Physicochemical Properties and Bioaccessibility of Phenolic Compounds of Dietary Fibre Concentrates from Vegetable By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Dietary Fibre Concentrates Characterization
Dietary Fibre Fractions and Proximate Composition
Physicochemical Properties
2.2.2. Digestion of DFC
In Vitro Gastrointestinal Digestion
In Vitro Colonic Digestion
2.2.3. Phenolic Profile
3. Results and Discussion
3.1. Dietary Fibre Fractions and Proximate Composition
3.2. Physicochemical Properties
3.3. Phenolic Compounds
3.4. Bioaccessibility of Phenolic Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lattimer, J.M.; Haub, M.D. Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [PubMed]
- Grigelmo-Miguel, N.; Gorinstein, S.; Martín-Belloso, O. Characterisation of Peach Dietary Fibre Concentrate as a Food Ingredient. Food Chem. 1999, 65, 175–181. [Google Scholar] [CrossRef]
- Ahmad, S.; Al-Shabib, N. Functional Food Products and Sustainable Health, 1st ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; ISBN 9789811547157. [Google Scholar]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary Fibre in Gastrointestinal Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef]
- Gil, Á. Nutrición y Salud: Conceptos Esenciales; Editorial Médica Panamericana: Madrid, Spain, 2019; ISBN 9788491101475. [Google Scholar]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fibre and Fibre-Rich by-Products of Food Processing: Characterisation, Technological Functionality and Commercial Applications: A Review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Miehle, E.; Haas, M.; Bader-Mittermaier, S.; Eisner, P. The Role of Hydration Properties of Soluble Dietary Fibers on Glucose Diffusion. Food Hydrocoll. 2022, 131, 107822. [Google Scholar] [CrossRef]
- Mudgil, D. The Interaction Between Insoluble and Soluble Fiber; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128052754. [Google Scholar]
- Gorinstein, S.; Zachwieja, Z.; Folta, M.; Barton, H.; Piotrowicz, J.; Zemser, M.; Weisz, M.; Trakhtenberg, S.; Màrtín-Belloso, O. Comparative Contents of Dietary Fiber, Total Phenolics, and Minerals in Persimmons and Apples. J. Agric. Food Chem. 2001, 49, 952–957. [Google Scholar] [CrossRef]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of Dietary Fiber on Human Health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- McCleasry, B.; Prosky, L. Advanced Dietary Fibre Technology, 1st ed.Blackwell Science: Oxford, UK, 2000; ISBN 0632056347. [Google Scholar]
- Alasfoor, D.; Rajab, H.; Al-Rassasi, B. Food Based Dietary Guidelines: Technical Background and Description—Task Force for the Development and Implementation of the Omani Food Based Dietary Guidelines. Available online: https://www.fao.org/3/as846e/as846e.pdf (accessed on 28 July 2022).
- Amine, E.K.; Baba, N.H.; Belhadj, M.; Deurenberg-Yap, M.; Djazayery, A.; Forrestre, T.; Galuska, D.A.; Herman, S.; James, W.P.T.; M’Buyamba Kabangu, J.R.; et al. Diet, Nutrition and the Prevention of Chronic Diseases. World Health Organ. Tech. Rep. Ser. 2003, 916, 1–149. [Google Scholar]
