Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review
Abstract
:1. Introduction
2. Delivery Systems of DHA
DHA Delivery System | Materials | Size | Encapsulation Efficiency | Storage Stability | Main Factors Affecting Stability | Reference |
---|---|---|---|---|---|---|
Microemulsions | Tween 80, CaCl2, surfactin | 15–50 nm | N/A | Stable for 2 years at 4 °C | Surfactant | [13] |
Nanoemulsions | Tween-40 | 10–30 nm | N/A | Stable over 100 days at 4 °C | Preparation technology | [14] |
Coffee oil, algae oil, Span 80, Tween 80, water | 30 nm | 100% | Emulsions were stable when heated up to 110 °C at a pH 6 | N/A | [15] | |
Multilayered emulsions | Lecithin, chitosan, maltodextrin | N/A | N/A | Stable for 12 days at 30 °C and 60 °C | The composition of the emulsions | [16] |
Liposomes | L-α-Phosphatidylcholine | 129.6 ± 0.4 nm | 70.3 ± 1.0% | N/A | N/A | [17] |
Pickering emulsions | Water, gelatin | 2.11–34.68 μm | N/A | Stable for 3 days at 4 °C, room temperature, 37 °C | Solution pH, homogenizing time, homogenizing speed, storage temperature | [18] |
Nanoparticles | PLGA, chitosan | 145–341 nm | 80.45% | Stable for 42 days at 30–80 °C | Materials | [19] |
Zein and PLGA | 319.9 ± 8.28 nm | 84.6% | Stable over 35 days at 4 °C | Materials | [20] | |
Microcapsules | Casein, glucose, lactose | 14.173 μm | 98.66% | Stable for 8 weeks at 45 °C | Wall materials | [21] |
Dodecenyl succinic anhydride-esterified agarose | 100–400 μm | 65–85% | Stable for 30 days at room temperature | N/A | [11] | |
Gels | Water, gelatin | 1.81 ± 0.02 mm | N/A | Stable length of study | Forms | [22] |
Functionality | DHA Delivery System | Results | Reference |
---|---|---|---|
Improve cardiovascular diseases | Microemulsions | Increased DHA bioavailability by 77% and 41% in the heart and brain lipids | [23] |
Improve visual and neurological/brain development | Nanoparticles | Enhanced the DHA content in the brain | [24] |
Microcapsules | Increased DHA levels in blood | [25] | |
Improve diabetes mellitus | Microemulsions | Increased the absorption of DHA, which could reduce oxidative stress induced by high blood glucose | [26] |
Anti-obesity | DHA-PC | Reduced liver weight and hepatic triglyceride levels in OLETF rats to reduce obesity-induced fatty liver | [27] |
Anti-inflammation | DHA | Changed the secretion of adipokine in 3T3-L1 cells and had an anti-inflammatory effect | [28] |
DHA | Decreased TNF-α, IL-1β in LPS-induced inflammation and mediated anti-inflammatory effects through the NF-κB signaling pathway | [29] | |
DHA | Enhanced anti-inflammatory IL-10 secretion and significantly inhibited the expression of IL-6, IL-1β, TNF-α in macrophages | [30] |
2.1. DHA Microemulsions
2.2. DHA Nanoemulsions
2.3. DHA Multilayered Emulsions
2.4. DHA Pickering Emulsions
2.5. DHA Liposomes
2.6. DHA Nanoparticles
2.7. DHA Microcapsule
2.8. DHA Gels
3. Digestion of DHA in Delivery Systems
3.1. In Vitro Digestion
3.2. In Vivo Digestion
4. Functionality of DHA in Delivery Systems
4.1. Effects on Cardiovascular Diseases
4.2. Effects on Visual and Neurological/Brain Development
4.3. Effects on Diabetes Mellitus
4.4. Anti-Obesity Effects
4.5. Anti-Inflammatory Effects
5. Food Applications of DHA Delivery Systems
6. Conclusions and Future Trends
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adarme-Vega, T.C.; Thomas-Hall, S.R.; Schenk, P.M. Towards sustainable sources for omega-3 fatty acids production. Curr. Opin. Biotechnol. 2014, 26, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health benefits of n-3 polyunsaturated fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Adv. Food Nutr. Res. 2012, 65, 211–222. [Google Scholar] [PubMed]
- Horrocks, L.A.; Yeo, Y.K. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 1999, 40, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Seidell, J.C.; Halberstadt, J. The global burden of obesity and the challenges of prevention. Ann. Nutr. Metab. 2015, 66, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Cunha De Sá, R.D.C.; Cruz, M.M.; Farias, T.M.; Silva, V.S.; Jesus Simão, J.; Telles, M.M.; Alonso-Vale, M.I.C. Fish oil reverses metabolic syndrome, adipocyte dysfunction, and altered adipokines secretion triggered by high-fat diet-induced obesity. Physiol. Rep. 2020, 8, 14380–14393. [Google Scholar] [CrossRef]
- Juárez-López, C.; Klünder-Klünder, M.; Madrigal-Azcárate, A.; Flores-Huerta, S. Omega-3 polyunsaturated fatty acids reduce insulin resistance and triglycerides in obese children and adolescents. Pediatric Diabetes 2013, 14, 377–383. [Google Scholar] [CrossRef]
