The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Berry Pomace Preparation
2.3. Beef Patty Preparation
2.4. Measurement of pH
2.5. Total Phenolic Compounds Determination
2.6. Total Anthocyanins
2.7. Natural Mass Loss (%)
2.8. Measurement of Lipid Oxidation
2.9. Determination of Fatty Acids
2.10. Volatile Compounds Analysis
2.11. Color Measurements
2.12. Statistical Methods
3. Results and Discussion
3.1. Total Phenols and Color of Berry Pomace
3.2. Beef Patties Natural Mass Loss and pH
3.3. Lipids Oxidation and Fatty Acids Changes in Beef Patties during Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parafati, L.; Palmeri, R.; Trippa, D.; Restuccia, C.; Fallico, B. Quality Maintenance of Beef Burger Patties by Direct Addiction or Encapsulation of a Prickly Pear Fruit Extract. Front. Microbiol. 2019, 10, 1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawashin, M.D.; Al-Juhaimi, F.; Mohamed Ahmed, I.A.; Ghafoor, K.; Babiker, E.E. Physicochemical, microbiological and sensory evaluation of beef patties incorporated with destoned olive cake powder. Meat Sci. 2016, 122, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Hlima, H.B.; Smaoui, S.; Barkallah, M.; Elhadef, K.; Tounsi, L.; Michaud, P.; Fendri, I.; Abdelkaf, S. Sulfated exopolysaccharides from Porphyridium cruentum: A useful strategy to extend the shelf life of minced beef meat. Int. J. Biol. Macromol. 2021, 193, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- García-Lomillo, J.; Gonzalez-SanJose, M.L.; Del Pino-García, R.; Ortega-Heras, M.; Muniz-Rodríguez, P. Antioxidant effect of seasonings derived from wine pomace on lipid oxidation in refrigerated and frozen beef patties. LWT 2017, 77, 85–91. [Google Scholar] [CrossRef]
- Li, Y.; Quan, W.; Wang, J.; He, Z.; Qin, F.; Wang, Z.; Zeng, M.; Chen, J. Effects of ten vegetable oils on heterocyclic amine profiles in roasted beef patties using UPLC-MS/MS combined with principal component analysis. Food Chem. 2021, 347, 128996. [Google Scholar] [CrossRef] [PubMed]
- Amiri, E.; Aminzare, M.; Azar, H.H.; Mehrasbi, M.R. Combined antioxidant and sensory effects of corn starch films with nanoemulsion of Zataria multiflora essential oil fortified with cinnamaldehyde on fresh ground beef patties. Meat Sci. 2019, 153, 66–74. [Google Scholar] [CrossRef]
- Zahida, A.; Choib, J.Y.; Seoa, J.K.; Parvina, R.; Koa, J.; Yang, H.S. Effects of clove extract on oxidative stability and sensory attributes in cooked beef patties at refrigerated storage. Meat Sci. 2020, 161, 10797. [Google Scholar] [CrossRef]
- Prommacharta, R.; Belema, T.S.; Uriyapongsond, S.; Rayas-Duartec, P.; Uriyapongsond, J.; Ramanathan, R. The effect of black rice water extract on surface color, lipid oxidation, microbial growth, and antioxidant activity of beef patties during chilled storage. Meat Sci. 2020, 164, 10809. [Google Scholar] [CrossRef]
- Tamkute, L.; Liepuoniute, R.; Pukalskiene, M.; Venskutonis, P.R. Recovery of valuable lipophilic and polyphenolic fractions from cranberry pomace by consecutive supercritical CO2 and pressurized liquid extraction. J. Supercrit. Fluids 2020, 159, 104755. [Google Scholar] [CrossRef]
- Iqbal, A.; Schulz, P.; Rizvi, S.S.H. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. Food Biosci. 2021, 44, 101384. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Florez-Lopez, E.; Grande-Tovar, C.D. The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.A.; Gomez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of fruit industrial by-products—A case study on circular economy approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kryzeviciute, N.; Kraujalis, P.; Venskutonis, P.R. Optimization of high-pressure extraction processes for the separation of raspberry pomace into lipophilic and hydrophilic fractions. J. Supercrit. Fluids 2016, 108, 61–68. [Google Scholar] [CrossRef]