- Wong, C.; Harris, P.J.; Ferguson, L.R. Potential Benefits of Dietary Fibre Intervention in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2016, 17, 919. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Ma, S.; Zheng, R.; Zhao, P.; Zhang, L.; Liu, Y.; Yu, Q.; Deng, Q.; Zhang, K. Dietary Fibre Intake and Risk of Breast Cancer: A Systematic Review and Meta-Analysis of Epidemiological Studies. Oncotarget 2016, 7, 80980–80989. [Google Scholar] [CrossRef]
- O’Keefe, S.J.D. Diet, Microorganisms and Their Metabolites, and Colon Cancer. Physiol. Behav. 2019, 176, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Tramonte, S.M.; Brand, M.B.; Mulrow, C.D.; Amato, M.G.; O’Keefe, M.E.; Ramirez, G. The Treatment of Chronic Constipation in Adults. J. Gen. Intern Med. 2018, 8198, 2163–2175. [Google Scholar] [CrossRef]
- Feuerstein, J.D.; Falchuk, K.R. Diverticulosis and Diverticulitis. Mayo Clin. Proc. 2016, 91, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Bas-Bellver, C.; Andrés, C.; Seguí, L.; Barrera, C.; Jiménez-Hernández, N.; Artacho, A.; Betoret, N.; Gosalbes, M.J. Valorization of Persimmon and Blueberry Byproducts to Obtain Functional Powders: In Vitro Digestion and Fermentation by Gut Microbiota. J. Agric. Food Chem. 2020, 68, 8080–8090. [Google Scholar] [CrossRef] [PubMed]
- Šelo, G.; Planinić, M.; Tišma, M.; Tomas, S.; Koceva Komlenić, D.; Bucić-Kojić, A. A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation. Foods 2021, 10, 927. [Google Scholar] [CrossRef]
- Villacís-Chiriboga, J.; Elst, K.; Van Camp, J.; Vera, E.; Ruales, J. Valorization of Byproducts from Tropical Fruits: Extraction Methodologies, Applications, Environmental, and Economic Assessment: A Review (Part 1: General Overview of the Byproducts, Traditional Biorefinery Practices, and Possible Applications). Compr. Rev. Food Sci. Food Saf. 2020, 19, 405–447. [Google Scholar] [CrossRef]
- FAO; WHO. Sustainable Healthy Diets; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2019; ISBN 9789251318751. [Google Scholar]
- Pathania, S.; Kaur, N. Utilization of Fruits and Vegetable By-Products for Isolation of Dietary Fibres and Its Potential Application as Functional Ingredients. Bioact. Carbohydrates Diet. Fibre 2022, 27, 100295. [Google Scholar] [CrossRef]
- Lima, V.L.A.G.; Mélo, E.A.; Maciel, M.I.S.; Prazeres, F.G.; Musser, R.S.; Lima, D.E.S. Total Phenolic and Carotenoid Contents in Acerola Genotypes Harvested at Three Ripening Stages. Food Chem. 2005, 90, 565–568. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; Salvia-Trujillo, L.; Martín-Belloso, O. Lipid Digestibility and Polyphenols Bioaccessibility of Oil-in-Water Emulsions Containing Avocado Peel and Seed Extracts as Affected by the Presence of Low Methoxyl Pectin. Foods 2021, 10, 2193. [Google Scholar] [CrossRef]
- Grigelmo-Miguel, N.; Martín-Belloso, O. Comparison of Dietary Fibre from By-Products of Processing Fruits and Greens and from Cereals. LWT Food Sci. Technol. 1999, 32, 503–508. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.J.; Tomas, M.; et al. Functional Implications of Bound Phenolic Compounds and Phenolics–Food Interaction: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L. Interactions of Polyphenols with Carbohydrates, Lipids and Proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- López-Gámez, G.; Elez-Martínez, P.; Quiles-Chuliá, A.; Martín-Belloso, O.; Hernando-Hernando, I.; Soliva-Fortuny, R. Effect of Pulsed Electric Fields on Carotenoid and Phenolic Bioaccessibility and Their Relationship with Carrot Structure. Food Funct. 2021, 12, 2772–2783. [Google Scholar] [CrossRef] [PubMed]
