Effect of Thermal Treatment on the Physicochemical, Ultrastructural, and Antioxidant Characteristics of Euryale ferox Seeds and Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermal Treatment of EFS
2.3. Observation of Surface Morphology
2.4. Measurement of Physicochemical Characteristics
2.5. Color Measurement
2.6. Scanning Electron Microscopy (SEM) Measurement
2.7. Low-Field Magnetic Resonance Imaging (MRI) Measurement
2.8. Water and Oil Absorption Capacities
2.9. Swelling Power and Solubility
2.10. Pasting Properties
2.11. X-ray Diffraction (XRD)
2.12. Total Phenolics Content (TPC) and Flavonoids Content (TFC)
2.13. Antioxidant Activity of EFS
2.14. Statistical Analysis
3. Results and Discussion
3.1. Comparative Analysis of Surface Morphology Structure of EFS
3.2. Physical Properties of EFS Treated by Three Thermal Methods
3.3. Microstructure Changes of EFS
3.4. Water Mobility and Distribution of EFS
3.5. Color Characteristics of Roasted EFS Flour
3.6. Water and Oil Absorption Capacity of Roasted EFS Flour
3.7. Swelling Power and Solubility of Roasted EFS Flour
3.8. Pasting Properties
3.9. Crystal Form and Relative Crystallinity
3.10. Total Phenolics Content (TPC) and Total Flavonoids Content (TFC) of EFS
3.11. Antioxidant Activity of EFS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, S.; Wang, D.; Zhang, Y.; Yang, S.; Qin, J. Chemical components and biological activities of the essential oil from traditional medicinal food, euryale ferox salisb., seeds. J. Essent. Oil-Bear. Plants 2019, 22, 1–9. [Google Scholar] [CrossRef]
- Wu, C.Y.; Chen, R.; Wang, X.; Shen, B.; Yue, W.; Wu, Q. Antioxidant and anti-fatigue activities of phenolic extract from the seed coat of euryale ferox salisb. And identification of three phenolic compounds by lc-esi-ms/ms. Molecules 2013, 18, 11003–11021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.N.; Su, R.N.; Gong, L.L.; Yang, W.W.; Chen, J.; Yang, R.; Wang, Y.; Pan, W.J.; Lu, Y.M.; Chen, Y. Structural characterization and in vitro hypoglycemic activity of a glucan from euryale ferox salisb. Seeds. Carbohydr. Polym. 2019, 209, 363–371. [Google Scholar] [CrossRef]
- Wang, C. Euryale ferox (qianshi, gordon euryale seed). In Dietary Chinese Herbs; Springer: Berlin/Heidelberg, Germany, 2015; pp. 371–377. [Google Scholar]
- Das, S.; Der, P.; Raychaudhuri, U.; Maulik, N.; Das, D.K. The effect of euryale ferox (makhana), an herb of aquatic origin, on myocardial ischemic reperfusion injury. Mol. Cell. Biochem. 2006, 289, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Song, C.W.; Wang, S.M.; Zhou, L.L.; Hou, F.F.; Wang, K.J.; Han, Q.B.; Li, N.; Cheng, Y.X. Isolation and identification of compounds responsible for antioxidant capacity of euryale ferox seeds. J. Agric. Food Chem. 2011, 59, 1199. [Google Scholar] [CrossRef]
- Nam, G.H.; Jo, K.J.; Park, Y.S.; Kawk, H.W.; Kim, S.Y.; Kim, Y.M. In vitro and in vivo induction of p53-dependent apoptosis by extract of euryale ferox salisb in a549 human caucasian lung carcinoma cancer cells is mediated through akt signaling pathway. Front. Oncol. 2007, 9, 406. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Huang, X.; Wang, Q.; Jiang, R.; Sun, G.; Xu, Y.; Wu, Q. Extract of euryale ferox salisb exerts antidepressant effects and regulates autophagy through the adenosine monophosphate-activated protein kinase—unc-51-like kinase 1 pathway. Iubmb Life 2018, 70, 300. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, D.; Kumar, V.; Verma, A.; Shukla, G.S.; Sharma, M. Antidiabetic, antioxidant, antihyperlipidemic effect of extract of euryale ferox salisb. With enhanced histopathology of pancreas, liver and kidney in streptozotocin induced diabetic rats. Springerplus 2015, 4, 315. