Memory-Enhancing Effect of 8-Week Consumption of the Quercetin-Enriched Culinary Herbs-Derived Functional Ingredients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Culinary Herbs-Derived Functional Ingredients (MP)
2.2. Study Design
2.3. Outcome Measurements
2.3.1. Event-Related Potential
2.3.2. Working Memory Assessment
Word Presentation
Picture Presentation
Simple Reaction Time
Digit Vigilance Task
Choice Reaction Time
Spatial Working Memory
Numeric Working Memory
2.4. Biochemical Assessments
2.4.1. Acetylcholinesterase (AChE) Activity Assessment
2.4.2. Monoamine Oxidase (MAO) Assessment
2.5. Determination of Total Phenolic Compounds
2.6. Statistical Analysis
3. Results
3.1. Demographic Data of Subjects
3.2. Changes in Event-Related Potential
3.3. Working Memory Changes
3.4. Changes in Cholinergic and Monoaminergic Functions
3.5. Serum Level of Total Phenolic Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wensing, S. Market Research of Advanced Materials: Understanding the World of Functional Ingredients. In Kirk-Othmer Encyclopedia of Chemical Technology; John-Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–26. [Google Scholar]
- McDougall, G.J., Jr.; Austin-Wells, V.; Zimmerman, T. Utility of nutraceutical products marketed for cognitive and memory enhancement. J. Holist. Nurs. 2005, 23, 415–433. [Google Scholar] [CrossRef] [PubMed]
- Constantinidis, C.; Klingberg, T. The neuroscience of working memory capacity and training. Nat. Rev. Neurosci. 2016, 17, 438–449. [Google Scholar] [CrossRef]
- Dziemian, S.; Appenzeller, S.; von Bastian, C.C.; Jäncke, L.; Langer, N. Working Memory Training Effects on White Matter Integrity in Young and Older Adults. Front. Hum. Neurosci. 2021, 15, 605213. [Google Scholar] [CrossRef] [PubMed]
- Pliatsikas, C.; Veríssimo, J.; Babcock, L.; Pullman, M.Y.; Glei, D.A.; Weinstein, M.; Goldman, N.; Ullman, M.T. Working memory in older adults declines with age, but is modulated by sex and education. Q. J. Exp. Psychol. 2019, 72, 1308–1327. [Google Scholar] [CrossRef] [PubMed]
- Drew, T.W.; McCollough, A.W.; Vogel, E.K. Event-related potential measures of visual working memory. Clin. EEG Neurosci. 2006, 37, 286–291. [Google Scholar] [CrossRef]
- Leiser, S.C.; Dunlop, J.; Bowlby, M.R.; Devilbiss, D.M. Aligning strategies for using EEG as a surrogate biomarker: A review of preclinical and clinical research. Biochem. Pharmacol. 2011, 81, 1408–1421. [Google Scholar] [CrossRef]
- Sakkalis, V. Applied strategies towards EEG/MEG biomarker identification in clinical and cognitive research. Biomark. Med. 2011, 5, 93–105. [Google Scholar] [CrossRef]
- Al-Qazzaz, N.K.; Ali, S.H.B.M.; Ahmad, S.A.; Chellappan, K.; Islam, M.S.; Escudero, J. Role of EEG as Biomarker in the Early Detection and Classification of Dementia. Sci. World J. 2014, 2014, e906038. [Google Scholar] [CrossRef]
- Fraga, F.J.; Mamani, G.Q.; Johns, E.; Tavares, G.; Falk, T.H.; Phillips, N.A. Early diagnosis of mild cognitive impairment and Alzheimer’s with event-related potentials and event-related desynchronization in N-back working memory tasks. Comput. Methods Prog. Biomed. 2018, 164, 1–13. [Google Scholar] [CrossRef]
- Assecondi, S.; Villa-Sánchez, B.; Shapiro, K. Event-related potentials as markers of efficacy for combined working memory training and transcranial direct current stimulation regimens: A proof-of-concept study. Front. Syst. Neurosci. 2022, 16, 837979. [Google Scholar] [CrossRef]