- Pathania, S.; Kaur, N. Utilization of fruits and vegetable by-products for isolation of dietary fibres and it’s potential application as functional ingredients. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100295. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Yang, G.; Sun, L.; Song, X.; Chen, Q.; Bao, Y.; Luo, T.; Wang, J. Microstructure, physicochemical properties, and adsorption capacity of deoiled red raspberry pomace and it’s total dietary fiber. LWT 2022, 153, 112478. [Google Scholar] [CrossRef]
- Lee, J.M.; Dossett, M.; Finn, C.E. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem. 2012, 130, 785–796. [Google Scholar] [CrossRef]
- Schulza, M.; Chima, J.F. Nutritional and bioactive value of Rubus berries. Food Biosci. 2019, 31, 100438. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bansal, S.; Mangal, M.; Dixit, A.K.; Gupta, R.K.; Mangal, A.K. Utilization of food processing by-products as dietary, functional, and novel fibre: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1647–1661. [Google Scholar] [CrossRef]
- Gorecka, D.; Pacholek, B.; Dziedzic, K.; Gorecka, M. Raspberry pomace as a potential fiber source for cookies enrichment. Acta. Sci. Pol. Technol. Aliment. 2010, 9, 451–462. [Google Scholar]
- Zhang, H.; Troise, A.D.; Qi, Y.; Wu, G.; Zhang, H.; Fogliano, V. Insoluble dietary fibre scavenges reactive carbonyl species under simulated physiological conditions: The key role of fibre-bound polyphenols. Food Chem. 2021, 349, 129018. [Google Scholar] [CrossRef]
- Kalušević, A.; Salević, A.; Đorđević, R.; Veljović, M.; Nedović, V. Raspberry and blackberry pomaces as potential sources of bioactive compounds. Ukr. Food J. 2016, 5, 485–491. [Google Scholar] [CrossRef]
- Basanta, M.F.; Rizzo, S.A.; Szerman, N.; Vaudagna, S.R.; Descalzo, A.M.; Gerschenson, L.N.; Pérez, C.D.; Rojas, A.M. Plum (Prunus salicina) peel and pulp microparticles as natural antioxidant additives in breast chicken patties. Food Res. Int. 2018, 106, 1086–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamkute, L.; Vaicekauskaite, R.; Melero, B.; Jaime, I.; Rovira, J.; Venskutonis, P.R. Effects of chokeberry extract isolated with pressurized ethanol from defatted pomace on oxidative stability, quality and sensory characteristics of pork meat products. LWT 2021, 150, 111943. [Google Scholar] [CrossRef]
- Younis, K.; Ahmad, S.; Malik, M.A. Mosambi peel powder incorporation in meat products: Effect on physicochemical properties and shelf-life stability. Appl. Food Res. 2021, 1, 100015. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV–visible spectroscopy. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Horszwald, A.; Heritier, J.; Wilfried, A. Characterisation of Aronia powders obtained by different drying processes. Food Chem. 2013, 141, 2858–2863. [Google Scholar] [CrossRef]
- Jongberg, S.; Skov, S.H.; Tørngren, M.A.; Skibsted, L.H.; Lund, M.N. Effect of white grape extract and modified atmosphere packaging on lipid and protein oxidation in chill stored beef patties. Food Chem. 2011, 128, 276–283. [Google Scholar] [CrossRef]
- EN ISO 15304:2002/AC:2004; Animal and Vegetable Fats and Oils—Determination of the Content of Trans Fatty Acid Isomers of Vegetable Fats and Oils—Gas Chromatographic Method—Technical Corrigendum 1. ISO: London, UK, 2005.
- LST EN ISO 12966-2:2011; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: London, UK, 2011.