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.-H.; Nam, I.-J.; Kwak, H.S.; Kim, K.-C.; Lee, S.-H. Cellular anti-melanogenic effects of a euryale ferox seed extract ethyl acetate fraction via the lysosomal degradation machinery. Int. J. Mol. Sci. 2015, 16, 9217–9235. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, S.; Chao, C.; Yu, J.; Copeland, L.; Wang, S. Changes of starch during thermal processing of foods: Current status and future directions. Trends Food Sci. Technol. 2022, 119, 320–337. [Google Scholar] [CrossRef]
- Suhag, R.; Dhiman, A.; Deswal, G.; Thakur, D.; Sharanagat, V.S.; Kumar, K.; Kumar, V. Microwave processing: A way to reduce the anti-nutritional factors (anfs) in food grains. LWT 2021, 150, 111960. [Google Scholar] [CrossRef]
- Jogihalli, P.; Singh, L.; Sharanagat, V.S. Effect of microwave roasting parameters on functional and antioxidant properties of chickpea (cicer arietinum). LWT-Food Sci. Technol. 2017, 79, 223–233. [Google Scholar] [CrossRef]
- Rockembach, C.T.; Ferreira, C.D.; Ramos, A.H.; Luz, S.R.; Vanier, N.L.; de Oliveira, M. Microwave parboiling: Reduction in process time, browning of rice and residual phosphorus content in the waste water. J. Food Sci. 2019, 84, 2222–2227. [Google Scholar] [CrossRef] [PubMed]
- Puvača, N.; Ljubojević Pelić, D.; Živkov Baloš, M.; Lević, J.; Prodanović, R.; Puvača Čović, V.; Popović, S.; Đuragić, O. Impact of microwave thermal processing on major grain quality traits of linseed (Linum usitatissium L.). AgriEngineering 2020, 2, 256–263. [Google Scholar] [CrossRef]
- Bai, Y.-P.; Zhou, H.-M.; Zhu, K.-R.; Li, Q. Effect of thermal treatment on the physicochemical, ultrastructural and nutritional characteristics of whole grain highland barley. Food Chem. 2020, 346, 128657. [Google Scholar] [CrossRef]
- Bhat, M.S.; Arya, S.S. Physico-functional, pasting and structural properties of gorgon nut (euryale ferox) flour as affected by heat-moisture and acid treatment. J. Food Meas. Charact. 2020, 14, 1656–1664. [Google Scholar] [CrossRef]
- Panghal, A.; Kaur, R.; Janghu, S.; Sharma, P.; Sharma, P.; Chhikara, N. Nutritional, phytochemical, functional and sensorial attributes of syzygium cumini l. Pulp incorporated pasta. Food Chem. 2019, 289, 723–728. [Google Scholar] [CrossRef]
- Dudu, O.E.; Li, L.; Oyedeji, A.B.; Oyeyinka, S.A.; Ma, Y. Structural and functional characteristics of optimised dry-heat-moisture treated cassava flour and starch. Int. J. Biol. Macromol. 2019, 133, 1219–1227. [Google Scholar] [CrossRef]
- Panghal, A.; Khatkar, B.S.; Yadav, D.N.; Chhikara, N. Effect of finger millet on nutritional, rheological, and pasting profile of whole wheat flat bread (chapatti). Cereal Chem. 2019, 96, 86–94. [Google Scholar] [CrossRef]
- Jogihalli, P.; Singh, L.; Kumar, K.; Sharanagat, V.S. Physico-functional and antioxidant properties of sand-roasted chickpea (cicer arietinum). Food Chem. 2017, 237, 1124–1132. [Google Scholar] [CrossRef]
- Huang, P.-H.; Lu, H.-T.; Wang, Y.-T.; Wu, M.-C. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion. J. Agric. Food Chem. 2011, 59, 9623–9628. [Google Scholar] [CrossRef] [PubMed]
- Altan, A. Effects of pretreatments and moisture content on microstructure and physical properties of microwave expanded hull-less barley. Food Res. Int. 2014, 56, 126–135. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S.; Rosell, C.M. Effects of roasting on barley β-glucan, thermal, textural and pasting properties. J. Cereal Sci. 2011, 53, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.; Stenvert, N.L.; Kingswood, K.; Pointing, G. The relationship between wheat microstructure and flour milling. Scanning Electron Microsc. 1980, 3, 613–620. [Google Scholar]