- Tandon, O.P.; Mahajan, A. Averaged evoked potentials: Event related potentials (ERPs) and their applications. Indian J. Physiol. Pharmacol. 1999, 43, 425–434. [Google Scholar] [PubMed]
- Thakur, L.; Ray, K.; Anand, J.P.; Panjwani, U. Event related potential (ERP) P300 after 6 months residence at 4115 meter. Indian J. Med. Res. 2011, 134, 113–117. [Google Scholar]
- Thornton, A.R.; Harmer, M.; Lavoie, B.A. Selective attention increases the temporal precision of the auditory N100 event-related potential. Hear. Res. 2007, 230, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Pratt, N.; Willoughby, A.; Swick, D. Effects of working memory load on visual selective attention: Behavioral and electrophysiological evidence. Front. Hum. Neurosci. 2011, 5, 57. [Google Scholar] [CrossRef] [PubMed]
- Saenghong, N.; Wattanathorn, J.; Muchimapura, S.; Tongun, T.; Piyavhatkul, N.; Banchonglikitkul, C.; Kajsongkram, T. Zingiber officinale improves cognitive function of the middle-aged healthy women. Evid. Based Complement. Alternat. Med. 2012, 2012, 383062. [Google Scholar] [CrossRef]
- Nagaraj, N.K.; Atcherson, S.R. Investigation the association between working memory, speech identification in noise, and P300 in adults with hearing impairment. J. Hear. Sci 2017, 7, 41–46. [Google Scholar]
- Van Dinteren, R.; Arns, M.; Jongsma, M.L.; Kessels, R.P. P300 development across the lifespan: A systematic review and meta-analysis. PLoS ONE 2014, 9, e87347. [Google Scholar]
- Foti, M.; Lo Buono, V.; Corallo, F.; Palmeri, R.; Bramanti, P.; Marino, S. Neuropsychological assessment in migraine patients: A descriptive review on cognitive implications. Neurol. Sci. 2017, 38, 553–562. [Google Scholar] [CrossRef]
- Vives, M.; López-Navarro, E.; García-Campayo, J.; Gili, M. Cognitive impairments and depression: A critical review. Actas Esp. Psiquiatr. 2015, 43, 187–193. [Google Scholar]
- Moss, M.; Hewitt, S.; Moss, L.; Wesnes, K. Modulation of cognitive performance and mood by aromas of peppermint and ylang-ylang. Int. J. Neurosci. 2008, 118, 59–77. [Google Scholar] [CrossRef]
- Weber, M.; Mapstone, M.; Staskiewicz, J.; Maki, P.M. Reconciling subjective memory complaints with objective memory per-formance in the menopausal transition. Menopause 2012, 19, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Bromberger, J.T.; Kravitz, H.M.; Chang, Y.-F.; Cyranowski, J.M.; Brown, C.; Matthews, K.A. Major depression during and after the menopausal transition: Study of women’s health across the Nation (SWAN). Psychol. Med. 2011, 41, 1879–1888. [Google Scholar] [CrossRef] [PubMed]
- Hampson, E.; Morley, E.E. Estradiol concentrations and working memory performance in women of reproductive age. Psychoneuroendocrinology 2013, 38, 2897–2904. [Google Scholar] [CrossRef] [PubMed]
- Epperson, C.N.; Amin, Z.; Ruparel, K.; Gur, R.; Loughead, J. Interactive effects of estrogen and serotonin on brain activation during working memory and affective processing in menopausal women. Psychoneuroendocrinology 2012, 37, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Duff, S.J.; Hampson, E. A beneficial effect of estrogen on working memory in postmenopausal women taking hormone replacement therapy. Horm. Behav. 2000, 38, 262–276. [Google Scholar] [CrossRef]