- Torres, O.; Murray, B.; Sarkar, A. Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends Food Sci. Technol. 2016, 55, 98–108. [Google Scholar] [CrossRef]
- Bałasińska, B.; Prostek, A.; Gajewska, M. The influence of eicosapentaenoic acid and docosahexaenoic acid on expression of genes connected with metabolism and secretory functions of ageing 3T3-L1 adipocytes. Prostaglandins Other Lipid Mediat. 2016, 125, 48–56. [Google Scholar]
- Rossmeisl, M.; Jelenik, T.; Jilkova, Z.; Slamova, K.; Kus, V.; Hensler, M.; Medrikova, D.; Povysil, C.; Flachs, P.; Mohamed-Ali, V.; et al. Prevention and reversal of obesity and glucose intolerance in mice by DHA derivatives. Obesity 2009, 17, 1023–1031. [Google Scholar] [CrossRef]
- Zhuang, P.; Lu, Y.; Shou, Q.; Mao, L.; He, L.; Wang, J.; Chen, J.; Zhang, Y.; Jiao, J. Differential Anti-Adipogenic Effects of eicosapentaenoic and docosahexaenoic acids in obesity. Mol. Nutr. Food Res. 2019, 63, e1801135. [Google Scholar] [CrossRef]
- Xiao, Q.; Chen, G.; Zhang, Y.; Weng, H.; Cai, M.; Xiao, A. Evaluation of a novel self-emulsifiable dodecenyl succinylated agarose in microencapsulation of docosahexaenoic acid (DHA) through spray-chilling process. Int. J. Biol. Macromol. 2020, 163, 2314–2324. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.A.; Hashemi, J.; Ce, C.P. Development of novel bioactives delivery systems by micro/nanotechnology. Curr. Opin. Food Sci. 2015, 1, 7–12. [Google Scholar] [CrossRef]
- He, Z.; Zeng, W.; Zhu, X.; Zhao, H.; Lu, Z. Influence of surfactin on physical and oxidative stability of microemulsions with docosahexaenoic acid. Colloids Surf. B Biointerfaces 2016, 151, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Karthik, P.; Anandharamakrishnan, C. Enhancing omega-3 fatty acids nanoemulsion stability and in vitro digestibility through emulsifiers. J. Food Eng. 2016, 187, 92–105. [Google Scholar] [CrossRef]
- Yang, C.; Hung, C.; Chen, B. Preparation of coffee oil-algae oil-based nanoemulsions and the study of their inhibition effect on UVA-induced skin damage in mice and melanoma cell growth. Int. J. Nanomed. 2017, 12, 6559–6580. [Google Scholar] [CrossRef]
- Jiménez-Martín, E.; Gharsallaoui, A.; Pérez-Palacios, T.; Carrascal, J.R.; Rojas, T.A. Suitability of using monolayered and multilayered emulsions for microencapsulation of ω-3 fatty acids by spray drying: Effect of storage at different temperatures. Food Bioprocess Technol. 2015, 8, 100–111. [Google Scholar] [CrossRef]
- Xu, Z.; Jin, J.; Zheng, M.; Zheng, Y.; Xu, X.; Liu, Y.; Wang, X. Co-surfactant free microemulsions: Preparation, characterization and stability evaluation for food application. Food Chem. 2016, 204, 194–200. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, T.; Zhang, H.; Tao, N.; Wang, X.; Zhong, J. Effect of preparation factors and storage temperature on fish oil-loaded crosslinked gelatin nanoparticle pickering emulsions in liquid forms. Food Hydrocoll. 2019, 95, 326–335. [Google Scholar] [CrossRef]
- Liu, E.; Zhao, S.; Li, X.; Meng, X.; Liu, B. Preparation, characterization of PLGA/chitosan nanoparticles as a delivery system for controlled release of DHA. Int. J. Biol. Macromol. 2021, 185, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Su, Z.; Yang, C.; Ji, Y.; Liu, B.; Meng, X. Fabrication, characterization and properties of DHA-loaded nanoparticles based on zein and PLGA. Food Chem. 2021, 360, 129957. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, H.; Zheng, Y.; Zhang, H.; Li, Y.; Su, X.; Panpipat, W.; Lai, O.; Tan, C.; Cheong, L. Phospholipid-protein structured membrane for microencapsulation of DHA oil and evaluation of its in vitro digestibility: Inspired by milk fat globule membrane. J. Agric. Food Chem. 2020, 68, 6190–6201. [Google Scholar] [CrossRef] [PubMed]
- Haug, I.J.; Sagmo, L.B.; Zeiss, D.; Olsen, I.C.; Seternes, T. Bioavailability of EPA and DHA delivered by gelled emulsions and soft gel capsules. Eur. J. Lipid Sci. Technol. 2011, 113, 137–145. [Google Scholar] [CrossRef]
- Sugasini, D.; Lokesh, B.R. Enhanced incorporation of docosahexaenoic acid in serum, heart, and brain of rats given microemulsions of fish oil. Mol. Cell. Biochem. 2013, 382, 203–216. [Google Scholar] [CrossRef]
- Mulik, R.S.; Bing, C.; Ladouceur-Wodzak, M.; Munaweera, I.; Chopra, R.; Corbin, I.R. Localized delivery of low-density lipoprotein docosahexaenoic acid nanoparticles to the rat brain using focused ultrasound. Biomaterials 2016, 83, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Fard, S.G.; Loh, S.P.; Turchini, G.M.; Wang, B.; Elliott, G.; Sinclair, A.J. Microencapsulated tuna oil results in higher absorption of DHA in toddlers. Nutrients 2020, 12, 248. [Google Scholar] [CrossRef] [PubMed]