- Wu, P.; Liu, A.; Zhu, Y.; Li, X.; Wang, Y.; Li, L. Proteomic analysis of euryale ferox salisb seeds at different developmental stages. Gene 2022, 834, 146645. [Google Scholar] [CrossRef]
- Ezeanaka, M.C.; Nsor-Atindana, J.; Zhang, M. Online low-field nuclear magnetic resonance (lf-nmr) and magnetic resonance imaging (mri) for food quality optimization in food processing. Food Bioprocess Technol. 2019, 12, 1435–1451. [Google Scholar] [CrossRef]
- Cheng, S.; Li, R.; Yang, H.; Wang, S.; Tan, M. Water status and distribution in shiitake mushroom and the effects of drying on water dynamics assessed by lf-nmr and mri. Dry. Technol. 2020, 38, 1001–1010. [Google Scholar] [CrossRef]
- Magorzata, G.; Tomasz, Z.; Marek, K. Changes in water status and water distribution in maturing lupin seeds studied by mr imaging and nmr spectroscopy. J. Exp. Bot. 2007, 58, 3961–3969. [Google Scholar]
- Shi, X.; Sandeep, K.P.; Davis, J.P.; Sanders, T.H.; Dean, L.L. Kinetics of color development of peanuts during dry roasting using a batch roaster. J. Food Process Eng. 2017, 40, e12498. [Google Scholar] [CrossRef]
- Dhua, S.; Kheto, A.; Singh Sharanagat, V.; Singh, L.; Kumar, K.; Nema, P.K. Quality characteristics of sand, pan and microwave roasted pigmented wheat (Triticum aestivum). Food Chem. 2021, 365, 130372. [Google Scholar] [CrossRef]
- Zameni, A.; Kashaninejad, M.; Aalami, M.; Salehi, F. Effect of thermal and freezing treatments on rheological, textural and color properties of basil seed gum. J. Food Sci. Technol. 2015, 52, 5914–5921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoeman, L.; Manley, M. Oven and forced convection continuous tumble (fcct) roasting: Effect on physicochemical, structural and functional properties of wheat grain. Food Bioprocess Technol. 2019, 12, 166–182. [Google Scholar] [CrossRef]
- Devi, M.; Sharma, K.; Narayan Jha, S.; Arora, S.; Patel, S.; Kumar, Y.; Kumar Vishwakarma, R. Effect of popping on physicochemical, technological, antioxidant, and microstructural properties of makhana seed. J. Food Process. Preserv. 2020, 44, e14787. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, L. Morphological, thermal, rheological and retrogradation properties of potato starch fractions varying in granule size. J. Sci. Food Agric. 2004, 84, 1241–1252. [Google Scholar] [CrossRef]
- Huang, T.-T.; Zhou, D.-N.; Jin, Z.-Y.; Xu, X.-M.; Chen, H.-Q. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocoll. 2016, 54, 202–210. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, D.; Sang, S.; Jin, Y.; Xu, X.; Cui, B. Effect of superheated steam treatment on the structural and digestible properties of wheat flour. Food Hydrocoll. 2021, 112, 106362. [Google Scholar] [CrossRef]
- van Rooyen, J.; Simsek, S.; Oyeyinka, S.A.; Manley, M. Holistic view of starch chemistry, structure and functionality in dry heat-treated whole wheat kernels and flour. Foods 2022, 11, 207. [Google Scholar] [CrossRef]
- Ma, Y.; Sang, S.; Xu, D.; Jin, Y.; Chen, Y.; Xu, X. The contribution of superheated steam treatment of wheat flour to the cake quality. LWT 2021, 141, 110958. [Google Scholar] [CrossRef]
- Li, W.; Shan, Y.; Xiao, X.; Luo, Q.; Zheng, J.; Ouyang, S.; Zhang, G. Physicochemical properties of a- and b-starch granules isolated from hard red and soft red winter wheat. J. Agric. Food Chem. 2013, 61, 6477–6484. [Google Scholar] [CrossRef] [PubMed]