- Kahle, K.; Huemmer, W.; Kempf, M.; Scheppach, W.; Erk, T.; Richling, E. Polyphenols Are Intensively Metabolized in the Human Gastrointestinal Tract after Apple Juice Consumption. J. Agric. Food Chem. 2007, 55, 10605–10614. [Google Scholar] [CrossRef]
- José Jara-Palacios, M.; Gonçalves, S.; Hernanz, D.; Heredia, F.J.; Romano, A. Effects of in Vitro Gastrointestinal Digestion on Phenolic Compounds and Antioxidant Activity of Different White Winemaking Byproducts Extracts. Food Res. Int. 2018, 109, 433–439. [Google Scholar] [CrossRef]
- Lee, S.C.; Prosky, L.; Vries, J.W. De Determination of Total, Soluble, and Insoluble Dietary Fiber in Foods—Enzymatic-Gravimetric Method, MES-TRIS Buffer: Collaborative Study. J. AOAC Int. 1992, 75, 395–416. [Google Scholar] [CrossRef]
- Thiex, N.; Novotny, L.; Crawford, A. Determination of Ash in Animal Feed: AOAC Official Method 942.05 Revisited. J. AOAC Int. 2012, 95, 1392–1397. [Google Scholar] [CrossRef]
- Robertson, J.; Monredon, F.; Dysseler, P.; Guillon, F.; Amadò, R.; Thibault, J.-F. Hydration Properties of Dietary Fibre and Resistant Starch: A European Collaborative Study. LWT Food Sci. Technol. 2000, 33, 72–79. [Google Scholar] [CrossRef]
- Tejada-Ortigoza, V.; García-Amezquita, L.E.; Serna-Saldívar, S.O.; Welti-Chanes, J. The Dietary Fiber Profile of Fruit Peels and Functionality Modifications Induced by High Hydrostatic Pressure Treatments. Food Sci. Technol. Int. 2017, 23, 396–402. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Durand, M.; Dumay, C.; Beaumatin, P.; Morel, M.T. Use of the Rumen Simulation Technique (RUSITEC) to Compare Microbial Digestion of Various by-Products. Anim. Feed Sci. Technol. 1988, 21, 197–204. [Google Scholar] [CrossRef]
- Yuste, S.; Macià, A.; Ludwig, I.A.; Romero, M.P.; Fernández-Castillejo, S.; Catalán, Ú.; Motilva, M.J.; Rubió, L. Validation of Dried Blood Spot Cards to Determine Apple Phenolic Metabolites in Human Blood and Plasma After an Acute Intake of Red-Fleshed Apple Snack. Mol. Nutr. Food Res. 2018, 62, 1800623. [Google Scholar] [CrossRef] [PubMed]
- Uthpala, T.G.G.; Marapana, U.; Wettimuny, D.; Lakmini, P.C. Nutritional Bioactive Compounds and Health Benefits of Fresh and Processed Cucumber (Cucumis sativus L.). Sumerianz J. Biotechnol. 2020, 3, 75–82. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Di Scala, K.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of Air-Drying Temperature on Physico-Chemical Properties, Antioxidant Capacity, Colour and Total Phenolic Content of Red Pepper (Capsicum annuum, L. Var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Mármol, I.; Quero, J.; Ibarz, R.; Ferreira-Santos, P.; Teixeira, J.A.; Rocha, C.M.R.; Pérez-Fernández, M.; García-Juiz, S.; Osada, J.; Martín-Belloso, O.; et al. Valorization of Agro-Food by-Products and Their Potential Therapeutic Applications. Food Bioprod. Process. 2021, 128, 247–258. [Google Scholar] [CrossRef]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical Composition, Functional Properties and Processing of Carrot-A Review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef]