- Smith, Y.R.; Bowen, L.; Love, T.M.; Berent-Spillson, A.; Frey, K.A.; Persad, C.C.; Reame, N.K.; Koeppe, R.A.; Zubieta, J.-K. Early initiation of hormone therapy I menopausal women is associated with increased hippocampal and posterior cingulate cholinergic activity. J. Clin. Endocrinol. Metab. 2011, 96, E1761–E1770. [Google Scholar] [CrossRef]
- Fluck, E.; File, S.E.; Rymer, J. Cognitive effects of ten years of hormone-replacement therapy with tibolone. J. Clin. Psychopharmacol. 2002, 22, 62–67. [Google Scholar] [CrossRef]
- File, S.E.; Heard, J.E.; Rymer, J. Trough oestradiol levels associated with cognitive impairment in post-menopausal women after 10 years of oestradiol implants. Psychopharmacology 2002, 161, 107–112. [Google Scholar] [CrossRef]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.A.; Howard, B.V.; Johnson, K.C.; et al. Risks and benefits of estrogen plus progestin in healthy post-menopausal women: Principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002, 288, 321–333. [Google Scholar]
- Barentsen, R. The climacteric in the Netherlands: A review of Dutch studies on epidemiology, attitudes and use of hormone replacement therapy. Eur. J. Obstet. Gynecol. Reprod. Biol. 1996, 64, S7–S11. [Google Scholar] [CrossRef]
- Breckwoldt, M.; Keck, C.; Karck, U. Benefits and risks of hormone replacement therapy. J. Steroid Biochem. Mol. Biol. 1995, 53, 205–208. [Google Scholar] [CrossRef]
- Beral, V. Million Study Collaborators. Breast cancer and hormone replacement therapy in the Million Women Study. Lancet 2003, 362, 419–427. [Google Scholar] [CrossRef]
- Ammar, A.; Trabelsi, K.; Müller, P.; Bouaziz, B.; Boukhris, O.; Glenn, J.M.; Bott, N.; Driss, T.; Chtourou, H.; Müller, N.; et al. The effect of (poly)phenol-rich interventions on cognitive functions and neuroprotective measures in healthy aging adults: A systematic review and meta-analysis. J. Clin. Med. 2020, 9, 835. [Google Scholar] [CrossRef]
- Nicolakakis, N.; Aboulkassim, T.; Ongali, B.; Lecrux, C.; Fernandes, P.; Rosa-Neto, P.; Tong, X.-K.; Hamel, E. Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor γ agonist. J. Neurosci. 2008, 28, 9287–9296. [Google Scholar] [CrossRef] [PubMed]
- Niidome, T.; Takahashi, K.; Goto, S.; Goh, Y.M.; Tanaka, N.; Kamei, K. Mulberry leaf extract prevents amyloid beta-peptide fibril formation and neurotoxicity. NeuroReport 2007, 18, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Srichaikul, B. The study of pharmacological efficacy in dry mulberry Burirum 60 in mild stage of Alzheimer’s disease. Adv. Nat. Sci. 2012, 5, 1–9. [Google Scholar]
- Aiyegoro, O.A.; Okoh, A.I. Use of bioactive plant products in combination with standard antibiotics: Implications in antimicrobial chemotherapy. J. Med. Plants Res. 2009, 3, 1147–1152. [Google Scholar]
- Wattanathorn, J.; Somboonporn, W.; Sungkamanee, S.; Thukummee, W.; Muchimapura, S. A double-blind placebo-controlled randomized trial evaluating the effect of polyphenol-rich herbal congee on bone turnover markers of the perimenopausal and menopausal Women. Oxid. Med. Cell. Longev. 2018, 2018, 2091872. [Google Scholar] [CrossRef]
- Sungkamanee, S.; Wattanathorn, J.; Muchimapura, S.; Thukham-mee, W. Antiosteoporotic effect of combined extract of Morus alba and Polygonum odoratum. Oxid. Med. Cell. Longev. 2014, 2014, 579305. [Google Scholar] [CrossRef]
- Tempelaar, D.; Rienties, B.; Nguyen, Q. Subjective data, objective data and the role of bias in predictive modelling: Lessons from a dispositional learning analytics application. PLoS ONE 2020, 15, e0233977. [Google Scholar] [CrossRef]
