PCR Mediated Nucleic Acid Molecular Recognition Technology for Detection of Viable and Dead Foodborne Pathogens
Abstract
:1. Introduction
2. RNA-Based RT-PCR Detecting Technique
3. DNA-Based Viability PCR Detecting Technique
3.1. Identification of Live and Dead Bacteria Based on Cell Membrane Integrity
3.2. Identification of Living and Dead Bacteria Based on Cell Metabolic Activity
4. Whole-Processes Application of PCR Mediated Nucleic Acid Molecular Recognition Technology in Detecting Foodborne Pathogens
5. Summary and Outline
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cangelosi, G.A.; Meschke, J.S. Dead or Alive: Molecular assessment of microbial viability. Appl. Environ. Microbiol. 2014, 80, 5884–5891. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, A.K. One day to one hour: How quickly can foodborne pathogens be detected. Future Microbiology. 2014, 9, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Erlich, H.A.; Gelfand, D.H.; Saiki, R.K. Specific DNA amplification. Nature 1988, 331, 461–462. [Google Scholar] [CrossRef]
- Cangelosi, G.A.; Brabant, W.H. Depletion of pre-16S rRNA in starved Escherichia coli cells. J. Bacteriol. 1997, 179, 4457–4463. [Google Scholar] [CrossRef] [PubMed]
- Nocker, A.; Cheung, C.Y.; Camper, A.K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods 2006, 67, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Alcaine, S.D.; Law, K.; Ho, S.; Kinchla, A.J.; Sela, D.A.; Nugen, S.R. Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria. Biosens. Bioelectron. 2016, 82, 14–19. [Google Scholar] [CrossRef]
- Aarthi, P.; Bagyalakshmi, R.; Therese, K.L.; Madhavan, H.N. Development of a novel reverse transcriptase polymerase chain reaction to determine the gram reaction and viability of bacteria in clinical specimens. Microbiol. Res. 2013, 168, 497–503. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, X.; Liu, Z.; Ning, Q.; Fu, L.; Wu, S. A signal cascade amplification strategy based on RT-PCR triggering of G-quadruplex DNAzyme for a novel electrochemical detection of viable Cronobacter sakazakii. Analyst 2020, 145, 4477–4483. [Google Scholar] [CrossRef]
- Nogva, H.K.; Drømtorp, S.M.; Nissen, H.; Rudi, K. Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. BioTechniques 2003, 34, 804–813. [Google Scholar] [CrossRef]
- Rudi, K.; Moen, B.; Dromtorp, S.M.; Holck, A.L. Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl. Environ. Microbiol. 2005, 71, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- Soejima, T.; Iida, K.; Qin, T.; Taniai, H.; Seki, M.; Yoshida, S. Method to detect only live bacteria during PCR amplification. J. Clin. Microbiol. 2008, 46, 2305–2313. [Google Scholar] [CrossRef] [PubMed]
- Soejima, T.; Minami, J.; Yaeshima, T.; Iwatsuki, K. An advanced PCR method for the specific detection of viable total coliform bacteria in pasteurized milk. Appl. Microbiol. Biotechnol. 2012, 95, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Shi, Y.; Zhang, J.; Han, Q.; Xia, X.; Zhang, A.; Song, Y. Rapid and simultaneous detection of five, viable, foodborne pathogenic bacteria by photoinduced PMAxx-coupled multiplex PCR in fresh juice. Foodborne Pathog. Dis. 2021, 18, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Long, H.; Zhan, Z.; Zhu, Y.; Kuang, P.; Mo, N.; Wang, Y.; Cui, S.; Wu, X. Simultaneous detection of viable Salmonella spp., Escherichia coli, and Staphylococcus aureus in bird’s nest, donkey-hide gelatin, and wolfberry using PMA with multiplex real-time quantitative PCR. Food Sci. Nutr. 2022, 1–10. [Google Scholar] [CrossRef]
- Lee, S.; Bae, S. Evaluating the newly developed dye, DyeTox13 Green C-2 Azide, and comparing it with existing EMA and PMA for the differentiation of viable and nonviable bacteria. J. Microbiol. Methods 2018, 148, 33–39. [Google Scholar] [CrossRef]
- Li, L.; Fu, J.; Bae, S. Changes in physiological states of Salmonella Typhimurium measured by qPCR with PMA and DyeTox13 Green Azide after pasteurization and UV treatment. Appl. Microbiol. Biotechnol. 2022, 106, 2739–2750. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, D.; Li, R.; Yu, Y.; Xiao, X.; Zhou, A.; Li, X. Molecular monitoring of disinfection efficacy of E. coli O157:H7in bottled purified drinking water by quantitative PCR with a novel dye. J. Food Process. Preserv. 2019, 43, e13875. [Google Scholar] [CrossRef]
- Feng, X.; Zhou, D.; Xie, G.; Liu, J.; Xiong, Q.; Xu, H. A novel photoreactive DNA-binding dye for detecting viable Klebsiella pneumoniae in powdered infant formula. J. Dairy Sci. 2022, 105, 4895–4902. [Google Scholar] [CrossRef]
- Mai, N.; Satomi, A.; Akira, T.; Yukiko, K.; Takuya, S.; Hirokazu, T.; Kentaro, S.; Hiroshi, O.; Takashi, A. Development of a rapid and sensitive analytical system for Pseudomonas aeruginosa based on reverse transcription quantitative PCR targeting of rRNA molecules. Emerg. Microbes Infect. 2021, 10, 677–686. [Google Scholar]
