Honey Bee (Apis mellifera L.) Broods: Composition, Technology and Gastronomic Applicability
Abstract
:1. Introduction
2. Composition of Honey Bee Broods
3. Processing and Uses
3.1. Production
3.2. Collection
3.3. Storage
3.4. Gastronomic Usage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guiné, R.P.F.; Correia, P.; Coelho, C.; Costa, C.A. The role of edible insects to mitigate challenges for sustainability. Open Agric. 2021, 6, 24–36. [Google Scholar] [CrossRef]
- Hocking, B.; Matsumura, F. Bee Brood as Food. Bee World 1960, 41, 113–120. [Google Scholar] [CrossRef]
- Krell, R. Value-Added Products from Beekeeping; FAO Agricultural Services Bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996; ISBN 92-5-103819-8. [Google Scholar]
- Skinner, M.; Jones, K.E.; Dunn, B.P. Undetectability of vitamin A in bee brood. Apidologie 1995, 26, 407–414. [Google Scholar] [CrossRef]
- Finke, M.D. Nutrient Composition of Bee Brood and its Potential as Human Food. Ecol. Food Nutr. 2005, 44, 257–270. [Google Scholar] [CrossRef]
- Jensen, A.B.; Evans, J.; Jonas-Levi, A.; Benjamin, O.; Martinez, I.; Dahle, B.; Roos, N.; Lecocq, A.; Foley, K. Standard Methods for Apis mellifera Brood as Human Food. J. Apic. Res. 2019, 58, 1–28. [Google Scholar] [CrossRef]
- Conrad, R. Save the Bees! In Bee Culture–The Magazine of American Beekeeping; Eastern Apicultural Society: Medina, OH, USA, 2018. [Google Scholar]
- SML. Summary of the Dossier: Honye Bee Drone Brood (Apis mellifera Male Pupae); Finnish Beekeepers’ Association: Helsinki, Finland, 2019. [Google Scholar]
- Rutka, I.; Galoburda, R.; Galins, J.; Galins, A. Bee drone brood homogenate chemical composition, Stabilization and application: A review. Res. Rural. Dev. 2021, 36, 96–103. [Google Scholar] [CrossRef]
- Sawczuk, R.; Karpińska, J.; Miltyk, W. What do we need to know about drone brood homogenate and what is known. J. Ethnopharmacol. 2019, 245, 111581. [Google Scholar] [CrossRef] [PubMed]
- Sidor, E.; Dżugan, M. Drone Brood Homogenate as Natural Remedy for Treating Health Care Problem: A Scientific and Practical Approach. Molecules 2020, 25, 5699. [Google Scholar] [CrossRef]
- Traynor, K.S.; van Engelsdorp, D.; Lamas, Z.S. Social disruption: Sublethal pesticides in pollen lead to Apis mellifera queen events and brood loss. Ecotoxicol. Environ. Saf. 2021, 214, 112105. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.; Gahukar, R.; Ghosh, S.; Jung, C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods 2021, 10, 1036. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Waterhouse, G.I.; You, L.; Zhang, J.; Liu, Y.; Ma, L.; Gao, J.; Dong, Y. Transforming insect biomass into consumer wellness foods: A review. Food Res. Int. 2016, 89, 129–151. [Google Scholar] [CrossRef]
- Stoner, K.A.; Eitzer, B.D. Using a Hazard Quotient to Evaluate Pesticide Residues Detected in Pollen Trapped from Honey Bees (Apis mellifera) in Connecticut. PLoS ONE 2013, 8, e77550. [Google Scholar] [CrossRef]
- Bajuk, B.P.; Babnik, K.; Snoj, T.; Milčinski, L.; Ocepek, M.P.; Škof, M.; Jenčič, V.; Filazi, A.; Štajnbaher, D.; Kobal, S. Coumaphos residues in honey, bee brood, and beeswax after Varroa treatment. Apidologie 2017, 48, 588–598. [Google Scholar] [CrossRef]
- Martel, A.-C.; Zeggane, S.; Aurières, C.; Drajnudel, P.; Faucon, J.-P.; Aubert, M. Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar® or Asuntol®50. Apidologie 2007, 38, 534–544. [Google Scholar] [CrossRef]
- Boi, M.; Serra, G.; Colombo, R.; Lodesani, M.; Massi, S.; Costa, C. A 10 year survey of acaricide residues in beeswax analysed in Italy. Pest Manag. Sci. 2016, 72, 1366–1372. [Google Scholar] [CrossRef]
- Savarino, A.; Terio, V.; Barrasso, R.; Ceci, E.; Panseri, S.; Chiesa, L.M.; Bonerba, E. Occurrence of antibiotic residues in Apulian honey: Potential risk of environmental pollution by antibiotics. Ital. J. Food Saf. 2020, 9, 8678. [Google Scholar] [CrossRef]