- Thukham-mee, W.; Wattanathorn, J.; Kirisattayakul, W.; Wannanon, P. Effect of single administration of mulberry milk on the cognitive function of 6–12-year-old children: Results from a randomized, placebo-controlled, crossover study. Oxid. Med. Cell. Longev. 2020, 2020, 6123759. [Google Scholar] [CrossRef] [PubMed]
- Wattanathorn, J.; Mator, L.; Muchimapura, S.; Tongun, T.; Pasuriwong, O.; Piyawatkul, N.; Yimtae, K.; Sripanidkulchai, B.; Singkhoraard, J. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J. Ethnopharmacol. 2008, 116, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Peth-Nui, T.; Wattanathorn, J.; Muchimapura, S.; Tong-Un, T.; Piyavhatkul, N.; Rangseekajee, P.; Ingkaninan, K.; Vittaya-Areekul, S. Effects of 12-week Bacopa monnieri consumption on attention, cognitive processing, working memory, and functions of both cholinergic and monoaminergic systems in healthy elderly volunteers. Evid. Based Complement. Altern. Med. 2012, 2012, 606424. [Google Scholar] [CrossRef] [PubMed]
- Elmann, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Holt, A.; Sharman, D.F.; Baker, G.B.; Palcic, M.M. A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. Anal. Biochem. 1997, 244, 384–392. [Google Scholar] [CrossRef]
- Stafford, G.I.; Pederson, P.D.; Jäger, A.K.; Van Staden, J. Monoamine oxidase inhibition by southern African traditional medicinal plants. S. Afr. J. Bot. 2007, 73, 384–390. [Google Scholar] [CrossRef]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.-C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Allen, R.J.; Hitch, G.J. Binding in visual working memory: The role of the episodic buffer. Neuropsychologia 2011, 49, 1393–1400. [Google Scholar] [CrossRef]
- Ally, B.A. Using pictures and words to understand recognition memory deterioration in amnestic mild cognitive impairment and Alzheimer’s disease: A review. Curr. Neurol. Neurosci. Rep. 2012, 12, 687–694. [Google Scholar] [CrossRef]
- Satler, C.; Belham, F.S.; Garcia, A.; Tomaz, C.; Tavares, M.C. Computerized spatial delayed recognition span task: A specific tool to assess visuospatial working memory. Front. Aging Neurosci. 2015, 24, 53. [Google Scholar] [CrossRef]
- Wesnes, K.A.; Ward, T.; McGinty, A.; Petrini, O. The memory enhancing effects of a Ginkgo biloba/Panax ginseng combination in healthy middle-aged volunteers. Psychopharmacology 2000, 152, 353–361. [Google Scholar] [CrossRef]
- Hahn, L.A.; Rose, J. Working memory as an indicator for comparative cognition—Detecting qualitative and quantitative differences. Front. Psychol. 2020, 11, 1954. [Google Scholar] [CrossRef] [PubMed]
- Kelland, D.Z.; Lewis, R.F. The Digit Vigilance Test: Reliability, validity, and sensitivity to diazepam. Arch. Clin. Neuropsychol. 1996, 11, 339–344. [Google Scholar] [CrossRef]
- Yang, C.; Lin, G.; Chen, M.; Hsueh, I.-P.; Hsieh, C.-L. Development of a computerized digit vigilance test and validation in patients with stroke. J. Rehabil. Med. 2015, 47, 311–317. [Google Scholar] [CrossRef]
- Lin, G.H.; Wu, C.T.; Huang, Y.J.; Lin, P.; Chou, C.Y.; Lee, S.C.; Hsieh, C.L. A reliable and valid assessment of sustained attention for patients with schizophrenia: The computerized digit vigilance test. Arch. Clin. Neuropsychol. 2018, 33, 227–237. [Google Scholar] [CrossRef]