- Wojtasik-Kalinowska, I.; Guzek, D.; Gorska-Horczyczak, E.; Głabska, D.; Brodowska, M.; Sun, D.W.; Wierzbicka, A. Volatile compounds and fatty acids profile in Longissimus dorsi muscle from pigs fed with feed containing bioactive components. LWT 2016, 67, 112–117. [Google Scholar] [CrossRef]
- Xiao, Z.; Yu, D.; Niu, Y.; Chen, F.; Song, S.; Zhu, J.; Zhu, G. Characterization of aroma compounds of Chinese famous liquors by gas chromatography-mass spectrometry and flash GC electronic-nose. J. Chromatogr. B 2014, 945–946, 92–100. [Google Scholar] [CrossRef]
- Szymanowska, U.; Baraniak, B.; Bogucka-Kocka, A. Antioxidant, anti-inflammatory, and postulated cytotoxic activity of phenolic and anthocyanin-rich fractions from polana raspberry (Rubus idaeus L.) fruit and juice—In vitro study. Molecules 2018, 23, 1812. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Chen, J.; Yang, J.; Hao, Y.; Fan, Y.; Wang, C.; Li, N. Free, soluble-bound and insoluble-bound phenolics and their bioactivity in raspberry pomace. LWT 2021, 135, 109995. [Google Scholar] [CrossRef]
- Gorna, P.; Juhn, K.; Radenkova, E.; Radenkovs, V.; Misina, I.; Pugajeva, I.; Soliven, A.; Seglin, D. The impact of different baking conditions on the stability of the extractable polyphenols in muffins enriched by strawberry, sour cherry, raspberry or black currant pomace. LWT 2016, 65, 946–953. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Čechovičienė, I.; Jukniūtė, K.; Šlepetienė, A.; Paulauskienė, A. Qualitative properties of cookies enriched with berries pomace. Food Sci. Technol. 2020, 41, 474–481. [Google Scholar] [CrossRef]
- Sozzi, A.; Zambon, M.; Mazza, G.; Salvatori, D. Fluidized bed drying of blackberry wastes: Drying kinetics, particle characterization and nutritional value of the obtained granular solids. Powder Technol. 2021, 385, 37–49. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Kubota, E.H.; Giacomellida da Silva, C.; dos Santos Alves, J.; Hautrive, T.P.; Rodrigues, G.S.; Campagnol, P.C.B. Banana inflorescences: A cheap raw material with great potential to be used as a natural antioxidant in meat products. Meat Sci. 2020, 161, 107991. [Google Scholar] [CrossRef] [PubMed]
- Elhadefa, K.; Smaoui, S.; Hlima, H.B.; Ennouri, K.; Fourati, M.; Mtibaa, A.C.; Ennouri, M.; Melloulia, L. Effects of Ephedra alata extract on the quality of minced beef meat during refrigerated storage: A chemometric approach. Meat Sci. 2020, 170, 108246. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- Zafra-Rojas, Q.; Cruz-Cansino, N.; Delgadillo-Ramírez, A.; Alanís-García, E.; Añorve-Morga, J.; Quintero-Lira, A.; Castañeda-Ovando, A.; Ramírez-Moreno, E. Organic Acids, Antioxidants, and Dietary Fiber of Mexican Blackberry (Rubus fruticosus) Residues cv. Tupy. J. Food Qual. 2018, 2018, 5950761. [Google Scholar] [CrossRef] [Green Version]
- Marques, C.; Sotiles, A.R.; Oliveira Farias, F.; Oliveira, G.; Mitterer-Daltoe, M.L.; Masson, M.L. Full physicochemical characterization of malic acid: Emphasis in the potential as food ingredient and application in pectin gels. Arab. J. Chem. 2020, 13, 9118–9129. [Google Scholar] [CrossRef]
- Chaijan, M.; Panpipat, W. Mechanism of oxidation in foods of animal origin. In Natural Antioxidants. Applications in Foods of Animal Origin; Banerjee, R., Verma, A.K., Siddiqui, M.W., Eds.; Apple Academic Press, Inc.: Boca Raton, FL, USA, 2017; pp. 1–38. ISBN 978-1-315-36591-6. [Google Scholar]
