. Food Chem. 2022, 371, 131075. [Google Scholar] [CrossRef]
- Desimoni, E.; Brunetti, B. About Estimating the Limit of Detection by the Signal to Noise Approach. Pharm. Anal. Acta 2015, 6, 4. [Google Scholar] [CrossRef]
- Ke, X.; Zhang, J.; Lai, S.; Chen, Q.; Zhang, Y.; Jiang, Y.; Mo, W.; Ren, Y. Quantitative analysis of cow whole milk and whey powder adulteration percentage in goat and sheep milk products by isotopic dilution-ultra-high performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 213–224. [Google Scholar] [CrossRef]
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Identification of species-specific peptide markers in cold-pressed oils. Sci. Rep. 2020, 10, 19971. [Google Scholar] [CrossRef]
- Pérez-Montes, A.; Rangel-Vargas, E.; Lorenzo, J.M.; Romero, L.; Santos, E.M. Edible mushrooms as a novel trend in the development of healthier meat products. Curr. Opin. Food Sci. 2021, 37, 118–124. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Punia, S.; Grasso, S.; Arrutia, F.; Choudhary, J.; Singh, S.; Verma, P.; Mahapatra, A.; Patil, S.; et al. Cottonseed: A sustainable contributor to global protein requirements. Trends Food Sci. Technol. 2021, 111, 100–113. [Google Scholar] [CrossRef]
Control | Processing Series 1 | Processing Series 2 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test Sausages | Standard Sausages | Unknown Sausages | ||||||||||||||||||||
T1 | T2 | T3 | T4 | T5 | S1a | S1b | S2a | S2b | S3a | S3b | S4a | S4b | S5a | S5b | U1a | U1b | U2a | U2b | U3a | U3b | ||
Formulations (%) | ||||||||||||||||||||||
Pork | 50 | 49.987 | 49.97 | 49.9 | 49.7 | 47.3 | 45.2 | 44.9 | 44.4 | 43.7 | 43.6 | 41.5 | 43.6 | 42.0 | 43.9 | 41.2 | 47.4 | 46.5 | 45.7 | 45.4 | 45.3 | 43.4 |
Back fat | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
Curing salt | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 |
Phosphate | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Ice | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
Flour mixture | - | 0.013 | 0.03 | 0.1 | 0.3 | 2.7 | 4.8 | 5.1 | 5.6 | 6.3 | 6.4 | 8.5 | 6.4 | 8.0 | 6.1 | 8.8 | 2.6 | 3.5 | 4.3 | 4.6 | 4.7 | 6.6 |
Oilseed Flour (%) | ||||||||||||||||||||||
Chia | - | 0.0017 | 0.0034 | 0.017 | 0.034 | 0.34 | 0.03 | - | 0.85 | - | 1.69 | - | 2.54 | - | 3.39 | - | - | - | 0.50 | - | 2.88 | - |
Coconut | - | 0.003 | 0.006 | 0.03 | 0.06 | 0.6 | - | 0.06 | - | 1.49 | - | 2.98 | - | 4.46 | - | 5.95 | - | - | - | 0.89 | - | 5.06 |