- Garaiova, I.; Guschina, I.A.; Plummer, S.F.; Tang, J.; Plummer, W. A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification. Nutr. J. 2007, 6, 4–13. [Google Scholar] [CrossRef]
- Shirouchi, B.; Nagao, K.; Yanagita, T. 9–Docosahexaenoic acid containing phosphatidylcholine alleviates obesity-related disorders in obese rats. In Omega-3 Oils; AOCS Press: Amsterdam, The Netherlands, 2011; pp. 205–212. [Google Scholar]
- Prostek, A.; Gajewska, M.; Kamola, D.; Balasinska, B. The influence of EPA and DHA on markers of inflammation in 3T3-L1 cells at different stages of cellular maturation. Lipids Health Dis. 2014, 13, 3–12. [Google Scholar] [CrossRef]
- Weldon, S.M.; Mullen, A.C.; Loscher, C.E.; Hurley, L.A.; Roche, H.M. Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. J. Nutr. Biochem. 2007, 18, 250–258. [Google Scholar] [CrossRef]
- Oliver, E.; McGillicuddy, F.C.; Harford, K.A.; Reynolds, C.M.; Phillips, C.M.; Ferguson, J.F.; Roche, H.M. Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J. Nutr. Biochem. 2012, 23, 1192–1200. [Google Scholar] [CrossRef]
- Gradzielski, M. Recent developments in the characterisation of microemulsions. Curr. Opin. Colloid Interface Sci. 2008, 13, 263–269. [Google Scholar] [CrossRef]
- Papadimitriou, V.; Pispas, S.; Syriou, S.; Pournara, A.; Zoumpanioti, M.; Sotiroudis, T.G.; Xenakis, A. Biocompatible microemulsions based on limonene: Formulation, structure, and applications. Langmuir 2008, 24, 3380–3386. [Google Scholar] [CrossRef] [PubMed]
- Spernath, A.; Aserin, A. Microemulsions as carriers for drugs and nutraceuticals. Adv. Colloid Interface 2006, 128, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; McClements, D.J.; Gray, D.A.; Decker, E.A. Physical and oxidative stability of pre-emulsified oil bodies extracted from soybeans. Food Chem. 2012, 132, 1514–1520. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- McClements, D.J.; Rao, J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Soliva-Fortuny, R.; Alejandra Rojas-Grau, M.; McClements, D.J.; Martin-Belloso, O. Edible nanoemulsions as carriers of active ingredients: A review. Annu. Rev. Food Sci. Technol. 2017, 8, 439–466. [Google Scholar] [CrossRef]
- Zhang, R.; Han, Y.; Xie, W.; Liu, F.; Chen, S. Advances in protein-based nanocarriers of bioactive compounds: From microscopic molecular principles to macroscopical structural and functional attributes. J. Agric. Food Chem. 2022, 70, 6354–6367. [Google Scholar] [CrossRef]
- Mason, T.G.; Wilking, J.N.; Meleson, K.; Chang, C.B.; Graves, S.M. Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Matter 2006, 18, 635–666. [Google Scholar] [CrossRef]
- Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol. 2013, 6, 628–647. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C. Drying techniques for nanoencapsula-tion. Tech. Nanoencapsulation Food Ingred. 2014, 1, 51–60. [Google Scholar]
- Karthik, P.; Ezhilarasi, P.N.; Anandharamakrishnan, C. Challenges associated in stability of food grade nanoemulsions. Crit. Rev. Food Sci. Nutr. 2017, 57, 1435–1450. [Google Scholar] [CrossRef] [PubMed]
- Karthik, P.; Anandharamakrishnan, C. Fabrication of a nutrient delivery system of docosahexaenoic acid nanoemulsions via high energy techniques. RSC Adv. 2016, 6, 3501–3513. [Google Scholar] [CrossRef]
- Pouton, C.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci. 2000, 11, 93–98. [Google Scholar] [CrossRef]
- Singh, H.; Ye, A.; Horne, D. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog. Lipid Res. 2009, 48, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Guzey, D.; McClements, D.J. Formation, stability and properties of multilayer emulsions for application in the food industry. Adv. Colloid Interface Sci. 2006, 128, 227–248. [Google Scholar] [CrossRef]
- Jimenez-Martin, E.; Antequera Rojas, T.; Gharsallaoui, A.; Carrascal, J.R.; Perez-Palacios, T. Fatty acid composition in double and multilayered microcapsules of ω-3 as affected by storage conditions and type of emulsions. Food Chem. 2016, 194, 476–486. [Google Scholar] [CrossRef]
- Shaw, L.A.; McClements, D.J.; Decker, E.A. Spray-dried multilayered emulsions as a delivery method for omega-3 fatty acids into food systems. J Agric Food Chem 2007, 55, 3112–3119. [Google Scholar] [CrossRef]