- Ruiz-Cano, D.; Pérez-Llamas, F.; Frutos, M.J.; Arnao, M.B.; Espinosa, C.; López-Jiménez, J.Á.; Castillo, J.; Zamora, S. Chemical and Functional Properties of the Different By-Products of Artichoke (Cynara scolymus L.) from Industrial Canning Processing. Food Chem. 2014, 160, 134–140. [Google Scholar] [CrossRef]
- Rodriguez, M.D.; Redondo, A.; Villanueva, M.J. Study of Dietary Fibre Content in Cucumber by Gravimetric and Spectrophotometric Methods. Food Chem. 1992, 43, 295–298. [Google Scholar] [CrossRef]
- Tejada-Ortigoza, V.; Garcia-Amezquita, L.E.; Serna-Saldívar, S.O.; Welti-Chanes, J. Advances in the Functional Characterization and Extraction Processes of Dietary Fiber. Food Eng. Rev. 2016, 8, 251–271. [Google Scholar] [CrossRef]
- Burton-Freeman, B.; Liyanage, D.; Rahman, S.; Edirisinghe, I. Ratios of Soluble and Insoluble Dietary Fibers on Satiety and Energy Intake in Overweight Pre- and Postmenopausal Women. Nutr. Health Aging 2017, 4, 157–168. [Google Scholar] [CrossRef]
- De Moraes Crizel, T.; Jablonski, A.; de Oliveira Rios, A.; Rech, R.; Flôres, S.H. Dietary Fiber from Orange Byproducts as a Potential Fat Replacer. LWT Food Sci. Technol. 2013, 53, 9–14. [Google Scholar] [CrossRef]
- Quintero Ruiz, N.A.; Paolucci, M.; Siano, F.; Mamone, G.; Picariello, G.; Puppo, M.C.; Cascone, G.; Volpe, M.G. Characterization of Soluble and Insoluble Fibers in Artichoke By-Products by ATR-FTIR Spectroscopy Coupled with Chemometrics. Int. J. Food Prop. 2021, 24, 1693–1704. [Google Scholar] [CrossRef]
- Clementz, A.; Torresi, P.A.; Molli, J.S.; Cardell, D.; Mammarella, E.; Yori, J.C. Novel Method for Valorization of By-Products from Carrot Discards. LWT 2019, 100, 374–380. [Google Scholar] [CrossRef]
- Chau, C.F.; Chen, C.H.; Lee, M.H. Comparison of the Characteristics, Functional Properties, and in Vitro Hypoglycemic Effects of Various Carrot Insoluble Fiber-Rich Fractions. LWT Food Sci. Technol. 2004, 37, 155–160. [Google Scholar] [CrossRef]
- Bufler, G. Accumulation and Degradation of Starch in Carrot Roots. Sci. Hortic. 2013, 150, 251–258. [Google Scholar] [CrossRef]
- Grahl, S.; Strack, M.; Mensching, A.; Mörlein, D. Alternative Protein Sources in Western Diets: Food Product Development and Consumer Acceptance of Spirulina-Filled Pasta. Food Qual. Prefer. 2020, 84, 103933. [Google Scholar] [CrossRef]
- Ferreira, M.S.L.; Santos, M.C.P.; Moro, T.M.A.; Basto, G.J.; Andrade, R.M.S.; Gonçalves, É.C.B.A. Formulation and Characterization of Functional Foods Based on Fruit and Vegetable Residue Flour. J. Food Sci. Technol. 2015, 52, 822–830. [Google Scholar] [CrossRef]
- Grigelmo-Miguel, N.; Martín-Belloso, O. The Quality of Peach Jams Stabilized with Peach Dietary Fiber. Eur. Food Res. Technol. 2000, 211, 336–341. [Google Scholar] [CrossRef]
- Ozyurt, V.H.; Ötles, S. Effect of Food Processing on the Physicochemical Properties of Dietary Fibre. Acta Sci. Pol. Technol. Aliment. 2016, 15, 233–245. [Google Scholar] [CrossRef]