- Hendawy, O.; Gomaa, H.A.; Hussein, S.; Alzarea, S.I.; Qasim, S.; Rahman, F.E.-Z.S.A.; Ali, A.T.; Ahmed, S.R. Cold-pressed raspberry seeds oil ameliorates high-fat diet triggered non-alcoholic fatty liver disease. Saudi Pharm. J. 2021, 29, 1303–1313. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Różańska, M.; Siger, A.; Kowalczewski, P.Ł.; Rudzińska, M. Changes in chemical composition and oxidative stability of cold-pressed oils obtained from by-product roasted berry seeds. LWT 2019, 111, 541–547. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Shahidi, F. Chemical characteristics of cold-pressed blackberry, black raspberry, and blueberry seed oils and the role of the minor components in their oxidative stability. J. Agric. Food Chem. 2016, 64, 5410–5416. [Google Scholar] [CrossRef] [PubMed]
- Rey, A.I.; Hopia, A.; Kivikari, R.; Kahkonen, M. Use of natural food/plant extracts: Cloudberry (Rubus chamaemorus), beetroot (Beta vulgaris “vulgaris”) or willow herb (Epilobium angustifolium) to reduce lipid oxidation of cooked pork patties. LWT 2005, 38, 363–370. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holman, B.W.B.; Kerry, J.P.; Hopkins, D.L. Meat packaging solutions to current industry challenges: A review. Meat Sci. 2018, 144, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Zhuang, H.; Nasiru, M.M.; Yuan, Y.; Zhang, J.; Yan, W. Changes in color, myoglobin, and lipid oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Sci. 2021, 176, 108456. [Google Scholar] [CrossRef] [PubMed]
- Ganhão, R.; Estévez, M.; Armenteros, M.; Morcuende, D. Mediterranean Berries as Inhibitors of Lipid Oxidation in Porcine Burger Patties Subjected to Cooking and Chilled Storage. J. Integr. Agric. 2013, 12, 1982–1992. [Google Scholar] [CrossRef]
- Orkusz, A.; Wolanska, W.; Krajinska, U. The Assessment of Changes in the Fatty Acid Profile and Dietary Indicators Depending on the Storage Conditions of Goose Meat. Molecules 2021, 26, 5122. [Google Scholar] [CrossRef]
Berry Pomace | Total Phenols | Total Anthocyanins |
---|---|---|
Raspberry | 461.33 b | 184.07 b |
Blackberry | 431.33 a | 24.45 a |
Storage Days | Without Pomace | Raspberry Pomace | Blackberry Pomace | ||||
---|---|---|---|---|---|---|---|
1% | 3% | 5% | 1% | 3% | 5% | ||
3 | 1.68 c | 0.05 f | 0.09 e,f | 0.07 f | 0.05 f | 0.05 f | 0.13 e,f |
6 | 2.10 b | 0.11 e,f | 0.19 e,f | 0.13 e,f | 0.11 e,f | 0.10 e,f | 0.22 d,e,f |
9 | 3.37 a | 0.16 e,f | 0.26 d,e | 0.20 e,f | 0.16 e,f | 0.15 e,f | 0.26 d,e |
Storage Days | Without Pomace | Raspberry Pomace | Blackberry Pomace | ||||
---|---|---|---|---|---|---|---|
1% | 3% | 5% | 1% | 3% | 5% | ||
0 | 5.41 c | - | - | - | - | - | - |
3 | 5.42 c | 5.13 f | 4.84 i | 4.68 j | 5.15 f | 5.63 a | 5.51 b |
6 | 5.41 c | 5.38 c | 4.94 h | 4.82 i | 5.25 e | 5.02 g | 4.95 h |
9 | 5.44 c | 5.31 d | 4.83 i | 4.68 j | 5.38 c | 5.04 g | 4.82 i |
Color | Control Beef Patties | Beef Patties with Raspberry Pomace | Beef Patties with Blackberry Pomace |
---|---|---|---|
L* | −0.270 | −0.733 | 0.293 |
a* | −0.900 | −0.700 | 0.291 |
b* | −0.840 | −0.745 | −0.163 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasevičienė, Ž.; Čechovičienė, I.; Paulauskienė, A.; Gumbytė, M.; Blinstrubienė, A.; Burbulis, N. The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage. Foods 2022, 11, 2180. https://doi.org/10.3390/foods11152180
Tarasevičienė Ž, Čechovičienė I, Paulauskienė A, Gumbytė M, Blinstrubienė A, Burbulis N. The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage. Foods. 2022; 11(15):2180. https://doi.org/10.3390/foods11152180
Chicago/Turabian StyleTarasevičienė, Živilė, Indrė Čechovičienė, Aurelija Paulauskienė, Milda Gumbytė, Aušra Blinstrubienė, and Natalija Burbulis. 2022. "The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage" Foods 11, no. 15: 2180. https://doi.org/10.3390/foods11152180
APA StyleTarasevičienė, Ž., Čechovičienė, I., Paulauskienė, A., Gumbytė, M., Blinstrubienė, A., & Burbulis, N. (2022). The Effect of Berry Pomace on Quality Changes of Beef Patties during Refrigerated Storage. Foods, 11(15), 2180. https://doi.org/10.3390/foods11152180