- Solomando, J.C.; Antequera, T.; Carrascal, J.R.; Palacios, T.P. Improvement of encapsulation and stability of EPA and DHA from monolayered and multilayered emulsions by high-pressure homogenization. J. Food Processing Preserv. 2020, 44, 14290–14303. [Google Scholar] [CrossRef]
- Berton-Carabin, C.C.; Schroën, K. Pickering emulsions for food applications: Background, trends, and challenges. Annu. Rev. Food Sci. Technol. 2015, 6, 263–297. [Google Scholar] [CrossRef]
- Tavernier, I.; Wijaya, W.; Meeren, P.; Dewettinck, K.; Patel, A.R. Food-grade particles for emulsion stabilization. Trends Food Sci. Technol. 2016, 50, 159–174. [Google Scholar] [CrossRef]
- Binks, B.P. Particles as surfactants—Similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41. [Google Scholar] [CrossRef]
- Wei, W.; Hu, M.; Huang, J.; Yu, S.; Li, X.; Li, Y.; Mao, L. Anti-obesity effects of DHA and EPA in high fat-induced insulin resistant mice. Food Funct. 2021, 12, 1614–1625. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wei, Z. Food-grade systems for delivery of DHA and EPA: Opportunities, fabrication, characterization and future perspectives. Crit. Rev. Food Sci. Nutr. 2021, 30, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Leunissen, M.E.; Blaaderen, A.V.; Hollingsworth, A.D.; Sullivan, M.T.; Chaikin, P.M. Electrostatics at the oil–water interface, stability, and order in emulsions and colloids. Proc. Natl. Acad. Sci. USA 2007, 104, 2585–2590. [Google Scholar] [CrossRef]
- Jiang, H.; Sheng, Y.; Ngai, T. Pickering emulsions: Versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci. 2020, 49, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E. Food emulsions and foams: Stabilization by particles. Curr. Opin. Colloid Interface Sci. 2010, 15, 40–49. [Google Scholar] [CrossRef]
- Pawlik, A.K.; Norton, I.T. Bridging benchtop research and industrial processed foods: Structuring of model food emulsions. Food Struct. 2014, 1, 24–38. [Google Scholar] [CrossRef]
- Zhou, F.Z.; Zeng, T.; Yin, S.; Tang, C.H.; Yuan, D.B.; Yang, X.Q. Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery and the in vitro digestion fate. Food Funct. 2018, 9, 959–970. [Google Scholar] [CrossRef]
- Steiner, B.M.; McClements, D.J.; Davidov-Pardo, G. Encapsulation systems for lutein: A review. Trends Food Ence Technol. 2018, 82, 71–81. [Google Scholar] [CrossRef]
- Ajeeshkumar, K.K.; Aneesh, P.A.; Raju, N.; Suseela, M.; Benjakul, S. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1280–1306. [Google Scholar] [CrossRef]
- Gulzar, S.; Benjakul, S. Characteristics and storage stability of nanoliposomes loaded with shrimp oil as affected by ultrasonication and microfluidization. Food Chem. 2019, 310, 125916–125931. [Google Scholar] [CrossRef] [PubMed]
- Khanniri, E.; Bagheripoor-Fallah, N.; Sohrabvandi, S.; Mortazavian, A.M.; Khosravi-Darani, K.; Mohammadi, R. Application of liposomes in some dairy products. Crit. Rev. Food Sci. Nutr. 2016, 56, 484–493. [Google Scholar] [CrossRef]
- Ghorbanzade, T.; Jafari, S.M.; Akhavan, S.; Hadavi, R. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 2017, 216, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Rasti, B.; Erfanian, A.; Selamat, J. Novel nanoliposomal encapsulated omega-3 fatty acids and their applications in food. Food Chem. 2017, 230, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Vikbjerg, A.F.; Andresen, T.L.; Jørgensen, K.; Mu, H.; Xu, X. Oxidative stability of liposomes composed of docosahexaenoic acid-containing phospholipids. J. Am. Oil Chem. Soc. 2007, 84, 631–637. [Google Scholar] [CrossRef]
- Shirouchi, B.; Nagao, K.; Inoue, N.; Ohkubo, T.; Yanagita, T. Effect of dietary omega 3 phosphatidylcholine on obesity-related disorders in obese otsuka long-evans tokushima fatty rats. J. Agric. Food Chem. 2007, 55, 7170–7176. [Google Scholar] [CrossRef]
- Kubo, K.; Sekine, S.; Saito, M. Docosahexaenoic acid-containing phosphatidylethanolamine in the external layer of liposomes protects docosahexaenoic acid from 2, 2′-azobis (2-aminopropane) dihydrochloride-mediated lipid peroxidation. Arch. Biochem. Biophys. 2003, 410, 141–148. [Google Scholar] [CrossRef]
- Khorasani, S.; Danaei, M.; Mozafari, M.R. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol. 2018, 79, 106–115. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, J.; Qin, Y.; Jiang, B.; Zhang, T. Zein/fucoidan-based composite nanoparticles for the encapsulation of pterostilbene: Preparation, characterization, physicochemical stability, and formation mechanism. Int. J. Biol. Macromol. 2020, 158, 461–470. [Google Scholar] [CrossRef]
- Zhang, R.; Han, Y.; McClements, D.J.; Xu, D.; Chen, S. Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: A review. J. Agric. Food Chem. 2022, 70, 2483–2494. [Google Scholar] [CrossRef] [PubMed]