- López-Marcos, M.C.; Bailina, C.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. Properties of Dietary Fibers from Agroindustrial Coproducts as Source for Fiber-Enriched Foods. Food Bioprocess Technol. 2015, 8, 2400–2408. [Google Scholar] [CrossRef]
- Dong, R.; Liao, W.; Xie, J.; Chen, Y.; Peng, G.; Xie, J.; Sun, N.; Liu, S.; Yu, C.; Yu, Q. Enrichment of Yogurt with Carrot Soluble Dietary Fiber Prepared by Three Physical Modified Treatments: Microstructure, Rheology and Storage Stability. Innov. Food Sci. Emerg. Technol. 2022, 75, 102901. [Google Scholar] [CrossRef]
- Southgate, D.A. Advanced Dietary Fibre Technology: Barry V. McCleary, Leon Prosky (editors), Blackwell Science, Oxford, 2001, ISBN 0000-632-05634-7 pp. 560, £99.00. Food Chem. 2002, 77, 131. [Google Scholar] [CrossRef]
- López, G.; Ros, G.; Rincón, F.; Periago, M.J.; Martínez, M.C.; Ortuño, J. Relationship between Physical and Hydration Properties of Soluble and Insoluble Fiber of Artichoke. J. Agric. Food Chem. 1996, 44, 2773–2778. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Yi, C.; Quan, K.; Lin, B. Chemical Composition, Structure, Physicochemical and Functional Properties of Rice Bran Dietary Fiber Modified by Cellulase Treatment. Food Chem. 2021, 342, 128352. [Google Scholar] [CrossRef]
- Jiménez-moreno, N.; Cimminelli, M.J.; Volpe, F.; Ansó, R.; Esparza, I.; Mármol, I.; Rodríguez-yoldi, M.J.; Ancín-azpilicueta, C. Phenolic Composition of Artichoke Waste and Its Antioxidant Capacity on Differentiated Caco-2 Cells. Nutrients 2019, 11, 1723. [Google Scholar] [CrossRef]
- Domínguez-Fernández, M.; Ludwig, I.A.; De Peña, M.P.; Cid, C. Bioaccessibility of Tudela Artichoke (Cynara Scolymus Cv. Blanca de Tudela) (Poly)Phenols: The Effects of Heat Treatment, Simulated Gastrointestinal Digestion and Human Colonic Microbiota. Food Funct. 2021, 12, 1996–2011. [Google Scholar] [CrossRef]
- Koca Bozalan, N.; Karadeniz, F. Carotenoid Profile, Total Phenolic Content, and Antioxidant Activity of Carrots. Int. J. Food Prop. 2011, 14, 1060–1068. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolic Compounds and Their Antioxidant Properties in Different Tissues of Carrots (Daucus carota L.). Int. J. Food, Agric. Environ. 2004, 2, 332. [Google Scholar]
- Quirós-Sauceda, A.E.; Palafox-Carlos, H.; Sáyago-Ayerdi, S.G.; Ayala-Zavala, J.F.; Bello-Perez, L.A.; Álvarez-Parrilla, E.; De La Rosa, L.A.; González-Córdova, A.F.; González-Aguilar, G.A. Dietary Fiber and Phenolic Compounds as Functional Ingredients: Interaction and Possible Effect after Ingestion. Food Funct. 2014, 5, 1063–1072. [Google Scholar] [CrossRef]
- Bordenave, N.; Hamaker, B.R.; Ferruzzi, M.G. Nature and Consequences of Non-Covalent Interactions between Flavonoids and Macronutrients in Foods. Food Funct. 2014, 5, 18–34. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary Phenolics: Chemistry, Bioavailability and Effects on Health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef] [PubMed]