- Yan, R.; Liu, Y.; Gurtler, J.; Killinger, K.; Fan, X. Sensitivity of pathogenic and attenuated E. coli O157:H7 strains to ultraviolet-C light as assessed by conventional plating methods and ethidium monoazide-PCR. J. Food Saf. 2017, 37, e12346. [Google Scholar] [CrossRef]
- Michela, C.; Grassi, A.; Marina, T.; Stefania, S.; Gori, M.; Elisabetta, T. Assessing the viability of Legionella pneumophila in environmental samples: Regarding the filter application of Ethidium Monoazide Bromide. Ann. Microbiol. 2021, 71, 1. [Google Scholar]
- Zhang, J.; Khan, S.; Chousalkar, K. Development of PMAxxTM-Based qPCR for the quantification of viable and non-viable load of Salmonella from poultry environment. Front. Microbiol. 2020, 11, 581201. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Lin, M.H. Optimization of PMA-qPCR for Staphylococcus aureus and determination of viable bacteria in indoor air. Indoor Air. 2017, 28, 64–72. [Google Scholar] [CrossRef]
- Yoon, H.K.; Park, S.Y.; Kim, C.G. Comparison of the bacterial viability assessments for the disinfected quarantined water along with an effect of total residual oxidants. Environ. Monit. Assess. 2021, 193, 782. [Google Scholar] [CrossRef]
- Vaitilingom, M.; Gendre, F.; Brignon, P. Direct detection of viable bacteria, molds, and yeasts by reverse transcriptase PCR in contaminated milk samples after heat treatment. Appl. Environ. Microbiol. 1998, 64, 1157–1160. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Dorneles, E.; Santos, E.; Alves, T.; Silva, G.; Figueiredo, T.; Cançado, S. Viability of Campylobacter spp. in frozen and chilled broiler carcasses according to real-time PCR with propidium monoazide pretreatment. Poult. Sci. 2018, 97, 1706–1711. [Google Scholar] [CrossRef] [PubMed]
- Immanuel, T.; Taylor, R.; Keeling, S.; Brosnahan, C.; Alexander, B. Discrimination between viable and dead Xanthomonas fragariae in strawberry using viability PCR. J. Phytopathol. 2020, 168, 363–373. [Google Scholar] [CrossRef]
- Ye, K.; Zhang, Q.; Jiang, Y.; Xu, X.; Cao, J.; Zhou, G. Rapid detection of viable Listeria monocytogenes in chilled pork by real-time reverse-transcriptase PCR. Food Control. 2012, 25, 117–124. [Google Scholar] [CrossRef]
- Lien, C.L.; Flahou, B.; Houf, K.; Smet, A.; Ducatelle, R.; Pasmans, F.; Haesebrouck, F. Survival of Helicobacter suis bacteria in retail pig meat. Int. J. Food Microbiol. 2013, 166, 164–167. [Google Scholar]
Type | Material | Time | Target | LOD | Effect | References |
---|---|---|---|---|---|---|
RNA-based RT-PCR | RNA reverse transcriptase | 2016 | Mycobacterium tuberculosis | - | Shorter detection time, fewer detection steps and easier operation | [6] |
2020 | Cronobacter sakazakii | 501 CFU/mL | Dynamic range was 2.4 × 107 CFU/mL–3.84 × 104 CFU/mL | [8] | ||
2021 | Pseudomonas aeruginosa | 1 cell/mL in blood and 100 cells/g in stool | The method can directly and rapidly quantify PA in clinical samples within 6 h without cross-reaction | [19] | ||
DNA-based vPCR | EMA | 2017 | Escherichia coli | - | Reduced sensitivity when detecting UV-treated samples | [20] |
2021 | Legionella pneumophila | - | EMA has no dye toxicity to VBNC bacteria | [21] | ||
PMA | 2021 | Salmonella | 100 per gram of soil | High specificity (92%) | [22] | |
2022 | Salmonella spp., Escherichia coli, and Staphylococcus aureus | Salmonella:100 E. coli:100 S. aureus:10 CFU/mL | Multiplex detection | [13] | ||
DyeTox13 | 2018 | P. aeruginosa PAO1 and Enterococcus faecalis v583 | - | Accurate assessment of the survival status of both Gram-negative and Gram-positive bacteria | [14] | |
2022 | Salmonella typhimurium | - | It accurately detects the number of viable bacteria in UV-sterilized samples | [15] | ||
TOMA | 2019 | Escherichia coli | 1000 CFU/mL | It can work in the extreme conditions such as strong radiation | [16] | |
2022 | Klebsiella pneumoniae | 2.3 × 104 CFU/mL | It can be completed within 40 min at a constant temperature | [17] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Lan, X.; Zhu, L.; Ru, P.; Xu, W.; Liu, H. PCR Mediated Nucleic Acid Molecular Recognition Technology for Detection of Viable and Dead Foodborne Pathogens. Foods 2022, 11, 2675. https://doi.org/10.3390/foods11172675
Chen M, Lan X, Zhu L, Ru P, Xu W, Liu H. PCR Mediated Nucleic Acid Molecular Recognition Technology for Detection of Viable and Dead Foodborne Pathogens. Foods. 2022; 11(17):2675. https://doi.org/10.3390/foods11172675
Chicago/Turabian StyleChen, Mengtao, Xinyue Lan, Longjiao Zhu, Ping Ru, Wentao Xu, and Haiyan Liu. 2022. "PCR Mediated Nucleic Acid Molecular Recognition Technology for Detection of Viable and Dead Foodborne Pathogens" Foods 11, no. 17: 2675. https://doi.org/10.3390/foods11172675