- Jiang, S.; Qu, C.; Wang, F.; Liu, Y.; Qiao, Z.; Qiu, X.; Yang, X.; Yang, Y. Using event-related potential P300 as an electrophysiological marker for differential diagnosis and to predict the progression of mild cognitive impairment: A meta-analysis. Neurol. Sci. 2015, 36, 1105–1112. [Google Scholar] [CrossRef]
- Tsolaki, A.; Kosmidou, V.; Hadjileontiadis, L.; Kompatsiaris, I.; Tsolaki, M. Brain source localization of MMN, P300 and N400: Aging and gender differences. Brain Res. 2015, 1603, 32–49. [Google Scholar] [CrossRef]
- Picton, T.W. The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 1992, 9, 456–479. [Google Scholar] [CrossRef]
- Salisbury, D.F.; Rutherford, B.; Shenton, M.E.; McCarley, R.W. Button-pressing affects P300 amplitude and scalp topography. Clin. Neurophysiol. 2001, 112, 1676–1684. [Google Scholar] [CrossRef]
- Hillyard, S.A.; Hink, R.F.; Schwent, V.L.; Picton, T.W. Electrical signs of selective attention in the human brain. Science 1973, 182, 177–180. [Google Scholar] [CrossRef]
- Näätänen, R. Attention and Brain Function; Erlbaum: Hillsdale, NJ, USA, 1992. [Google Scholar]
- Coull, J.T. Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog. Neurobiol. 1998, 55, 343–361. [Google Scholar] [CrossRef]
- Golob, E.J.; Starr, A. Serial position effects in auditory event-related potentials during working memory retrieval. J. Cogn. Neurosci. 2004, 16, 40–52. [Google Scholar] [CrossRef]
- Hansen, J.C.; Hillyard, S.A. Temporal dynamics of human auditory selective attention. Psychophysiology 1988, 25, 316–329. [Google Scholar] [CrossRef]
- Pratte, M.S.; Ling, S.; Swisher, J.D.; Tong, F. How attention extracts objects from noise. J. Neurophysiol. 2013, 110, 1346–1356. [Google Scholar] [CrossRef]
- Clark, C.R.; Geffen, G.M.; Geffen, L.B. Role of monoamine pathways in attention and effort: Effects of clonidine and methylphenidate in normal adult humans. Psychopharmacology 1986, 90, 35–39. [Google Scholar] [CrossRef]
- Pekkonen, E.; Jääskeläinen, I.P.; Kaakkola, S.; Ahveninen, J. Cholinergic modulation of preattentive auditory processing in aging. NeuroImage 2005, 27, 387–392. [Google Scholar] [CrossRef]
- Newman, E.L.; Gupta, K.; Climer, J.R.; Monaghan, C.K.; Hasselmo, M.E. Cholinergic modulation of cognitive processing: Insights drawn from computational models. Front. Behav. Neurosci. 2012, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Logue, S.F.; Gould, T.J. The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacol. Biochem. Behav. 2014, 123, 45–54. [Google Scholar] [CrossRef]
- Takano, H. Cognitive function and monoamine neurotransmission in schizophrenia: Evidence from positron emission tomography studies. Front. Psychiatry 2018, 9, 228. [Google Scholar] [CrossRef]
- Bortolato, M.; Chen, K.; Shih, J.C. Monoamine oxidase inactivation: From pathophysiology to therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1527–1533. [Google Scholar] [CrossRef]
- Guo, L.; Suarez, A.I.; Thompson, C.M. Inactivation of acetylcholinesterase by various fluorophores. J. Enzyme Inhib. Med. Chem. 2010, 25, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Ragozzino, M. The contribution of cholinergic and dopaminergic afferents in the rat prefrontal cortex to learning, memory, and attention. Psychobiology 2000, 28, 238–247. [Google Scholar] [CrossRef]
- Kuo, H.I.; Qi, F.X.; Paulus, W.; Kuo, M.F.; Nitsche, M. A noradrenergic enhancement of motor learning, attention, and working memory in humans. Int. J. Neuropsychopharmacol. 2021, 24, 490–498. [Google Scholar] [CrossRef]