- Mosele, J.I.; Macià, A.; Romero, M.P.; Motilva, M.J. Stability and Metabolism of Arbutus Unedo Bioactive Compounds (Phenolics and Antioxidants) under in Vitro Digestion and Colonic Fermentation. Food Chem. 2016, 201, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T. Dietary Factors Affecting Polyphenol Bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef] [PubMed]
DFC | Moisture g/100 g fw | Protein g/100 g dw | Fat g/100 g dw | Ash g/100 g dw | Digestible Carbohydrate g/100 g dw | Dietary Fibre (DF) g/100 g dw |
---|---|---|---|---|---|---|
Artichoke | 3.63 ± 0.32 d | 15.05 ± 0.32 b | 1.80 ± 0.13 b | 6.68 ± 0.15 a | 18.74 ± 0.91 d | 54.73 ± 0.36 a |
Red Pepper | 10.16 ± 0.16 a | 12.17 ± 0.10 c | 4.77 ± 0.14 a | 4.73 ± 0.18 c | 35.43 ± 0.21 b | 42.90 ± 1.14 b |
Cucumber | 8.15 ± 0.42 b | 18.52 ± 0.31 a | 1.65 ± 0.16 b | 7.12 ± 0.22 a | 39.01 ± 0.24 c | 33.70 ± 0.83 c |
Carrot | 5.18 ± 0.22 c | 6.73 ± 0.23 d | 1.73 ± 0.18 b | 5.03 ± 0.12 b | 52.67 ± 0.23 a | 33.84 ± 1.60 c |
DFC | pH | Acidity (g Acid/100 mL) | Apparent Density (g/mL) | Solubility (%) | Swelling Capacity (mL/g) | WHC (g Water/g) | ORC (g Oil/g) | WRC (g Water/g) | OHC (g Oil/g) |
---|---|---|---|---|---|---|---|---|---|
Artichoke | 5.10 ± 0.01 a | 0.14 ± 0,01 c | 0.36 ± 0.01 d | 39.5 ± 0.6 a | 6.0 ± 0,1 c | 11.0 ± 0.6 c | 2.0 ± 0.1 a | 10.5 ± 0.2 b | 1.9 ± 0.1 a |
Red pepper | 4.78 ± 0.01 b | 0.23 ± 0,01 b | 0.39 ± 0.01 b | 38.4 ± 0.2 a | 11.1 ± 0,1 a | 18.7 ± 0.6 a | 1.5 ± 0.1 b | 15.5 ± 0.2 a | 1.4 ± 0.1 b |
Cucumber | 4.19 ± 0.01 d | 0.45 ± 0,03 a | 0.36 ± 0.01 d | 34.7 ± 1.5 b | 8.31 ± 0.1 b | 12.5 ± 0.9 b | 1.3 ± 0.1 bc | 9.8 ± 0.7 bd | 1.2 ± 0.1 c |
Carrot | 4.25 ± 0.01 c | 0.16 ± 0,01 c | 0.47 ± 0.01 a | 26.4 ± 0.3 c | 8.04 ± 0.1 b | 9.4 ± 0.1 d | 1.2 ± 0.1 c | 9.4 ± 0.3 d | 1.1 ± 0.1 c |
ARTICHOKE DFC | RED PEPPER DFC | CUCUMBER DFC | CARROT DFC | |
---|---|---|---|---|
PHENOLIC ACIDS | ||||
Caffeic acid | 551.5 ± 5.3 | 0.55 ± 0.06 | nd | 6.6 ± 0.4 |
Chlorogenic acid | 1801.6 ± 34.8 | 2.8 ± 0.1 | 3.8 ± 0.2 | 178.4 ± 16.0 |
p-Coumaric acid | 1.3 ± 0.1 | 2.8 ± 0.1 | 0.36 ± 0.06 | 0.07 ± 0.01 |
3,5 Dicaffeoyl quinic acid | 5478.6 ± 46.4 | 0.41 ± 0.02 | 0.31 ± 0.03 | 3.7 ± 0.1 |
Ferulic acid | 3.8 ± 0.2 | 10.9 ± 1.1 | 1.8 ± 0.1 | 1.5 ± 0.1 |
Gallic acid | 13.7 ± 0.6 | nd | nd | 0.51 ± 0.03 |
Protocatechuic acid | 320.5 ± 7.5 | 4.3 ± 0.4 | 0.50 ± 0.0 | 10.9 ± 1.1 |
p-Salicylic acid | 2.48 ± 0.04 | 0.92 ± 0.03 | 11.3 ± 0.6 | 0.31 ± 0.02 |
o-Salicylic acid | 7.34 ± 0.19 | 5.1 ± 0.2 | 3.6 ± 0.1 | 12.9 ± 0.4 |
Vanillic acid | 4.7 ± 0.1 | 3.0 ± 0.0 | 0.34 ± 0.04 | 2.2 ± 0.4 |
Syringic acid | nd | 0.57 ± 0.05 | nd | nd |
Total phenolic acids | 8185.3 | 31.3 | 22.0 | 217.1 |
FLAVANONES | ||||
Eriodictyol | 1.6 ± 0.1 | nd | nd | nd |
Eriodictyol-7-O-rutinoside | 1.3 ± 0.1 | 41.2 ± 2.4 | 0.46 ± 0.01 | nd |
Hesperitin-7-rutinoside | 4.3 ± 0.2 | 104.9 ± 3.3 | 136 ± 21 | 0.11 ± 0.00 |
Naringenin 7-O-neohesperidoside | 0.96 ± 0.04 | 2.1 ± 0.1 | nd | nd |
Naringenin-7-O-rutinoside | 0.75 ± 0.03 | 1.9 ± 0.1 | 8.6 ± 0.1 | nd |
Total flavanone | 8.9 | 149.9 | 145.6 | 0.11 |
FLAVONES | ||||
Luteolin | 38.4 ± 1.1 | 0.24 ± 0.02 | nd | nd |
Luteolin-7-O-glucoside | 105.2 ± 5.5 | 1.3 ± 0.1 | nd | 0.17 ± 0.01 |
Luteolin-8-C-glucoside | nd | 9.5 ± 0.1 | nd | nd |
