Effects of Dairy Lambs’ Rearing System and Slaughter Age on Consumer Liking of Lamb Meat and Its Association with Lipid Content and Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Treatments, and Husbandry
2.2. Loin Intramuscular Fat and Fatty Acid Analysis
2.3. Consumer Sensory Evaluation
2.4. Statistical Analysis
3. Results
3.1. Intramuscular Fat and Fatty Acid Composition
3.2. Consumer Sensory Evaluation
3.3. Correlations between Consumer Liking Scores and IMF and Fatty Acid Composition of Lamb
4. Discussion
4.1. Rearing System and Slaughter Age Effects on IMF Content
4.2. Rearing System and Slaughter Age Effects on Meat Fatty Acid Composition
4.3. Rearing System and Slaughter Age Effects on Consumer Liking of Lamb Meat
4.4. Relationship between Consumer Liking Scores and IMF and Fatty Acid Composition of Lamb
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peterson, S.W.; Prichard, C. The sheep dairy industry in New Zealand: A review. Proc. N. Z. Soc. Anim. Prod. 2015, 75, 119–126. [Google Scholar]
- McKusick, B.C.; Thomas, D.L.; Berger, Y.M. Effect of Weaning System on Commercial Milk Production and Lamb Growth of East Friesian Dairy Sheep. J. Dairy Sci. 2001, 84, 1660–1668. [Google Scholar] [CrossRef]
- Lambe, N.R.; McLean, K.A.; Gordon, J.; Evans, D.; Clelland, N.; Bunger, L. Prediction of intramuscular fat content using CT scanning of packaged lamb cuts and relationships with meat eating quality. Meat Sci. 2017, 123, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Realini, C.E.; Pavan, E.; Johnson, P.L.; Font, I.F.M.; Jacob, N.; Agnew, M.; Craigie, C.R.; Moon, C.D. Consumer liking of M. longissimus lumborum from New Zealand pasture-finished lamb is influenced by intramuscular fat. Meat Sci. 2021, 173, 108380. [Google Scholar] [CrossRef]
- Phelps, M.R.; Garmyn, A.J.; Brooks, J.C.; Mafi, G.G.; Duckett, S.K.; Legako, J.F.; O’Quinn, T.G.; Miller, M.F. Effects of marbling and postmortem aging on consumer assessment of United States lamb loin. Meat Muscle Biol. 2018, 2, 221–232. [Google Scholar] [CrossRef]
- Savell, J.W.; Cross, H.R. The role of fat in the palatability of beef, pork, and lamb. In Designing Foods: Animal Product Options in the Marketplace; Committee on: Technological options to improve the nutritional attributes of animal products; National Academies Press: Washington, DC, USA, 1988; pp. 345–355. [Google Scholar]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Valvo, M.A.; Lanza, M.; Bella, M.; Fasone, V.; Scerra, M.; Biondi, L.; Priolo, A. Effect of ewe feeding system (grass v. concentrate) on intramuscular fatty acids of lambs raised exclusively on maternal milk. Anim. Sci. 2005, 81, 431–436. [Google Scholar] [CrossRef]
- Battacone, G.; Lunesu, M.F.; Rassu, S.P.G.; Pulina, G.; Nudda, A. Effect of Dams and Suckling Lamb Feeding Systems on the Fatty Acid Composition of Suckling Lamb Meat. Animals 2021, 11, 3142. [Google Scholar] [CrossRef]
- Sañudo, C.; Alfonso, M.; San Julián, R.; Thorkelsson, G.; Valdimarsdottir, T.; Zygoyiannis, D.; Stamataris, C.; Piasentier, E.; Mills, C.; Berge, P.; et al. Regional variation in the hedonic evaluation of lamb meat from diverse production systems by consumers in six European countries. Meat Sci. 2007, 75, 610–621. [Google Scholar] [CrossRef]
- Sañudo, C.; Enser, M.E.; Campo, M.M.; Nute, G.R.; Maria, G.; Sierra, I.; Wood, J.D. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci. 2000, 54, 339–346. [Google Scholar] [CrossRef]
- Morris, S.T.; Kenyon, P.R. Intensive sheep and beef production from pasture—A New Zealand perspective of concerns, opportunities and challenges. Meat Sci. 2014, 98, 330–335. [Google Scholar] [CrossRef]
- Agnew, M.P.; Craigie, C.R.; Weralupitiya, G.; Reis, M.M.; Johnson, P.L.; Reis, M.G. Comprehensive evaluation of parameters affecting one-step method for quantitative analysis of fatty acids in meat. Metabolites 2019, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- SAS_Institute. SAS University Edition, 9.4. 2017. Available online: https://support.sas.com/resources/papers/proceedings17/SAS0289-2017.pdf (accessed on 2 February 2022).