Flaxseed | - | 0.0015 | 0.003 | 0.015 | 0.03 | 0.3 | 0.64 | - | 1.28 | - | 1.92 | - | 2.56 | - | 0.03 | - | 0.38 | - | 2.18 | - | - | - |
Hemp | - | 0.0012 | 0.0024 | 0.012 | 0.024 | 0.24 | 1.18 | - | 1.78 | - | 2.37 | - | 0.02 | - | 0.59 | - | 2.01 | - | - | - | 0.36 | - |
Peanut | - | 0.0012 | 0.0023 | 0.012 | 0.023 | 0.23 | - | 0.56 | - | 1.13 | - | 1.69 | - | 2.25 | - | 0.02 | - | 0.34 | - | 1.91 | - | - |
Pumpkin | - | 0.0008 | 0.0017 | 0.008 | 0.017 | 0.17 | 1.27 | - | 1.69 | - | 0.02 | - | 0.42 | - | 0.84 | - | - | - | 0.25 | - | 1.44 | - |
Rapeseed | - | 0.0017 | 0.0034 | 0.017 | 0.034 | 0.34 | - | 1.68 | - | 2.52 | - | 3.36 | - | 0.03 | - | 0.84 | - | 2.85 | - | - | - | 0.50 |
Sesame | - | 0.0009 | 0.0019 | 0.009 | 0.019 | 0.19 | 1.65 | - | 0.02 | - | 0.41 | - | 0.83 | - | 1.24 | - | 0.25 | - | 1.40 | - | - | - |
Soy | - | 0.0006 | 0.0012 | 0.006 | 0.012 | 0.12 | - | 0.89 | - | 1.18 | - | 0.01 | - | 0.30 | - | 0.59 | - | - | - | 0.18 | - | 1.01 |
Sunflower | - | 0.0005 | 0.001 | 0.005 | 0.01 | 0.1 | - | 1.92 | - | 0.02 | - | 0.48 | - | 0.96 | - | 1.44 | - | 0.29 | - | 1.63 | - | - |
Oilseed Protein (%) | ||||||||||||||||||||||
Chia | - | 0.0005 | 0.001 | 0.005 | 0.01 | 0.1 | 0.01 | - | 0.25 | - | 0.50 | - | 0.75 | - | 1.0 | - | - | - | 0.15 | - | 0.85 | - |
Coconut | - | 0.0005 | 0.001 | 0.005 | 0.01 | 0.1 | - | 0.01 | - | 0.25 | - | 0.50 | - | 0.75 | - | 1.0 | - | - | - | 0.15 | - | 0.85 |
Flaxseed | - | 0.0005 | 0.001 | 0.005 | 0.01 | 0.1 | 0.25 | - | 0.50 | - | 0.75 | - | 1.0 | - | 0.01 | - | 0.15 | - | 0.85 | - | - | - |
Hemp | - | 0.0005 | 0.001 | 0.005 | 0.01 | 0.1 | 0.50 | - | 0.75 | - | 1.0 | - | 0.01 | - | 0.25 | - | 0.85 | - | - | - | 0.15 | - |
Peanut | - | 0.0005 | 0.001 | 0.005 | 0.01 | 0.1 | - | 0.25 | - | 0.50 | - | 0.75 | - | 1.0 | - | 0.01 | - | 0.15 | - | 0.85 | - | - |
Pumpkin | - | 0.0005 | 0.001 | 0.005 | 0.01 | 0.1 | 0.75 | - | 1.0 | - | 0.01 | - | 0.25 | - | 0.50 | - | - | - | 0.15 | - | 0.85 | - |
Rapeseed | - | 0.0005 | 0.001 | 0.005 | 0.01 | 0.1 | - | 0.50 | - | 0.75 | - | 1.0 | - | 0.01 | - | 0.25 | - | 0.85 | - | - | - | 0.15 |
Sesame | - | 0.0005 | 0.001 | 0.005 | 0.01 | 0.1 | 1.0 | - | 0.01 | - | 0.25 | - | 0.50 | - | 0.75 | - | 0.15 | - | 0.85 | - | - | - |
Soy | - | 0.0005 | 0.001 | 0.005 | 0.01 | 0.1 | - | 0.75 | - | 1.0 | - | 0.01 | - | 0.25 | - | 0.50 | - | - | - | 0.15 | - | 0.85 |
Sunflower | 0.0005 | 0.001 | 0.005 | 0.01 | 0.1 | - | 1.0 | - | 0.01 | - | 0.25 | - | 0.50 | - | 0.75 | - | 0.15 | - | 0.85 | - | - |
Peptide Marker | tR [Min] | DP [V] | m/z (Charge State) | Product Ions | CE [V] | CXP [V] | |