Tangeretin | nd | nd | 0.25 ± 0.01 | nd |
Apigenin-8-C-glucoside | nd | 0.50 ± 0.14 | 0.43 ± 0.00 | nd |
Apigenin 6,8-di-C-glucoside | 1.5 ± 0.1 | 9.4 ± 0.1 | 1.3 ± 0.1 | nd |
Total flavone | 145.1 | 20.9 | 2.0 | 0.17 |
FLAVONOLS | ||||
Quercetin | nd | 2.1 ± 0.1 | 2.4 ± 0.2 | nd |
Quercetin-3-O-galactoside | 0.18 ±0.00 | nd | 6.4 ± 0.4 | nd |
Quercetin-3-O-glucopyranoside | 0.38 ± 0.01 | 1.8 ± 0.2 | 1.6 ± 0.5 | nd |
Quercetin-3-L-rhamnoside | 0.16 ± 0.01 | 95.0 ± 4.7 | 5.4 ± 0.1 | nd |
Rutin | 0.42 ± 0.01 | 0.82 ± 0.01 | 0.61 ± 0.02 | nd |
3-O-Methylquercetin 3-rutinoside | nd | 1.3 ± 0.1 | nd | nd |
trans-Dihydroquercetin | 0.25 ± 0.01 | nd | nd | nd |
Total flavonol | 1.39 | 101.0 | 16.5 | nd |
OTHER PHENOLIC COMPOUNDS | ||||
Isorhamnetin-3-O-glucoside | nd | 0.90 ± 0.05 | nd | nd |
Phloridzin | nd | 0.25 ± 0.01 | 9.6 ± 0.1 | nd |
TOTAL PHENOLIC COMPOUNDS | 8340.7 | 304.4 | 195.7 | 217.4 |
ARTICHOKE DFC | RED PEPPER DFC | CUCUMBER DFC | CARROT DFC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PHENOLIC ACIDS | IBF | INBF | CBF | IBF | INBF | CBF | IBF | INBF | CBF | IBF | INBF | CBF |
Caffeic acid | 1945.8 ± 85.3 | 263.5 ± 12.1 | nd | 5.8 ± 0.1 | 0.45 ± 0.1 | nd | 2.1 ± 0.2 | 1.9 ± 0.1 | nd | 213.0 ± 2.8 | 19.3 ± 0.6 | nd |
Chlorogenic acid | 32,364.9 ± 55.01 | 6496.7 ± 14.6 | 20.6 ± 0.7 | 30.8 ± 0.5 | 5.2 ± 0.1 | 19.1 ± 1.0 | 16.6 ± 0.2 | 34.8 ± 0.3 | 12.9 ± 0.2 | 2155.6 ± 87.0 | 719.9 ± 19.6 | 30.1 ± 2.7 |
p-Coumaric acid | 36.8 ± 0.3 | 3.3 ± 0.1 | nd | 15.5 ± 1.3 | 1.0 ± 0.1 | nd | 4.9 ± 0.1 | 1.9 ± 0.1 | nd | 8.6 ± 1.0 | 0.83 ± 0.04 | nd |
3,5 Dicaffeoyl quinic acid | 5574.5 ± 49.4 | 1820.6 ± 3.13 | 5.4 ± 0.3 | 5.0 ± 0.1 | 1.2 ± 0.1 | 2.7 ± 0.3 | nd | 13.0 ± 0.1 | nd | 17.7 ± 0.3 | 17.6 ± 0.1 | 2.5 ± 0.4 |
Ferulic acid | 22.5 ± 2.3 | 3.0 ± 0.2 | nd | 58.7 ± 3.5 | 1.1 ± 0.1 | nd | 3.4 ± 1.9 | 4.7 ± 0.1 | 2.9 ± 0.3 | 27.7 ± 1.0 | 3.7 ± 0.1 | nd |
Gallic acid | nd | 4.3 ± 0.1 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Protocatechuic acid | 2120.6 ± 46.1 | 712.5 ± 29.8 | 3.2 ± 0.3 | 63.4 ± 6.7 | 1.7 ± 0.1 | nd | 13.4 ± 0.7 | 4.7 ± 0.5 | nd | 413.0 ± 1.5 | 24.7 ± 0.2 | 2.4 ± 0.1 |
p-Salicylic acid | nd | 0.57 ± 0.01 | nd | nd | 0.72 ± 0.1 | nd | nd | 0.57 ± 0.04 | nd | nd | 0.57 ± 0.01 | nd |
o-Salicylic acid | nd | 2.0 ± 0.1 | 52.2 ± 1.4 | nd | 1.0 ± 0.1 | 28.9 ± 1.2 | nd | 1.2 ± 0.1 | 19.4 ± 0.4 | nd | 3.5 ± 1.3 | 44.6 ± 2.4 |
Vanillic acid | 7.4 ± 0.1 | 2.8 ± 0.1 | 3.7 ± 0.1 | 8.2 ± 0.3 | 0.66 ± 0. 06 | 3.1 ± 0.5 | 2.4 ± 0.1 | 2.9 ± 0.1 | 7.7 ± 0.3 | nd | 1.4 ± 0.01 | 2.2 ± 0.2 |
Syringic acid | nd | nd | 22.9 ±0.7 | 1.5 ± 0.1 | nd | 4.2 ± 0.4 | nd | 0.58 ± 0.03 | 4.8 ± 0.1 | nd | nd | nd |
Total phenolic acids | 42,072.5 | 9309.4 | 85.3 | 189.2 | 13.1 | 58.1 | 40.7 | 63.9 | 42.8 | 2835.5 | 791.4 | 81.9 |
FLAVANONE | ||||||||||||
Eriodictyol | 3.7 ± 0.1 | 3.9 ± 0.4 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Eriodictyol-7-O-rutinoside | 4.4 ± 0.1 | 2.4 ± 0.1 | nd | 40.6 ± 0.3 | 1.3 ± 0.1 | nd | nd | 18.3 ± 0.6 | nd | nd | nd | nd |
Hesperitin-7-rutinoside | 15.5 ± 1.3 | 17.2 ± 1.0 | nd | 121.2 ± 1.1 | 204.0 ± 6.4 | nd | 346.7 ± 4.6 | 96.5 ± 1.8 | nd | 3.7 ± 0.1 | 1.4 ± 0.1 | nd |