- Ammar, A.; Trabelsi, K.; Boukhris, O.; Bouaziz, B.; Müller, P.; Glenn, J.M.; Bott, N.T.; Müller, N.; Chtourou, H.; Driss, T. Effects of polyphenol-rich interventions on cognition and brain health in healthy young and middle-aged adults: Systematic review and meta-analysis. J. Clin. Med. 2020, 90, 1598. [Google Scholar] [CrossRef]
- Nishihira, J.; Nishimura, M.; Kurimoto, M.; Kagami-Katsuyama, H.; Hattori, H.; Nakagawa, T.; Muro, T.; Kobori, M. The effect of 24-week continuous intake of quercetin-rich onion on age-related cognitive decline in healthy elderly people: A randomized, double-blind, placebo-controlled, parallel-group comparative clinical trial. J. Clin. Biochem. Nutr. 2021, 69, 203–215. [Google Scholar] [CrossRef]
Parameters | Placebo | MP 50 mg/Day | MP 1500 mg/Day |
---|---|---|---|
Age (years) | 51.41 ± 4.21 | 50.47 ± 3.20 F(1,28) = 0.536 P = 0.470 | 50.47 ± 3.64 F(1,28) = 0.484 P = 0.492 |
Education (years) | 7.73 ± 4.89 | 7.73 ± 4.13 F(1,28) = 0.000 P = 1.000 | 7.47 ± 4.50 F(1,28) = 0.024 P = 0.878 |
Body mass index | 24.27 ± 2.91 | 25.23 ± 3.52 F(1,28) = 0.652 P = 0.426 | 24.91 ± 3.81 F(1,28) = 0.269 P = 0.608 |
Blood sugar | 87.33 ± 13.50 | 84.67 ± 6.89 F(1,28) = 0.464 P = 0.501 | 88.93 ± 15.04 F(1,28) = 0.094 P = 0.761 |
Uric acid | 5.34 ± 0.77 | 5.05 ± 0.76 F(1,28) = 1.097 P = 0.304 | 5.43 ± 0.92 F(1,28) = 0.078 P = 0.782 |
Heart rate | 77.00 ± 12.86 | 73.20 ± 9.20 F(1,28) = 1.269 P = 0.269 | 74.27 ± 8.66 F(1,28) = 0.779 P = 0.385 |
Respiratory rate | 19.80 ± 2.40 | 18.00 ± 1.98 F(1,28) = 1.063 P = 0.332 | 18.80 ± 1.82 F(1,28) = 1.656 P = 0.209 |
Systolic blood pressure (mmHg) | 115.80 ± 11.48 | 118.67 ± 13.84 F(1,28) = 0.381 P = 0.542 | 119.13 ± 13.06 F(1,28) = 0.551 P = 0.464 |
Diastolic blood pressure (mmHg) | 75.87 ± 8.93 | 78.00 ± 9.38 F(1,28) = 0.407 P = 0.529 | 76.33 ± 8.47 F(1,28) = 0.022 P = 0.884 |
Brain Wave | Group | Baseline | 8 Weeks |
---|---|---|---|
N100 amplitude (μV) | Placebo | 12.85 ± 7.86 | 13.59 ± 4.52 |
MP 50 mg/day | 9.93 ± 6.77 F(1,28) = 1.601 P = 0.206 | 14.35 ± 5.24 F(1,28) = 0.589 P = 0.443 | |
MP 1500 mg/day | 9.38 ± 6.76 F(1,28) = 2.201 P = 0.333 | 20.06 ± 6.43 ** F(1,28) = 10.808 P = 0.004 | |
N100 latency (msec) | Placebo | 111.47 ± 23.26 | 102.47 ± 13.26 |
MP 50 mg/day | 110.07 ± 25.59 F(1,28) = 0.025 P = 0.877 | 98.73 ± 18.35 F(1,28) = 0.408 P = 0.528 | |
MP 1500 mg/day | 108.00 ± 22.65 F(1,28) = 0.171 P = 0.682 | 75.40 ± 6.78 *** F(1,28) = 49.575 P < 0.001 | |
P300 amplitude (UV) | Placebo | 17.54 ± 10.31 | 16.94 ±7.20 |
MP 50 mg/day | 16.69 ± 5.74 F(1,28) = 1.708 P = 0.191 | 20.14 ± 7.56 F(1,28) = 3.806 P = 0.051 | |
MP 1500 mg/day | 14.65 ± 7.40 F(1,28) = 2.235 P = 0.327 | 26.28 ± 6.15 *** F(1,28) = 23.847 P < 0.001 | |
P300 latency (msec) | Placebo | 317.87 ± 32.54 | 323.20 ± 23.12 |
MP 50 mg/day | 328.87 ± 16.47 F(1,28) = 0.190 P = 0.663 | 307.47 ± 14.66 F(1,28) = 1.447 P = 0.229 | |
MP 1500 mg/day | 330.93 ± 32.08 F(1,28) = 0.379 P = 0.827 | 280.40 ± 11.82 ** F(1,28) = 11.248 P = 0.004 |
Parameters | Groups | Baseline | 8 Weeks |
---|---|---|---|
(1) Delayed word recognition (% accuracy) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 81.56 ± 9.33 82.44 ± 14.10 78.89 ± 11.25 | 84.44 ± 9.65 84.89 ± 9.50 90.66 ± 5.37 * |
(2) Delayed word recognition reaction time (msec) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 1911.15 ± 474.01 1936.77 ± 627.23 1958.92 ± 721.37 | 1632.90 ± 650.36 1229.69 ± 239.25 * 1276.61 ± 285.61 * |