---|---|---|---|---|---|---|---|
Chia 1 | GPIVIVEK | 3.39 ± 0.01 | 41 | 427.8 (+2) | 587.4 (y5), 488.3 (y4), 700.5 (y6) | 19/19/17 | 42/22/36 |
Chia 2 | ELQVIKPPFR | 4.99 ± 0.01 | 116 | 409.6 (+3) | 322.7 (y5+2), 516.3 (y4), 428.8 (y72+) | 13/17/15 | 24/28/20 |
Coconut 1 | EVDEVLNAPR | 3.31 ± 0.01 | 100 | 571.3 (+2) | 457.3 (y4), 913.5 (y8), 343.2 (y3) | 25/23/23 | 26/50/24 |
Coconut 2 | LNALEPTR | 2.31 ± 0.01 | 71 | 457.3 (+2) | 502.3 (y4), 373.2 (y3), 686.4 (y6) | 21/21/17 | 32/18/32 |
Flaxseed 1 | FFLAGNPQR | 4.13 ± 0.01 | 86 | 525.3 (+2) | 746.4 (y6), 409.2 (y72+), 618.4 (y5) | 29/27/27 | 50/28/28 |
Flaxseed 2 | LLYVDQGR | 2.93 ± 0.01 | 91 | 482.3 (+2) | 737.4 (y6), 360.2 (y3), 574.3 (y5) | 21/33/25 | 42/20/32 |
Hemp 1 | GTLDLVSPLR [31,34] | 5.98 ± 0.02 | 90 | 535.8 (+2) | 472.3 (y4), 571:4 (y5), 799.5 (y7) | 25/23/29 | 22/18/46 |
Hemp 2 | ILAESFNVDTELAHK [31] | 5.45 ± 0.01 | 100 | 562.9 (+3) | 730.9 (y132+), 813.4 (y7), 787.4 (y142+) | 19/25/21 | 36/40/54 |
Peanut 1 | FNLAGNHEQEFLR [38,39,40,41] | 4.75 ± 0.01 | 61 | 525.6 (+3) | 262.1 (b2), 657.3 (y112+), 600.8 (y102+) | 23/23/23 | 14/40/16 |
Peanut 2 | WLGLSAEYGNLYR [38,42] | 7.14 ± 0.01 | 16 | 771.4 (+2) | 272.2 (a2), 300.2 (b2),357.2 (b3) | 39/35/39 | 14/18/18 |
Pumpkin 1 | VLAEIFNINVETAR | 7.69 ± 0.01 | 95 | 794.9 (+2) | 413.2 (b3), 689.4 (y6) 1063.6 (y9) | 35/37/35 | 20/38/46 |
Pumpkin 2 | LVFVAQGFGIR [34] | 7.08 ± 0.01 | 75 | 603.9 (+2) | 748.4 (y7), 497.8 (y92+), 360.2 (b3) | 29/23/29 | 48/24/20 |
Rapeseed 1 | NLRPFLIAGNNPQGQQWLQGR | 6.72 ± 0.01 | 171 | 803.1 (+2) | 599.3 (y102+), 360.2 (y3), 473.3 (y4) | 33/33/37 | 36/18/30 |
Rapeseed 2 * | QQQGQQGQQLQQVISR | 3.45 ± 0.01 | 116 | 618.7 (+2) | 730.4 (y6), 602.3 (y5), 375.2 (y3) | 29/25/27 | 36/32/20 |
Sesame 1 | AFYLAGGVPR [43] | 4.99 ± 0.01 | 91 | 525.8 (+2) | 485.3 (y5), 382.2 (b3), 566.3 (b5) | 23/21/19 | 28/24/30 |
Sesame 2 | LVLPEYGR | 4.88 ± 0.01 | 71 | 473.8 (+2) | 621.3 (y5), 367.7 (y62+), 326.2 (b3) | 21/19/17 | 28/18/20 |
Sunflower 1 | FPILEHLQLSAER [34] | 6.55 ± 0.02 | 100 | 518.3 (+3) | 469.3 (y123+), 703.4 (y122+), 654.9 (y112+) | 25/25/23 | 24/30/32 |
Sunflower 2 | FPILEHLR | 4.95 ± 0.01 | 76 | 342.2 (+3) | 439.3 (y72+), 667.4 (y5), 390.7 (y62+) | 15/19/15 | 20/38/16 |
Soy 1 | FYLAGNQEQEFLK [44,45,46,47] | 6.10 ± 0.02 | 36 | 793.9 (+2) | 311.1 (b2), 424.2 (b3); 638.7 (y112+) | 41/35/33 | 18/26/38 |
Soy 2 | EAFGVNMQIVR [41,46,47,48] | 5.85 ± 0.02 | 61 | 632.3 (+2) | 760.4 (y6), 387.3 (y3), 532.3 (y92+) | 29/29/27 | 38/22/34 |