- Prache, S.; Schreurs, N.; Guillier, L. Review: Factors affecting sheep carcass and meat quality attributes. Animal 2022, 16, 100330. [Google Scholar] [CrossRef]
- Ye, Y.; Schreurs, N.M.; Johnson, P.L.; Corner-Thomas, R.A.; Agnew, M.P.; Silcock, P.; Eyres, G.T.; Maclennan, G.; Realini, C.E. Carcass characteristics and meat quality of commercial lambs reared in different forage systems. Livest. Sci. 2020, 232, 103908. [Google Scholar] [CrossRef]
- della Malva, A.; Albenzio, M.; Annicchiarico, G.; Caroprese, M.; Muscio, A.; Santillo, A.; Marino, R. Relationship between slaughtering age, nutritional and organoleptic properties of Altamurana lamb meat. Small Rumin. Res. 2016, 135, 39–45. [Google Scholar] [CrossRef]
- Beriain, M.J.; Horcada, A.; Purroy, A.; Lizaso, G.; Chasco, J.; Mendizabal, J.A. Characteristics of Lacha and Rasa Aragonesa lambs slaughtered at three live weights1. J. Anim. Sci. 2000, 78, 3070–3077. [Google Scholar] [CrossRef]
- Martínez-Cerezo, S.; Sañudo, C.; Panea, B.; Medel, I.; Delfa, R.; Sierra, I.; Beltrán, J.A.; Cepero, R.; Olleta, J.L. Breed, slaughter weight and ageing time effects on physico-chemical characteristics of lamb meat. Meat Sci. 2005, 69, 325–333. [Google Scholar] [CrossRef]
- Realini, C.E.; Pavan, E.; Purchas, R.W.; Agnew, M.; Johnson, P.L.; Bermingham, E.N.; Moon, C.D. Relationships between intramuscular fat percentage and fatty acid composition in M. longissimus lumborum of pasture-finished lambs in New Zealand. Meat Sci. 2021, 181, 108618. [Google Scholar] [CrossRef]
- Craigie, C.R.; Agnew, M.P.; Stuart, A.D.; Shorten, P.R.; Reis, M.M.; Taukiri, K.R.; Johnson, P.L. Intramuscular fat content of New Zealand lamb M. longissimus lumborum. In Proceedings of the New Zealand Society of Animal Production, Rotorua, New Zealand, 28–30 June 2017; pp. 189–193. [Google Scholar]
- Dhiman, T.R.; Nam, S.; Ure, A.L. Factors Affecting Conjugated Linoleic Acid Content in Milk and Meat. Crit. Rev. Food Sci. Nutr. 2005, 45, 463–482. [Google Scholar] [CrossRef]
- Griinari, J.M.; Corl, B.A.; Lacy, S.H.; Chouinard, P.Y.; Nurmela, K.V.V.; Bauman, D.E. Conjugated Linoleic Acid Is Synthesized Endogenously in Lactating Dairy Cows by delta-9-Desaturase. J. Nutr. 2000, 130, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Carballo, O.C.; Khan, M.A.; Knol, F.W.; Lewis, S.J.; Stevens, D.R.; Laven, R.A.; McCoard, S.A. Impact of weaning age on rumen development in artificially reared lambs1. J. Anim. Sci. 2019, 97, 3498–3510. [Google Scholar] [CrossRef] [PubMed]