- Borkovcová, M.; Mlček, J.; Adámková, A.; Adámek, M.; Bednářová, M.; Musilová, Z.; Ševčíková, V. Use of Foods Based on Bee Drone Brood: Their Sensory and Microbiological Evaluation and Mineral Composition. Sustainability 2022, 14, 2814. [Google Scholar] [CrossRef]
- Żuk-Gołaszewska, K.; Gałęcki, R.; Obremski, K.; Smetana, S.; Figiel, S.; Gołaszewski, J. Edible Insect Farming in the Context of the EU Regulations and Marketing—An Overview. Insects 2022, 13, 446. [Google Scholar] [CrossRef]
- Hardy, A.; Benford, D.; Noteborn, H.P.; Halldorsson, T.I.; Schlatter, J.J.; Solecki, R.A.; Jeger, M.; Knutsen, H.K.; More, S.S.; Mortensen, A.; et al. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Tchibozo, S.; Abdulmawjood, A.; Acheuk, F.; Guerfali, M.M.; Sayed, W.A.; Plötz, M. Edible Insects in Africa in Terms of Food, Wildlife Resource, and Pest Management Legislation. Foods 2020, 9, 502. [Google Scholar] [CrossRef] [Green Version]
- Müller, A. Insects as Food in Laos and Thailand: A Case of “Westernisation”? Asian J. Soc. Sci. 2019, 47, 204–223. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Jung, C. Insects Used as Food and Feed: Isn’t That What We All Need? Foods 2020, 9, 1003. [Google Scholar] [CrossRef]
- Nyangena, D.N.; Mutungi, C.; Imathiu, S.; Kinyuru, J.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Effects of Traditional Processing Techniques on the Nutritional and Microbiological Quality of Four Edible Insect Species Used for Food and Feed in East Africa. Foods 2020, 9, 574. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.A.; Al-Ghamdi, M.S.; Ahmed, A.M.; Mohamed, A.S.A.; Shaker, G.H.; Ansari, M.J.; Dorrah, M.A.; Khan, K.A.; Ayaad, T.H. Immune investigation of the honeybee Apis mellifera jemenitica broods: A step toward production of a bee-derived antibiotic against the American foulbrood. Saudi J. Biol. Sci. 2021, 28, 1528–1538. [Google Scholar] [CrossRef]
- Wu, X.; He, K.; Velickovic, T.C.; Liu, Z. Nutritional, functional, and allergenic properties of silkworm pupae. Food Sci. Nutr. 2021, 9, 4655–4665. [Google Scholar] [CrossRef]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef]
- Adámková, A.; Mlček, J.; Kouřimská, L.; Borkovcová, M.; Bušina, T.; Adámek, M.; Bednářová, M.; Krajsa, J. Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra. Int. J. Environ. Res. Public Health 2017, 14, 521. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and sensory quality of edible insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef]
- Zhou, Y.; He, J.; Su, N.; Masagounder, K.; Xu, M.; Chen, L.; Liu, Q.; Ye, H.; Sun, Z.; Ye, C. Effects of DL-methionine and a methionine hydroxy analogue (MHA-Ca) on growth, amino acid profiles and the expression of genes related to taurine and protein synthesis in common carp (Cyprinus carpio). Aquaculture 2021, 532, 735962. [Google Scholar] [CrossRef]
- Graham, T.E.; MacLean, D.A. Ammonia and amino acid metabolism in human skeletal muscle during exercise. Can. J. Physiol. Pharmacol. 1992, 70, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. Sodium, Potassium, Phosphorus, and Magnesium. In Nutrition and Bone Health; Holick, M.F., Nieves, J.W., Eds.; Nutrition and Health; Springer: New York, NY, USA, 2015; pp. 379–393. ISBN 978-1-4939-2001-3. [Google Scholar]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J. Asia-Pac. Èntomol. 2016, 19, 487–495. [Google Scholar] [CrossRef]
- Haber, M.; Mishyna, M.; Martinez, J.I.; Benjamin, O. Edible larvae and pupae of honey bee (Apis mellifera): Odor and nutritional characterization as a function of diet. Food Chem. 2019, 292, 197–203. [Google Scholar] [CrossRef]
- Ghosh, S.; Meyer-Rochow, V.B.; Jung, C. Honey bees and their brood: A potentially valuable resource of food, worthy of greater appreciation and scientific attention. J. Ecol. Environ. 2021, 45, 31. [Google Scholar] [CrossRef]