- Bharathala, S.; Sharma, P. Biomedical Applications of Nanoparticles. In Safety of Nanoparticles; Nanostructure Science and Technology; Webster, T., Ed.; Springer: New York, NY, USA, 2019. [Google Scholar]
- Chen, S.; Ma, Y.; Dai, L.; Liao, W.; Zhang, L.; Liu, J.; Gao, Y. Fabrication, characterization, stability and re-dispersibility of curcumin-loaded gliadin-rhamnolipid composite nanoparticles using pH-driven method. Food Hydrocoll. 2021, 118, 106758. [Google Scholar] [CrossRef]
- Kah, M.; Tufenkji, N.; White, J.C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 2019, 14, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Li, H.; Liu, C.; Zhang, S.; Xu, Y.; Wang, D. Fabrication and characterization of lutein-loaded nanoparticles based on zein and sophorolipid: Enhancement of water solubility, stability, and bioaccessibility. J. Agric. Food Chem. 2019, 67, 11977–11985. [Google Scholar] [CrossRef]
- Zimet, P.; Rosenberg, D.; Livney, Y.D. Re-assembled casein micelles and casein nanoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocoll. 2011, 25, 1270–1276. [Google Scholar] [CrossRef]
- Goldstein, J.L.; Brown, M.S. The LDL pathway in human fibroblasts: A receptor-mediated mechanism for the regulation of cholesterol metabolism. Curr. Top. Cell. Regul. 1976, 11, 147–181. [Google Scholar]
- Mulik, R.S.; Zheng, H.; Pichumani, K.; Ratnakar, J.; Jiang, Q.; Corbin, I.R. Elucidating the structural organization of a novel low-density lipoprotein nanoparticle reconstituted with docosahexaenoic acid. Chem. Phys. Lipids 2017, 204, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Ou, W.; Mulik, R.S.; Anwar, A.; Mcdonald, J.G.; Corbin, I.R. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic. Biol. Med. 2017, 112, 597. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gong, Y.; Sontag, D.P.; Corbin, I.; Minuk, G.Y. Effects of low-density lipoprotein docosahexaenoic acid nanoparticles on cancer stem cells isolated from human hepatoma cell lines. Mol. Biol. Rep. 2018, 45, 1023–1036. [Google Scholar] [CrossRef]
- Chen, Q.; Mcgillivray, D.; Wen, J.; Fang, Z.; Quek, S.Y. Co-encapsulation of fish oil with phytosterol esters and limonene by milk proteins. J. Food Eng. 2013, 117, 505–512. [Google Scholar] [CrossRef]
- Comunian, T.A.; Favaro-Trindade, C.S. Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocoll. 2016, 61, 442–457. [Google Scholar] [CrossRef]
- Fang, X.; Shima, M.; Adachi, S. Effects of drying conditions on the oxidation of linoleic acid encapsulated with gum arabic by spray-drying. Food Sci. Technol. Res. 2005, 11, 380–384. [Google Scholar] [CrossRef]
- Kolanowski, W.; Ziolkowski, M.; Weibrodt, J.; Kunz, B.; Laufenberg, G. Microencapsulation of fish oil by spray drying--impact on oxidative stability. Eur. Food Res. Technol. 2006, 222, 336–342. [Google Scholar] [CrossRef]
- Wu, K.G.; Xiao, Q. Microencapsulation of fish oil by simple coacervation of hydroxypropyl methylcellulose. Chin. J. Chem. 2005, 23, 1569–1572. [Google Scholar] [CrossRef]
- Lu, L.; Qu, X.; Li, X.; Bora, A.; Ping, C.; Wang, H.; Wang, C. Effect of exopolysaccharides-producing strain on oxidation stability of DHA micro algae oil microcapsules. Food Biosci. 2018, 23, 60–66. [Google Scholar] [CrossRef]
- Yildiz, G.; Ding, J.; Gaur, S.; Andrade, J.; Hao, F. Microencapsulation of docosahexaenoic acid (DHA) with four wall materials including pea protein-modified starch complex. Int. J. Biol. Macromol. 2018, 114, 935–941. [Google Scholar] [CrossRef]
- Calvo, P.; Hernández, T.; Lozano, M.; González-Gómez, D. Microencapsulation of extra-virgin olive oil by spray-drying: Influence of wall material and olive quality. Eur. J. Lipid Sci. Technol. 2010, 112, 852–858. [Google Scholar] [CrossRef]
- Young, S.L.; Sarda, X.; Rosenberg, M. Microencapsulating properties of whey proteins, microencapsulation of anhydrous milk fat. J. Dairy Sci. 1993, 76, 2868–2877. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, C.; Abbas, S.; Eric, K.; Zhang, X.; Xia, S.; Jia, C. The effect of soy protein structural modification on emulsion properties and oxidative stability of fish oil microcapsules. Colloids Surf. B Biointerfaces 2014, 120, 63–70. [Google Scholar] [CrossRef]
- Jafari, S.M.; Assadpoor, E.; He, Y. Encapsulation efficiency of food flavours and oils during spray drying. Dry. Technol. 2008, 26, 816–835. [Google Scholar] [CrossRef]