- Osorio, M.T.; Zumalacárregui, J.M.; Figueira, A.; Mateo, J. Fatty acid composition in subcutaneous, intermuscular and intramuscular fat deposits of suckling lamb meat: Effect of milk source. Small Rumin. Res. 2007, 73, 127–134. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Pimentel, T.C.; Ferrão, L.L.; Almada, C.N.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.M.; Nascimento, J.S.; Silva, M.C.; et al. Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef] [Green Version]
- Teng, F.; Reis, M.G.; Yang, L.; Ma, Y.; Day, L. Structural characteristics of triacylglycerols contribute to the distinct in vitro gastric digestibility of sheep and cow milk fat prior to and after homogenisation. Food Res. Int. 2020, 130, 108911. [Google Scholar] [CrossRef]
- Chai, J.; Diao, Q.; Zhao, J.; Wang, H.; Deng, K.; Qi, M.; Nie, M.; Zhang, N. Effects of rearing system on meat quality, fatty acid and amino acid profiles of Hu lambs. Anim. Sci. J. 2018, 89, 1178–1186. [Google Scholar] [CrossRef]
- Napolitano, F.; Cifuni, G.F.; Pacelli, C.; Riviezzi, A.M.; Girolami, A. Effect of artificial rearing on lamb welfare and meat quality. Meat Sci. 2002, 60, 307–315. [Google Scholar] [CrossRef]
- Lanza, M.; Bella, M.; Priolo, A.; Barbagallo, D.; Galofaro, V.; Landi, C.; Pennisi, P. Lamb meat quality as affected by a natural or artificial milk feeding regime. Meat Sci. 2006, 73, 313–318. [Google Scholar] [CrossRef]
- Bas, P.; Morand-Fehr, P. Effect of nutritional factors on fatty acid composition of lamb fat deposits. Livest. Prod. Sci. 2000, 64, 61–79. [Google Scholar] [CrossRef]
- Daniel, Z.C.T.R.; Wynn, R.J.; Salter, A.M.; Buttery, P.J. Differing effects of forage and concentrate diets on the oleic acid and conjugated linoleic acid content of sheep tissues: The role of stearoyl-CoA desaturase. J. Anim. Sci. 2004, 82, 747–758. [Google Scholar] [CrossRef]
- Camacho, A.; Torres, A.; Capote, J.; Mata, J.; Viera, J.; Bermejo, L.A.; Argüello, A. Meat quality of lambs (hair and wool) slaughtered at different live weights. J. Appl. Anim. Res. 2017, 45, 400–408. [Google Scholar] [CrossRef]
- Sañudo, C.; Santolaria, M.P.; María, G.; Osorio, M.; Sierra, I. Influence of carcass weight on instrumental and sensory lamb meat quality in intensive production systems. Meat Sci. 1996, 42, 195–202. [Google Scholar] [CrossRef]
- Pavan, E.; Ye, Y.; Eyres, G.T.; Guerrero, L.; Reis, M.G.; Silcock, P.; Johnson, P.L.; Realini, C.E. Relationships among Consumer Liking, Lipid and Volatile Compounds from New Zealand Commercial Lamb Loins. Foods 2021, 10, 1143. [Google Scholar] [CrossRef]