- Ghosh, S.; Herren, P.; Meyer-Rochow, V.B.; Jung, C. Nutritional Composition of Honey Bee Drones of Two Subspecies Relative to Their Pupal Developmental Stages. Insects 2021, 12, 759. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sohn, H.-Y.; Pyo, S.-J.; Jensen, A.B.; Meyer-Rochow, V.B.; Jung, C. Nutritional Composition of Apis mellifera Drones from Korea and Denmark as a Potential Sustainable Alternative Food Source: Comparison Between Developmental Stages. Foods 2020, 9, 389. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Chuttong, B.; Burgett, M. Nutritional Aspects of the Dwarf Honeybee (Apis Florea F.) for Human Consumption. In The Future Role of Dwarf Honeybees in Natural and Agricultural Systems; CRC Press: Boca Raton, FL, USA, 2020; pp. 137–145. [Google Scholar]
- Hu, F.; Li, Y. Nutritive Value and Pharmacological Actions of Italian Worker Bee Larvae and Pupae. In Proceedings of the 37th International Apicultural Congress, Durban, South Africa, 28 October–1 November 2001. [Google Scholar]
- Kim, J.-E.; Kim, D.-I.; Koo, H.-Y.; Kim, H.-J.; Kim, S.-Y.; Lee, Y.-B.; Moon, J.-H.; Choi, Y.-S. Evaluation of Honey Bee (Apis mellifera L.) Drone Pupa Extracts on the Improvement of Hair Loss. J. Apic. 2020, 35, 179–188. [Google Scholar] [CrossRef]
- Florença, S.; Correia, P.; Costa, C.; Guiné, R. Edible Insects: Preliminary Study about Perceptions, Attitudes, and Knowledge on a Sample of Portuguese Citizens. Foods 2021, 10, 709. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Florença, S.G.; Anjos, O.; Correia, P.M.R.; Ferreira, B.M.; Costa, C.A. An Insight into the Level of Information about Sustainability of Edible Insects in a Traditionally Non-Insect-Eating Country: Exploratory Study. Sustainability 2021, 13, 12014. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Florença, S.G.; Costa, C.A.; Correia, P.M.R.; Ferreira, M.; Duarte, J.; Cardoso, A.P.; Campos, S.; Anjos, O. Development of a Questionnaire to Assess Knowledge and Perceptions about Edible Insects. Insects 2022, 13, 47. [Google Scholar] [CrossRef]
- Boes, K.E. Honeybee colony drone production and maintenance in accordance with environmental factors: An interplay of queen and worker decisions. Insectes Sociaux 2010, 57, 1–9. [Google Scholar] [CrossRef]
- Gross, B. Drone Brood Removal: A Bee-Utiful Form of Varroa Control and Source of Edible Insect Protein. Ph.D. Thesis, The College of Wooster, Wooster, OH, USA, 2018. [Google Scholar]
- Anderson, D.; Trueman, J. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 2000, 24, 165–189. [Google Scholar] [CrossRef] [PubMed]
- Aldea, P.; Bozinovic, F. The energetic and survival costs of Varroa parasitism in honeybees. Apidologie 2020, 51, 997–1005. [Google Scholar] [CrossRef]
- Dietemann, V.; Nazzi, F.; Martin, S.J.; Anderson, D.L.; Locke, B.; Delaplane, K.S.; Wauquiez, Q.; Tannahill, C.; Frey, E.; Ziegelmann, B.; et al. Standard methods for varroa research. J. Apic. Res. 2013, 52, 1–54. [Google Scholar] [CrossRef]
- Calderone, N.W. Evaluation of Drone Brood Removal for Management of Varroa destructor (Acari: Varroidae) in Colonies of Apis mellifera (Hymenoptera: Apidae) in the Northeastern United States. J. Econ. Entomol. 2005, 98, 645–650. [Google Scholar] [CrossRef]
- Kulhanek, K.; Steinhauer, N.; Rennich, K.; Caron, D.M.; Sagili, R.R.; Pettis, J.S.; Ellis, J.D.; Wilson, M.E.; Wilkes, J.T.; Tarpy, D.R.; et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 2017, 56, 328–340. [Google Scholar] [CrossRef]
- Pettis, J.; Wilson, W.; Shimanuki, H.; Teel, P. Fluvalinate treatment of queen and worker honey bees (Apis mellifera L) and effects on subsequent mortality, queen acceptance and supersedure. Apidologie 1991, 22, 1–7. [Google Scholar] [CrossRef]
- Rangel, J.; Fisher, A. Factors affecting the reproductive health of honey bee (Apis mellifera) drones—A review. Apidologie 2019, 50, 759–778. [Google Scholar] [CrossRef]
- Schmidt, J.O.; Buchmann, S.L. Other Products of the Hive. In The Hive and the Honey Bee; Dadant & Sons: Hamilton, IL, USA, 1992; pp. 927–988. ISBN 0-915698-09-9. [Google Scholar]
- Taylor & Francis. Could Honey Bee Brood be the Future of Food? Available online: https://www.sciencedaily.com/releases/2016/11/161128085133.htm (accessed on 19 April 2022).