- Kanakdande, D.; Bhosale, R.; Singhal, R.S. Stability of cumin oleoresin microencapsulated in different combination of gum arabic, maltodextrin and modified starch. Carbohydr. Polym. 2007, 67, 536–541. [Google Scholar] [CrossRef]
- Ge, X.; Wan, Z.; Song, N.; Fan, A.; Wu, R. Efficient methods for the extraction and microencapsulation of red pigments from a hybrid rose. J. Food Eng. 2009, 94, 122–128. [Google Scholar] [CrossRef]
- Nesterenko, A.; Alric, I.; Silvestre, F.; Durrieu, V. Influence of soy protein’s structural modifications on their microencapsulation properties: Alpha-Tocopherol microparticle preparation. Food Res. Int. 2012, 48, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Sansone, F.; Mencherini, T.; Picerno, P.; D’Amore, M.; Aquino, R.P.; Lauro, M.R. Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J. Food Eng. 2011, 105, 468–476. [Google Scholar] [CrossRef]
- Zhongxiang, F.; Bhandari, B. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chem. 2011, 129, 1139–1147. [Google Scholar]
- Vaziri, A.S.; Alemzadeh, I.; Vossoughi, M.; Khorasani, A.C. Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydr. Polym. 2018, 199, 266–275. [Google Scholar] [CrossRef]
- Augustin, M.A.; Sanguansri, L.; Bode, O. Maillard reaction products as encapsulants for fish oil powders. J. Food Sci. 2006, 71, 25–32. [Google Scholar] [CrossRef]
- Bi, C.H.; Chi, S.Y.; Wang, X.Y.; Alkhatib, A.; Yi, L. Effect of flax gum on the functional properties of soy protein isolate emulsion gel. LWT- Food Sci. Technol. 2021, 149, 111846–111857. [Google Scholar] [CrossRef]
- Cuadros, T.R.; Aguilera, J.M. Gels as precursors of porous matrices for use in foods: A review. Food Biophys. 2015, 10, 487–499. [Google Scholar] [CrossRef]
- Isusi, G.; Madlindl, L.B.; Karbstein, H.P.; Schaaf, U. Microstructures and conformational arrangement in emulsions caused by concentration ratios of pectin-based microgels and oil. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125166–125172. [Google Scholar] [CrossRef]
- Lin, D.; Kelly, A.L.; Miao, S. Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. Trends Food Sci. Technol. 2020, 102, 123–137. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, H.; Mo, Y.; Gao, Y.; Mao, L. Structural characterization of hydrogel-oleogel biphasic systems as affected by oleogelators. Food Res. Int. 2022, 158, 111536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Cui, M.; Ye, J.; Yuan, D.; Mao, L. Physicochemical stability of oleogel-in-water emulsions loaded with 13-carotene against environmental stresses. LWT-Food Sci. Technol. 2021, 155, 112965. [Google Scholar] [CrossRef]
- Tolasa, S.; Chong, M.L.; Cakli, S. Physical and oxidative stabilization of omega-3 fatty acids in surimi gels. J. Food Sci. 2010, 75, 305–310. [Google Scholar] [CrossRef]
- Hajishafiee, M.; Bitarafan, V.; Feinle-Bisset, C. Gastrointestinal sensing of meal-related signals in humans, and dysregulations in eating-related disorders. Nutrients 2019, 11, 1298. [Google Scholar] [CrossRef]
- Mackie, A.; Mulet-Cabero, A.; Torcello-Gómez, A. Simulating human digestion: Developing our knowledge to create healthier and more sustainable foods. Food Funct. 2020, 11, 9397–9431. [Google Scholar] [CrossRef]
- Okada, A.; Honma, M.; Nomura, S.; Yamada, Y. Oral behavior from food intake until terminal swallow. Physiol. Behav. 2007, 90, 172–179. [Google Scholar] [CrossRef]
- Harjeet, S.; Mohit, M.; Subheet, J.; Puri, K.; Harmanpreet, R. Self-nanoemulsifying drug delivery system of docosahexanoic acid: Development, in vitro, in vivo characterization. Drug Dev. Ind. Pharm. 2016, 42, 1032–1041. [Google Scholar]
- Mulet-Cabero, A.I.; Egger, L.; Portmann, R.; Menard, O.; Mackie, A. A standardised semi-dynamic in vitro digestion method suitable for food—An international consensus. Food Funct. 2020, 11, 1702–1720. [Google Scholar] [CrossRef]
- Mun, S.; Decker, E.A.; McClements, D.J. Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase. Food Res. Int. 2007, 40, 770–781. [Google Scholar] [CrossRef]
- Tan, Y.; Li, R.; Zhou, H.; Liu, J.; Mundo, J.M.; Zhang, R.; McClements, D.J. Impact of calcium levels on lipid digestion and nutraceutical bioaccessibility in nanoemulsion delivery systems studied using standardized INFOGEST digestion protocol. Food Funct. 2020, 11, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wright, A.J. Pectin and gastric pH interactively affect DHA-rich emulsion in vitro digestion microstructure, digestibility and bioaccessibility. Food Hydrocoll. 2018, 76, 49–59. [Google Scholar] [CrossRef]