- Pavan, E.; Subbaraj, A.K.; Eyres, G.T.; Silcock, P.; Realini, C.E. Association of metabolomic and lipidomic data with Chinese and New Zealand consumer clusters showing preferential likings for lamb meat from three production systems. Food Res. Int. 2022, 158, 111504. [Google Scholar] [CrossRef]
- Stewart, J.E.; Feinle-Bisset, C.; Golding, M.; Delahunty, C.; Clifton, P.M.; Keast, R.S.J. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br. J. Nutr. 2010, 104, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Watkins, P.J.; Frank, D. Heptadecanoic acid as an indicator of BCFA content in sheep fat. Meat Sci. 2019, 151, 33–35. [Google Scholar] [CrossRef]
- Watkins, P.J.; Rose, G.; Salvatore, L.; Allen, D.; Tucman, D.; Warner, R.D.; Dunshea, F.R.; Pethick, D.W. Age and nutrition influence the concentrations of three branched chain fatty acids in sheep fat from Australian abattoirs. Meat Sci. 2010, 86, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Young, O.A.; Lane, G.A.; Podmore, C.; Fraser, K.; Agnew, M.J.; Cummings, T.L.; Cox, N.R. Changes in composition and quality characteristics of ovine meat and fat from castrates and rams aged to 2 years. N. Z. J. Agric. Res. 2006, 49, 419–430. [Google Scholar] [CrossRef]
- Elmore, J.S.; Warren, H.E.; Mottram, D.S.; Scollan, N.D.; Enser, M.; Richardson, R.I.; Wood, J.D. A comparison of the aroma volatiles and fatty acid compositions of grilled beef muscle from Aberdeen Angus and Holstein-Friesian steers fed diets based on silage or concentrates. Meat Sci. 2004, 68, 27–33. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: Review. Meat Sci. 2003, 66, 21–32. [Google Scholar] [CrossRef]
Characteristics, % of Total | All Consumers | Cluster-1 | Cluster-2 | Cluster Effect |
---|---|---|---|---|
p-Value Chi-Square | ||||
n | 132 | 79 | 53 | |
Age | ||||
20–29 years | 32.5 | 24.7 | 44.0 | 0.1279 |
30–39 years | 28.5 | 34.2 | 20.0 | |
40–49 years | 17.9 | 16.4 | 20.0 | |
50–59 years | 17.9 | 20.6 | 14.0 | |
>60 years | 3.2 | 4.1 | 2.0 | |
Gender | ||||
Female | 62.9 | 63.3 | 62.3 | 0.9781 |
Male | 37.1 | 36.7 | 37.7 | |
Lamb consumption frequency | ||||
Daily | 0.8 | 1.3 | 0.0 | 0.4917 |
2–3 times a week | 13.8 | 10.3 | 19.2 | |
Once per week | 34.6 | 39.7 | 26.9 | |
Once per fortnight | 26.9 | 25.6 | 28.8 | |
Once per month | 18.5 | 18.0 | 19.2 | |
Less frequently | 5.4 | 5.1 | 5.8 |
Slaughter Age, SA | 3 Weeks | 3 Months | p-Value | Pearson’s Correlation Coefficients α with IMF | ||||