- Palav, T.; Seetharaman, K. Impact of microwave heating on the physico-chemical properties of a starch–water model system. Carbohydr. Polym. 2007, 67, 596–604. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, E.; Li, M.; Bian, K.; Wen, J.; Ren, C. Improvement of cake quality by superheated steam treatment of wheat. J. Cereal Sci. 2020, 95, 103046. [Google Scholar] [CrossRef]
- Li, M.-J.; Wang, H.-R.; Tong, L.-T.; Fan, B.; Yang, X.-J.; Sun, R.-Q.; Liu, L.-Y.; Wang, F.-Z.; Wang, L.-L. A comparison study of three heating assisted enzyme inactivation pretreatments on the physicochemical properties and edible quality of highland barley grain and flour. J. Cereal Sci. 2022, 104, 103404. [Google Scholar] [CrossRef]
- Chi, C.; Li, X.; Lu, P.; Miao, S.; Zhang, Y.; Chen, L. Dry heating and annealing treatment synergistically modulate starch structure and digestibility. Int. J. Biol. Macromol. 2019, 137, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kataria, A.; Singh, B. Effect of thermal processing on the bioactive compounds, antioxidative, antinutritional and functional characteristics of quinoa (chenopodium quinoa). LWT 2022, 160, 113256. [Google Scholar] [CrossRef]
Raw | Baking | Microwave | Industrial Infrared Heating-Assisted Fluidized Bed (IHFH) | |
---|---|---|---|---|
Physical properties | ||||
Bulk density (g/L) | 761.93 ± 1.15 a | 754.27 ± 0.90 b | 752.93 ± 1.47 b | 618.43 ± 1.30 c |
Puffing index | 1.00 ± 0.00 b | 1.01 ± 0.025 b | 1.01 ± 0.021 b | 1.23 ± 0.065 a |
Thousand weights (g) | 309.48 ± 1.05 a | 304.74 ± 0.95 b | 270.24 ± 1.88 c | 264.56 ± 1.45 d |
Hardness (N) | 57.90 ± 2.53 a | 52.95 ± 1.59 b | 49.07 ± 3.95 c | 46.44 ± 1.83 c |
Color properties | ||||
L* | 88.18 ± 0.80 a | 86.02 ± 0.40 b | 83.75 ± 0.33 c | 81.70 ± 1.28 d |
a* | 0.79 ± 0.09 d | 2.10 ± 0.16 b | 1.71 ± 0.02 c | 3.35 ± 0.02 a |
b* | 7.12 ± 0.14 d | 8.53 ± 0.50 c | 15.11 ± 0.20 a | 9.91 ± 0.19 b |
ΔE | - | 2.95 ± 0.26 c | 9.21 ± 0.13 a | 7.51 ± 0.88 b |
Physical-functional properties | ||||
Water absorption capacity (g/g) | 1.43 ± 0.05 c | 1.52 ± 0.07 c | 2.55 ± 0.05 b | 2.77 ± 0.06 a |
Oil absorption capacity (g/g) | 0.87 ± 0.01 b | 0.89 ± 0.01 b | 0.93 ± 0.01 a | 0.93 ± 0.02 a |
Swelling power (%) | 9.16 ± 0.06 a | 8.05 ± 0.08 b | 7.44 ± 0.12 c | 7.02 ± 0.08 d |
Solubility (%) | 2.82 ± 0.04 d | 3.35 ± 0.05 c | 6.10 ± 0.08 a | 5.72 ± 0.07 b |
Pasting properties | ||||
PV (cp) | 763.00 ± 4.58 a | 403.33 ± 3.06 b | 309.00 ± 1.00 c | 139.00 ± 3.00 d |
TV (cp) | ND | ND | ND | ND |
BD (cp) | ND | ND | ND | ND |
FV (cp) | 1854.00 ± 13.75 a | 725.33 ± 6.03 b | 486.33 ± 3.06 c | 268.67 ± 1.53 d |
SB (cp) | ND | ND | ND | ND |
PaT (°C) | 82.74 ± 0.06 c | 83.49 ± 0.04 b | 83.84 ± 0.03 b | 84.82 ± 0.20 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Li, H.-T.; Bai, Y.-P.; Zhu, K.-R.; Huang, P.-H. Effect of Thermal Treatment on the Physicochemical, Ultrastructural, and Antioxidant Characteristics of Euryale ferox Seeds and Flour. Foods 2022, 11, 2404. https://doi.org/10.3390/foods11162404
Li Q, Li H-T, Bai Y-P, Zhu K-R, Huang P-H. Effect of Thermal Treatment on the Physicochemical, Ultrastructural, and Antioxidant Characteristics of Euryale ferox Seeds and Flour. Foods. 2022; 11(16):2404. https://doi.org/10.3390/foods11162404
Chicago/Turabian StyleLi, Qin, Hong-Tao Li, Yi-Peng Bai, Ke-Rui Zhu, and Ping-Hsiu Huang. 2022. "Effect of Thermal Treatment on the Physicochemical, Ultrastructural, and Antioxidant Characteristics of Euryale ferox Seeds and Flour" Foods 11, no. 16: 2404. https://doi.org/10.3390/foods11162404
APA StyleLi, Q., Li, H.-T., Bai, Y.-P., Zhu, K.-R., & Huang, P.-H. (2022). Effect of Thermal Treatment on the Physicochemical, Ultrastructural, and Antioxidant Characteristics of Euryale ferox Seeds and Flour. Foods, 11(16), 2404. https://doi.org/10.3390/foods11162404