- Egger, L.; Menard, O.; Baumann, C.; Duerr, D.; Schlegel, P.; Stoll, P.; Vergeres, G.; Dupont, D.; Portmann, R. Digestion of milk proteins: Comparing static and dynamic in vitro digestion systems with in vivo data. Food Res. Int. 2017, 118, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, L.; Liao, W.; Mao, L.; Zhang, M.; Guo, X.; Huang, C.; Han, H.; Mackie, A.; Gao, Y. Enhanced stability and controlled gastrointestinal digestion of β-carotene loaded Pickering emulsions with particle-particle complex interfaces. Food Funct. 2021, 12, 10842–10861. [Google Scholar] [CrossRef]
- Parthasarathi, S.; Muthukumar, S.P.; Anandharamakrishnan, C. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions. Food Funct. 2016, 7, 2294–2302. [Google Scholar] [CrossRef]
- Na, B.; Lee, J. In vitro and in vivo digestibility of soybean, fish, and microalgal oils, and their influences on fatty acid distribution in tissue lipid of mice. Molecules 2020, 25, 5357. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, T.T.; Cong, P.X.; Xu, J.; Wang, Y.M. Comparative study on the digestion and absorption characteristics of n-3 LCPUFA-enriched phospholipids in the form of liposomes and emulsions. Food Res. Int. 2020, 137, 109428. [Google Scholar] [CrossRef]
- Han, C.; Yang, C.; Li, X.; Liu, E.; Meng, X.; Liu, B. DHA loaded nanoliposomes stabilized by β-sitosterol: Preparation, characterization and release in vitro and vivo. Food Chem. 2022, 368, 130859–130869. [Google Scholar] [CrossRef]
- Pineda-Vadillo, C.; Nau, F.; Guérin-Dubiard, C.; Bourlieu, C.; Dupont, D. In vivo digestion of egg products enriched with DHA: Effect of the food matrix on DHA bioavailability. Foods 2020, 10, 6. [Google Scholar] [CrossRef]
- Schubert, R.; Kitz, R.; Beermann, C.; Rose, M.A.; Boehles, H. Influence of low-dose polyunsaturated fatty acids supplementation on the inflammatory response of healthy adults. Nutrition 2007, 23, 724–730. [Google Scholar] [CrossRef]
- Smithers, L.G.; Gibson, R.A.; Andrew, M.P.; Maria, M. Higher dose of docosahexaenoic acid in the neonatal period improves visual acuity of preterm infants: Results of a randomized controlled trial. Am. J. Clin. Nutr. 2008, 88, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Bremmell, K.E.; Briskey, D.; Meola, T.R.; Mallard, A.; Prestidge, C.A.; Rao, A. A self-emulsifying omega-3 ethyl ester formulation (AquaCelle) significantly improves eicosapentaenoic and docosahexaenoic acid bioavailability in healthy adults. Eur. J. Nutr. 2020, 59, 2729–2737. [Google Scholar] [CrossRef] [PubMed]
- Haag, M. Essential fatty acids and the brain. Can. J. Psychiatry 2003, 48, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harsløf, L.B.S.; Ciappolino, V.; Agostoni, C. DHA effects in brain development and function. Nutrients 2016, 8, 6. [Google Scholar] [CrossRef]
- Yang, X.; Askarova, S.; Lee, C.M. Membrane biophysics and mechanics in Alzheimer’s disease. Mol. Neurobiol. 2010, 41, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Eckert, G.P.; Chang, S.; Eckmann, J.; Copanaki, E.; Hagl, S.; Hener, U.; Muller, W.E.; Kogel, D. Liposome-incorporated DHA increases neuronal survival by enhancing non-amyloidogenic APP processing. Biochim. Biophys. Acta 2011, 1808, 236–243. [Google Scholar] [CrossRef]
- Herpen, N.; Schrauwen-Hinderling, V.B. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol. Behav. 2008, 94, 231–241. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106, 2747–2757. [Google Scholar] [CrossRef]
- Shang, T.; Liang, L.; Jia, Z.; Zhang, M.; Gong, Z. Protective effects of various ratios of DHA/EPA supplementation on high-fat diet-induced liver damage in mice. Lipids Health Dis. 2017, 16, 65–78. [Google Scholar] [CrossRef]
- Ortiz, M.; Soto-Alarcón, S.A.; Orellana, P.; Espinosa, A.; Videla, L.A. Suppression of high-fat diet-induced obesity-associated liver mitochondrial dysfunction by docosahexaenoic acid and hydroxytyrosol co-administration. Dig. Liver Dis. 2020, 52, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Li, Z.J.; Xu, J.; Yong, X.; Wang, Y.M. Short term effects of different omega-3 fatty acid formulation on lipid metabolism in mice fed high or low fat diet. Lipids Health Dis. 2012, 11, 70–78. [Google Scholar]
- Liang, P.; Zhang, M.; Lin, W.; Chen, L. Proteomic analysis of the effect of DHA-phospholipids from large yellow croaker roe on hyperlipidemic mice. J. Agric. Food Chem. 2017, 65, 5107–5113. [Google Scholar] [CrossRef] [PubMed]
- Boergeson, E.; McGillicuddy, F.C.; Harford, K.A.; Corrigan, N.; Higgins, D.F.; Maderna, P.; Roche, H.M.; Godson, C. Lipoxin A(4) attenuates adipose inflammation. Faseb J. 2012, 26, 4287–4294. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes. Biochem. Soc. Trans. 2010, 2, 355–374. [Google Scholar] [CrossRef]