---|---|---|---|---|---|---|---|---|
Rearing System, RS | Natural (n = 2) | Artificial (n = 4) | Natural (n = 3) | Artificial (n = 4) | RS | SA | RS × SA | |
Intramuscular fat, % fresh tissue | 2.74 ± 0.22 | 2.76 ± 0.22 | 2.77 ± 0.19 | 2.77 ± 0.19 | 0.9664 | 0.9265 | 0.9758 | |
Fatty acid composition, % of total fatty acid content | ||||||||
Total SFAs 1 | 36.63 ± 0.91 | 38.56 ± 0.85 | 40.85 ± 0.88 | 40.77 ± 0.85 | 0.3935 | 0.0002 | 0.2095 | 0.59 *** |
C10:0 δ | 0.15 ± 0.03 | 0.08 ± 0.03 | 0.10 ± 0.02 | 0.07 ± 0.02 | 0.0736 | 0.1328 | 0.1918 | 0.51 *** |
C12:0 | 0.66 ± 0.05 | 0.58 ± 0.05 | 0.54 ± 0.05 | 0.57 ± 0.05 | 0.6081 | 0.1677 | 0.3004 | −0.24 t |
C14:0 δ | 3.57 ± 0.31 | 4.13 ± 0.31 | 1.65 ± 0.16 | 2.11 ± 0.16 | 0.0784 | <0.0001 | 0.8400 | 0.40 ** |
C15:0 | 0.36 ± 0.03 | 0.37 ± 0.03 | 0.34 ± 0.03 | 0.40 ± 0.03 | 0.3577 | 0.7809 | 0.4130 | 0.37 ** |
C16:0 | 17.45 ± 0.82 | 20.00 ± 0.78 | 19.29 ± 0.80 | 19.26 ± 0.78 | 0.2179 | 0.4617 | 0.0911 | 0.41 ** |
C17:0 | 0.75 ± 0.04 | 0.66 ± 0.04 | 0.94 ± 0.05 | 0.96 ± 0.05 | 0.4608 | <0.0001 | 0.2322 | 0.34 * |
C18:0 | 13.77 ± 0.44 | 12.74 ± 0.43 | 17.98 ± 0.45 | 17.39 ± 0.44 | 0.1507 | <0.0001 | 0.6376 | 0.05 |
Total BCFAs 2 | 0.95 ± 0.05 | 0.87 ± 0.05 | 0.96 ± 0.06 | 0.99 ± 0.05 | 0.7403 | 0.1543 | 0.2690 | 0.31 * |
Iso C15:0 | 0.09 ± 0.02 | 0.09 ± 0.01 | 0.12 ± 0.02 | 0.12 ± 0.01 | 0.8466 | 0.0524 | 0.9773 | 0.61 *** |
Anteiso C15:0 | 0.15 ± 0.01 | 0.16 ± 0.01 | 0.19 ± 0.01 | 0.20 ± 0.01 | 0.3992 | 0.0034 | 0.6397 | 0.05 |
Iso C16:0 | 0.13 ± 0.01 | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.13 ± 0.01 | 0.8988 | 0.8116 | 0.3833 | 0.43 ** |
Iso C17:0 | 0.58 ± 0.03 | 0.50 ± 0.03 | 0.53 ± 0.03 | 0.54 ± 0.03 | 0.2721 | 0.8990 | 0.1764 | 0.04 |
Total MUFAs 3 | 37.65 ± 1.16 | 38.02 ± 1.03 | 40.59 ± 1.09 | 39.74 ± 1.03 | 0.8810 | 0.0141 | 0.4833 | 0.46 *** |
C14:1 δ | 0.16 ± 0.05 | 0.37 ± 0.05 | 0.00 ± 0.02 | 0.15 ± 0.02 | <0.0001 | <0.0001 | 0.4426 | 0.13 |
C16:1 δ | 1.27 ± 0.33 | 2.10 ± 0.33 | 0.96 ± 0.22 | 1.71 ± 0.20 | 0.0568 | 0.0687 | 0.9183 | 0.08 |
C17:1 | 0.57 ± 0.03 | 0.55 ± 0.03 | 0.76 ± 0.03 | 0.73 ± 0.03 | 0.3487 | <0.0001 | 0.9645 | −0.13 |
C18:1 trans-9 | 0.20 ± 0.01 | 0.18 ± 0.01 | 0.21 ± 0.01 | 0.19 ± 0.01 | 0.0901 | 0.5397 | 0.8147 | 0.58 *** |
C18:1 trans-11, TVA δ | 2.98 ± 0.23 | 1.99 ± 0.23 | 3.30 ± 0.32 | 2.87 ± 0.32 | 0.0148 | 0.0365 | 0.3117 | 0.31 * |
C18:1 cis-9 | 30.69 ± 0.96 | 31.14 ± 0.87 | 34.28 ± 0.91 | 32.83 ± 0.88 | 0.6530 | 0.0015 | 0.2301 | 0.41 ** |