Naringenin-7-O-neohesperidoside | 1.6 ± 0.1 | 0.84 ± 0.07 | nd | 2.2 ± 0.2 | nd | nd | nd | 1.6 ± 0.1 | nd | nd | nd | nd |
Naringenin-7-O-rutinoside | 8.5 ± 0.4 | nd | nd | 4.5 ± 0.1 | nd | nd | 28.5 ± 2.3 | nd | nd | nd | nd | nd |
Total flavanone | 33.6 | 24.4 | 168.6 | 205.3 | 375.2 | 116.4 | nd | 3.7 | 1.4 | |||
FLAVONE | ||||||||||||
Luteolin | nd | 182.7 ± 3.0 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Luteolin-7-O-glucoside | nd | 158.7 ± 3.7 | nd | nd | nd | nd | nd | 2.5 ± 0.1 | nd | nd | 2.3 ± 0.2 | nd |
Luteolin-8-C-glucoside | nd | nd | nd | 23.2 ± 1.6 | nd | nd | nd | 8.3 ± 0.7 | nd | nd | nd | nd |
Tangeretin | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Apigenin 6,8-di-C-glucoside | 6.0 ± 0.3 | nd | nd | 28.8 ± 2.2 | 2.0 | nd | 5.5 ± 0.3 | 6.6 ± 0.3 | nd | nd | nd | nd |
Total flavone | 6.0 | 341.4 | nd | 52.1 | 2.0 | 5.5 | 15.0 | nd | 2.3 | |||
FLAVONOL | ||||||||||||
Quercetin | nd | nd | nd | 78.2 ± 0.3 | 3.6 ± 0.2 | nd | nd | 61.0 ± 1.0 | nd | nd | nd | nd |
Quercetin-3-O-galactoside | nd | 0.76 ± 0.1 | nd | nd | nd | nd | 4.7 ± 0.2 | 2.2 ± 0.1 | nd | nd | nd | nd |
Quercetin-3-O-glucopyranoside | nd | 1.1 ± 0.1 | nd | 4.4 ± 0.24 | 2.4 ± 0.1 | nd | 1.5 ± 0.2 | 2.7 ± 0.1 | nd | nd | nd | nd |
Quercetin-3-L-rhamnoside | nd | nd | nd | 157.4 ± 12.2 | 6.0 ± 0.3 | nd | 5.6 ± 0.6 | 108.1 ± 6.5 | nd | nd | nd | nd |
Rutin | 2.0 ± 0.1 | 1.7 ± 0.1 | nd | 1.8 ± 0.2 | 1.5 ± 0.1 | nd | 1.4 ± 0.1 | 1.3 ± 0.1 | nd | nd | nd | nd |
3-O-Methylquercetin 3-rutinoside | nd | nd | nd | 3.5 ± 0.2 | nd | nd | nd | 1.7 ± 0.2 | nd | nd | nd | nd |
Total flavonol | 2.0 | 3.5 | 245.3 | 13.5 | 13.2 | 176.9 | nd | nd | nd | nd | ||
OTHER PHENOLIC COMPOUNDS | ||||||||||||
Isorhamnetin-3-O-glucoside | nd | nd | nd | 1.6 ± 0.1 | nd | nd | nd | nd | nd | nd | nd | nd |
Phloridzin | nd | nd | nd | 15.5 ± 0.8 | 6.7 ± 0.5 | 2.7 ± 0.2 | 16.3 ± 1.4 | 1.1 ± 0.1 | nd | nd | nd | nd |
TOTAL PHENOLIC COMPOUNDS | 42,114.2 | 9678.7 | 85.3 | 672.3 | 240.6 | 60.8 | 451.0 | 373.4 | 42.8 | 2839.2 | 795.2 | 81.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
A. Vaz, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Martín-Belloso, O. Physicochemical Properties and Bioaccessibility of Phenolic Compounds of Dietary Fibre Concentrates from Vegetable By-Products. Foods 2022, 11, 2578. https://doi.org/10.3390/foods11172578
A. Vaz A, Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O. Physicochemical Properties and Bioaccessibility of Phenolic Compounds of Dietary Fibre Concentrates from Vegetable By-Products. Foods. 2022; 11(17):2578. https://doi.org/10.3390/foods11172578
Chicago/Turabian StyleA. Vaz, Ana, Isabel Odriozola-Serrano, Gemma Oms-Oliu, and Olga Martín-Belloso. 2022. "Physicochemical Properties and Bioaccessibility of Phenolic Compounds of Dietary Fibre Concentrates from Vegetable By-Products" Foods 11, no. 17: 2578. https://doi.org/10.3390/foods11172578
APA StyleA. Vaz, A., Odriozola-Serrano, I., Oms-Oliu, G., & Martín-Belloso, O. (2022). Physicochemical Properties and Bioaccessibility of Phenolic Compounds of Dietary Fibre Concentrates from Vegetable By-Products. Foods, 11(17), 2578. https://doi.org/10.3390/foods11172578