- Hunsche, C.; Hernandez, O.; Gheorghe, A.; Díaz, L.E.; Marcos, A.; De la Fuente, M. Immune dysfunction and increased oxidative stress state in diet-induced obese mice are reverted by nutritional supplementation with monounsaturated and n-3 polyunsaturated fatty acids. Eur. J. Nutr. 2017, 57, 1123–1135. [Google Scholar] [CrossRef]
- Rausch, M.E.; Weisberg, S.; Vardhana, P.; Tortoriello, D.V. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int. J. Obes. 2008, 32, 451–463. [Google Scholar] [CrossRef]
- Weisberg, S.P.; Mccann, D.; Desai, M.; Rosenbaum, M.; Ferrante, A.W. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Fain, J.N. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam. Horm.-Adv. Res. Appl. 2006, 74, 443–477. [Google Scholar]
- Greenberg, A.S.; Obin, M.S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 2006, 83, 461–465. [Google Scholar] [CrossRef]
- Polus, A.; Zapala, B.; Razny, U.; Gielicz, A.; Kiec-Wilk, B.; Malczewska-Malec, M.; Sanak, M.; Childs, C.E.; Calder, P.C.; Dembinska-Kiec, A. Omega-3 fatty acid supplementation influences the whole blood transcriptome in women with obesity, associated with pro-resolving lipid mediator production. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2016, 1861, 1746–1755. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.J.; Walton, M.A.; Prasad, J.K.; Seto, A. Blockade by polyunsaturated n-3 fatty acids of endotoxin-induced monocytic tissue factor activation is mediated by the depressed receptor expression in THP-1 cells. J. Surg. Res. 1999, 87, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.J.; Chiu, K.C.; Fu, M.J.; Lo, R.; Helton, S. Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NF kappa B activity. J. Surg. Res. 1999, 82, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Marion-Letellier, R.; Savoye, G.; Beck, P.L.; Panaccione, R.; Ghosh, S. Polyunsaturated fatty acids in inflammatory bowel diseases: A reappraisal of effects and therapeutic approaches. Inflamm. Bowel Dis. 2013, 19, 650–661. [Google Scholar] [CrossRef]
- Weylandt, K.H.; Chiu, C.Y.; Gomolka, B.; Waechter, S.F.; Wiedenmann, B. Omega-3 fatty acids and their lipid mediators: Towards an understanding of resolvin and protectin formation. Prostaglandins Other Lipid Mediat. 2012, 97, 73–82. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Barbosa-Cánovas, G.V. Fortification of queso fresco, cheddar and mozzarella cheese using selected sources of omega-3 and some nonthermal approaches. Food Chem. 2012, 133, 787–797. [Google Scholar] [CrossRef]
- Pirsaraii, E.N.; Rahimabadi, E.Z.; Babakhani, A.; Daphchahi, E.A. Quality characteristics and fatty acid profile of Siahmezgi cheese fortified by encapsulated fish oil. Iran. Food Sci. Technol. Res. J. 2021, 17, 761–772. [Google Scholar]
- Hayta, M.; Özuğur, G.; Preedy, V.R.; Watson, R.R.; Patel, V.B. Phytochemical Fortification of Flour and Bread; Academic Press: Cambridge, MA, USA, 2011; pp. 293–300. [Google Scholar]
- Lu, F.S.H.; Norziah, M.H. Stability of docosahexaenoic acid and eicosapentaenoic acid in breads after baking and upon storage. Int. J. Food Sci. Technol. 2010, 45, 821–827. [Google Scholar]
- Serna-Saldivar, S.O.; Zorrilla, R.; Parra, C.D.L.; Stagnitti, G.; Abril, R. Effect of DHA containing oils and powders on baking performance and quality of white pan bread. Plant Foods Hum. Nutr. 2006, 61, 121–129. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O.; Abril, R. Production and nutraceutical properties of breads fortified with DHA- and omega-3-containing oils. In Flour & Breads & Their Fortification in Health & Disease Prevention; Academic Press: Cambridge, MA, USA, 2011; pp. 313–323. [Google Scholar]
- Nielsen, N.S.; Jacobsen, C. Methods for reducing lipid oxidation in fish-oil-enriched energy bars. Int. J. Food Sci. Technol. 2009, 44, 1536–1546. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, W.; Xu, D. Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review. Foods 2022, 11, 2685. https://doi.org/10.3390/foods11172685
Lv W, Xu D. Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review. Foods. 2022; 11(17):2685. https://doi.org/10.3390/foods11172685
Chicago/Turabian StyleLv, Wenwen, and Duoxia Xu. 2022. "Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review" Foods 11, no. 17: 2685. https://doi.org/10.3390/foods11172685
APA StyleLv, W., & Xu, D. (2022). Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review. Foods, 11(17), 2685. https://doi.org/10.3390/foods11172685