C18:1 cis-11 δ | 1.57 ± 0.09 | 1.69 ± 0.09 | 1.09 ± 0.06 | 1.26 ± 0.06 | 0.1198 | <0.0001 | 0.7570 | −0.55 *** |
Total PUFAs 4 | 18.82 ± 1.56 | 16.45 ± 1.42 | 11.76 ± 1.48 | 12.96 ± 1.42 | 0.7765 | 0.0002 | 0.1822 | −0.60 *** |
C18:2 n-6 δ | 6.58 ± 0.64 | 5.72 ± 0.64 | 3.99 ± 0.34 | 4.41 ± 0.34 | 0.6660 | 0.0005 | 0.2181 | −0.49 *** |
C18:3 n-3 δ | 2.18 ± 0.14 | 1.90 ± 0.14 | 2.18 ± 0.24 | 2.13 ± 0.24 | 0.5097 | 0.5860 | 0.5697 | −0.53 *** |
C18:2 cis-9 trans-11, CLA | 1.51 ± 0.07 | 1.23 ± 0.07 | 1.06 ± 0.07 | 0.94 ± 0.07 | 0.0062 | <0.0001 | 0.2856 | 0.27 t |
C20:4 n-6 | 3.07 ± 0.42 | 2.60 ± 0.38 | 1.77 ± 0.40 | 2.25 ± 0.38 | 0.9905 | 0.0120 | 0.1420 | −0.59 *** |
C20:5 n-3 | 1.97 ± 0.24 | 1.72 ± 0.21 | 1.19 ± 0.22 | 1.36 ± 0.21 | 0.9119 | 0.0021 | 0.2574 | −0.68 *** |
C22:5 n-3 | 2.25 ± 0.24 | 2.16 ± 0.21 | 1.21 ± 0.23 | 1.51 ± 0.21 | 0.6814 | <0.0001 | 0.3022 | −0.66 *** |
C22:6 n-3 δ | 1.25 ± 0.11 | 1.10 ± 0.11 | 0.37 ± 0.04 | 0.37 ± 0.04 | 0.4205 | <0.0001 | 0.3879 | −0.36 * |
Total n-6 PUFA δ,5 | 9.57 ± 1.00 | 8.32 ± 0.95 | 5.76 ± 0.75 | 6.66 ± 0.72 | 0.8593 | 0.0011 | 0.1736 | −0.55 *** |
Total n-3 PUFA 6 | 7.59 ± 0.66 | 6.89 ± 0.61 | 4.94 ± 0.63 | 5.36 ± 0.61 | 0.8525 | 0.0006 | 0.3215 | −0.68 *** |
Ratios | ||||||||
PUFAs/SFAs | 0.49 ± 0.05 | 0.46 ± 0.05 | 0.28 ± 0.03 | 0.31 ± 0.03 | 0.9556 | <0.0001 | 0.4219 | |
n-6/n-3 | 1.26 ± 0.07 | 1.20 ± 0.06 | 1.19 ± 0.07 | 1.28 ± 0.06 | 0.8339 | 0.9039 | 0.2337 | 0.14 |
C16:1/C18:0 δ | 0.11 ± 0.03 | 0.17 ± 0.03 | 0.06 ± 0.01 | 0.10 ± 0.01 | 0.0324 | 0.0016 | 0.5142 | 0.03 |
C16:1/C16:0 δ | 0.08 ± 0.016 | 0.10 ± 0.015 | 0.05 ± 0.011 | 0.09 ± 0.010 | 0.0864 | 0.0721 | 0.4638 | −0.03 |
C18:1/C18:0 δ | 2.27 ± 0.14 | 2.49 ± 0.13 | 1.92 ± 0.10 | 1.90 ± 0.09 | 0.5674 | <0.0001 | 0.2663 | 0.12 |
CLA/TVA δ | 0.54 ± 0.036 | 0.65 ± 0.036 | 0.33 ± 0.026 | 0.36 ± 0.026 | 0.0373 | <0.0001 | 0.2273 | −0.27 |
Parameter 1 | Rearing System | Slaughter Age | p-Values | |||||
---|---|---|---|---|---|---|---|---|
Natural | Artificial | 3-Weeks | 3-Months | RS | SA | RS × SA | IMF 2 (Covariate) | |
Liking of tenderness | 69.11 ± 1.61 | 66.86 ± 1.61 | 78.13 ± 1.67 | 57.84 ± 1.55 | 0.2331 | <0.0001 | 0.2221 | 0.0002 |
Liking of juiciness | 61.17 ± 1.69 | 60.65 ± 1.69 | 69.05 ± 1.74 | 52.76 ± 1.65 | 0.7599 | <0.0001 | 0.2133 | 0.0426 |
Flavor liking | 63.58 ± 1.52 | 62.13 ± 1.52 | 62.90 ± 1.62 | 62.82 ± 1.41 | 0.3669 | 0.9583 | 0.9035 | 0.0001 |
Overall liking | 65.13 ± 1.53 | 63.69 ± 1.53 | 68.68 ± 1.64 | 60.14 ± 1.41 | 0.3993 | <0.0001 | 0.7828 | 0.0001 |
Consumer Liking 1 | ||||