Peptide Marker | Concentration of Oilseed Protein [%] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.01 | 0.25 | 0.5 | 0.75 | 1.0 | 0.01 | 0.25 | 0.5 | 0.75 | 1.0 | |||
LOD [%] | R2 (a) | RSD [%] of the Mass Transition Ratio (b) | RSD [%] of the Repeatability (c) | |||||||||
Chia 1 | 0.005 | 0.987 | 4 | 2 | 2 | 3 | 3 | 16 | 9 | 8 | 9 | 11 |
Chia 2 | 0.978 | 13 | 3 | 3 | 3 | 2 | 16 | 11 | 13 | 14 | 11 | |
Coconut 1 | 0.005 | 0.993 | 2 | 6 | 14 | 7 | 6 | 8 | 12 | 9 | 10 | 9 |
Coconut 2 | 0.921 | 2 | 1 | 10 | 1 | 11 | 9 | 10 | 11 | 10 | 6 | |
Flaxseed 1 | 0.0005 | 0.994 | 3 | 2 | 1 | 2 | 1 | 6 | 4 | 4 | 7 | 6 |
Flaxseed 2 | 0.980 | 2 | 14 | 7 | 1 | 1 | 5 | 44 | 5 | 6 | 5 | |
Hemp 1 | 0.001 | 0.966 | 2 | 2 | 2 | 3 | 4 | 13 | 13 | 10 | 9 | 10 |
Hemp 2 | 0.958 | 2 | 3 | 5 | 5 | 5 | 14 | 14 | 10 | 9 | 12 | |
Peanut 1 | 0.001 | 0.988 | 7 | 3 | 4 | 8 | 9 | 12 | 9 | 10 | 9 | 7 |
Peanut 2 | 0.991 | 7 | 15 | 5 | 5 | 8 | 14 | 18 | 11 | 13 | 13 | |
Pumpkin 1 | 0.005 | 0.983 | 10 | 2 | 2 | 2 | 3 | 18 | 15 | 21 | 25 | 22 |
Pumpkin 2 | 0.914 | 4 | 3 | 2 | 2 | 2 | 35 | 34 | 45 | 46 | 53 | |
Rapeseed 1 | 0.01 | 0.976 | 10 | 14 | 12 | 5 | 11 | 9 | 13 | 13 | 7 | 15 |
Rapeseed 2 | 0.957 | 10 | 9 | 10 | 5 | 21 | 17 | 22 | 16 | 16 | 16 | |
Sesame 1 | 0.001 | 0.995 | 2 | 2 | 1 | 2 | 1 | 12 | 16 | 9 | 11 | 9 |
Sesame 2 | 0.990 | 2 | 1 | 2 | 1 | 1 | 10 | 4 | 4 | 5 | 3 | |
Soy 1 | 0.005 | 0.993 | 3 | 3 | 4 | 2 | 2 | 5 | 10 | 14 | 3 | 7 |
Soy 2 | 0.986 | 5 | 13 | 5 | 13 | 15 | 15 | 20 | 16 | 5 | 14 | |
Sunflower 1 | 0.005 | 0.994 | 4 | 2 | 2 | 8 | 10 | 13 | 10 | 12 | 11 | 15 |
Sunflower 2 | 0.976 | 4 | 2 | 13 | 4 | 5 | 21 | 21 | 37 | 22 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spörl, J.; Speer, K.; Jira, W. Simultaneous Mass Spectrometric Detection of Proteins of Ten Oilseed Species in Meat Products. Foods 2022, 11, 2155. https://doi.org/10.3390/foods11142155
Spörl J, Speer K, Jira W. Simultaneous Mass Spectrometric Detection of Proteins of Ten Oilseed Species in Meat Products. Foods. 2022; 11(14):2155. https://doi.org/10.3390/foods11142155
Chicago/Turabian StyleSpörl, Johannes, Karl Speer, and Wolfgang Jira. 2022. "Simultaneous Mass Spectrometric Detection of Proteins of Ten Oilseed Species in Meat Products" Foods 11, no. 14: 2155. https://doi.org/10.3390/foods11142155
APA StyleSpörl, J., Speer, K., & Jira, W. (2022). Simultaneous Mass Spectrometric Detection of Proteins of Ten Oilseed Species in Meat Products. Foods, 11(14), 2155. https://doi.org/10.3390/foods11142155