(3) Simple reaction time (msec) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 769.44 ± 206.93 690.37 ± 173.31 761.06 ± 193.27 | 738.08 ± 246.57 611.36 ± 112.72 * 585.41 ± 60.23 ** |
(4) Digit vigilance (% accuracy) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 55.56 ± 25.66 53.33 ± 24.82 62.22 ± 25.78 | 66.70 ± 18.86 74.00 ± 14.27 86.81 ± 8.02 *** |
(5) Digit vigilance reaction time (msec) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 657.91 ± 71.39 666.77± 42.22 647.59± 60.11 | 641.63 ± 39.38 656.10 ± 61.20 583.35 ± 84.79 * |
(6) Choice reaction time (%accuracy) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 96.93 ± 6.13 97.60 ± 8.95 97.47 ± 2.56 | 98.80 ± 1.66 98.67 ± 1.63 98.27 ± 1.49 |
(7) Choice reaction time response (msec) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 888.53 ± 122.17 946.71 ± 139.12 985.10 ± 122.45 | 875.51 ± 159.11 871.84 ± 112.36 828.72 ± 110.44 |
(8) Numeric working memory (% accuracy) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 90.00 ± 9.76 91.78 ± 10.30 83.53 ± 16.20 | 91.96 ± 10.51 93.33 ± 8.07 91.11 ± 9.14 |
(9) Numeric working memory reaction time (msec) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 1332.83 ± 296.88 1402.40 ± 333.81 1327.19 ± 318.30 | 1384.53 ± 558.66 1171.37 ± 320.52 1095.34 ± 129.58 * |
(10) Picture recognition (% accuracy) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 79.33 ± 7.04 83.00 ± 9.22 78.00 ± 9.41 | 83.00 ± 10.14 90.67 ± 9.42 * 89.67 ± 5.50 * |
(11) Picture recognition reaction time (msec) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 2044.87 ± 677.74 1963.24 ± 668.95 1759.14 ± 482.52 | 1565.55 ± 377.62 1348.75 ± 256.59 1300.18 ± 380.14 * |
(12) Spatial working memory (% accuracy) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 78.85 ± 19.89 79.81 ± 17.52 72.05 ± 22.64 | 82.37 ± 14.84 86.21 ± 9.78 92.59 ± 5.00 * |
(13) Spatial working memory reaction time (msec) | Group 1: Placebo Group 2: MP 50 mg/day Group 3: MP 1500 mg/day | 2052.41 ± 802.14 2037.64 ± 709.31 1659.07 ± 402.16 | 1778.10 ± 525.19 1570.62 ± 346.19 1411.81 ± 241.06 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wattanathorn, J.; Somboonporn, W.; Thukham-Mee, W.; Sungkamnee, S. Memory-Enhancing Effect of 8-Week Consumption of the Quercetin-Enriched Culinary Herbs-Derived Functional Ingredients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Foods 2022, 11, 2678. https://doi.org/10.3390/foods11172678
Wattanathorn J, Somboonporn W, Thukham-Mee W, Sungkamnee S. Memory-Enhancing Effect of 8-Week Consumption of the Quercetin-Enriched Culinary Herbs-Derived Functional Ingredients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Foods. 2022; 11(17):2678. https://doi.org/10.3390/foods11172678
Chicago/Turabian StyleWattanathorn, Jintanaporn, Woraluck Somboonporn, Wipawee Thukham-Mee, and Sudarat Sungkamnee. 2022. "Memory-Enhancing Effect of 8-Week Consumption of the Quercetin-Enriched Culinary Herbs-Derived Functional Ingredients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial" Foods 11, no. 17: 2678. https://doi.org/10.3390/foods11172678
APA StyleWattanathorn, J., Somboonporn, W., Thukham-Mee, W., & Sungkamnee, S. (2022). Memory-Enhancing Effect of 8-Week Consumption of the Quercetin-Enriched Culinary Herbs-Derived Functional Ingredients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Foods, 11(17), 2678. https://doi.org/10.3390/foods11172678