---|---|---|---|---|
Tenderness | Juiciness | Flavor | Overall | |
p-values | ||||
Rearing system, RS | 0.2533 | 0.9848 | 0.5284 | 0.5532 |
Slaughter age, SA | <0.0001 | <0.0001 | 0.0624 | 0.0006 |
RS × SA | 0.1613 | 0.1925 | 0.8246 | 0.6689 |
Cluster | <0.0001 | 0.0063 | <0.0001 | <0.0001 |
Cluster × RS | 0.3493 | 0.0639 | 0.0604 | 0.0126 |
Cluster × SA | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Cluster × RS × SA | 0.6906 | 0.7371 | 0.6688 | 0.6957 |
IMF (covariate) | 0.0012 | 0.0787 | 0.0001 | 0.0001 |
Consumer liking scores (lsmeans ± SEM) | ||||
Cluster × Rearing system | ||||
Cluster-1: Natural | 74.1 ± 1.9 | 65.3 ± 2.1 | 70.2 ± 1.8 | 71.6 ± 1.7 A |
Artificial | 70.7 ± 1.9 | 62.8 ± 2.1 | 66.5 ± 1.8 | 67.6 ± 1.7 B |
Cluster-2: Natural | 61.6 ± 2.4 | 55.0 ± 2.5 | 53.7 ± 2.2 | 55.4 ± 2.1 C |
Artificial | 61.1 ± 2.3 | 57.5 ± 2.5 | 55.6 ± 2.2 | 57.9 ± 2.1 C |
Cluster × Slaughter age | ||||
Cluster-1: 3-weeks | 88.8 ± 1.9 a | 77.4 ± 2.1 a | 74.0 ± 1.8 a | 80.0 ± 1.7 a |
3-months | 56.0 ± 2.0 b | 50.7 ± 2.0 b | 62.7 ± 1.8 b | 58.2 ± 1.7 b |
Cluster-2: 3-weeks | 62.2 ± 2.3 b | 56.6 ± 2.5 b | 46.3 ± 2.3 c | 50.3 ± 2.1 c |
3-months | 60.6 ± 2.4 b | 55.9 ± 2.5 b | 63.0 ± 2.2 b | 63.1 ± 2.1 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavan, E.; McCoard, S.A.; Agnew, M.; Zhang, R.; Taukiri, K.; Farouk, M.M.; Realini, C.E. Effects of Dairy Lambs’ Rearing System and Slaughter Age on Consumer Liking of Lamb Meat and Its Association with Lipid Content and Composition. Foods 2022, 11, 2350. https://doi.org/10.3390/foods11152350
Pavan E, McCoard SA, Agnew M, Zhang R, Taukiri K, Farouk MM, Realini CE. Effects of Dairy Lambs’ Rearing System and Slaughter Age on Consumer Liking of Lamb Meat and Its Association with Lipid Content and Composition. Foods. 2022; 11(15):2350. https://doi.org/10.3390/foods11152350
Chicago/Turabian StylePavan, Enrique, Susan A. McCoard, Michael Agnew, Renyu Zhang, Kevin Taukiri, Mustafa M. Farouk, and Carolina E. Realini. 2022. "Effects of Dairy Lambs’ Rearing System and Slaughter Age on Consumer Liking of Lamb Meat and Its Association with Lipid Content and Composition" Foods 11, no. 15: 2350. https://doi.org/10.3390/foods11152350
APA StylePavan, E., McCoard, S. A., Agnew, M., Zhang, R., Taukiri, K., Farouk, M. M., & Realini, C. E. (2022). Effects of Dairy Lambs’ Rearing System and Slaughter Age on Consumer Liking of Lamb Meat and Its Association with Lipid Content and Composition. Foods, 11(15), 2350. https://doi.org/10.3390/foods11152350