- Crane, E. Bees and Beekeeping: Science, Practice and World Resources, 1st ed.; NCROL: Ithaca, NY, USA, 1990; ISBN 978-0-8014-2429-8. [Google Scholar]
- Martin, D. Girl Meets Bug. Available online: http://www.girlmeetsbug.com/ (accessed on 7 May 2022).
- Martin, D. Edible: An Adventure into the World of Eating Insects and the Last Great Hope to Save the Planet, 1st ed.; New Harvest: Boston, NY, USA, 2014; ISBN 978-0-544-11435-7. [Google Scholar]
- Kazembe, C.; Madzikatire, E.; Nyarota, M. Stakeholders’ Perceived Experiences with Indigenous Edible Insects in Zimbabwe. J. Culin. Sci. Technol. 2022, 1–15, (online pre-press available). [Google Scholar] [CrossRef]
- Dion-Poulin, A.; Turcotte, M.; Lee-Blouin, S.; Perreault, V.; Provencher, V.; Doyen, A.; Turgeon, S.L. Acceptability of insect ingredients by innovative student chefs: An exploratory study. Int. J. Gastron. Food Sci. 2021, 24, 100362. [Google Scholar] [CrossRef]
Components | Brood | Components | Brood |
---|---|---|---|
Macro Nutrients (g/kg) | Essential Amino Acids (g/kg) | ||
Moisture | 768 | Histidine | 2.2 |
Protein | 94 | Isoleucine | 4.3 |
Fat | 47 | Leucine | 6.6 |
Fibre (acid detergent) | 3 | Lysine | 5.8 |
Fibre (neutral detergent) | 2 | Methionine | 2.0 |
Ash | 8 | Phenylalanine | 3.3 |
Carbohydrates | 80 | Threonine | 3.1 |
Energy (kcal/kg) | 1119 | Tryptophan | 0.9 |
Energy (kJ/kg) | 4684 | Valine | 4.9 |
Minerals (mg/kg) | Nonessential Amino Acids (g/kg) | ||
Calcium | 138 | Alanine | 4.5 |
Phosphorous | 1790 | Arginine | 4.0 |
Magnesium | 211 | Aspartic acid | 7.6 |
Sodium | 128 | Cystine | 2.0 |
Potassium | 2690 | Glutamic acid | 12.9 |
Chloride | 870 | Glycine | 4.1 |
Iron | 12.9 | Proline | 5.7 |
Zinc | 16.0 | Serine | 3.3 |
Manganese | 0.6 | Tyrosine | 4.1 |
Copper | 4.0 | Others (g/kg) | |
Iodine | <0.1 | Taurine 1 | 0.31 |
Selenium | 0.06 | Ammonia 2 | 1.9 |
Vitamins (mg/kg, or other) | Saturated Fatty Acids (g/kg) | ||
Beta-carotene (pro-vitamin A) | <0.2 | Lauric acid (C12:0) | 0.2 |
Vitamin C | 38.0 | Myristic acid (C14:0) | 1.2 |
Thiamine (B1) | 4.1 | Palmitic acid (C16:0) | 14.7 |
Riboflavin (B2) | 9.1 | Stearic acid (C18:0) | 4.3 |
Niacin (B3) | 36.7 | Arachidic acid (C20:0) | 0.2 |
Pantothenic acid (B5) | 11.9 | Behenic acid (C22:0) | 0.1 |
Pyridoxine (B6) | 1.2 | Monounsaturated Fatty Acids (g/kg) | |
Folic acid (B9) | <0.06 | Palmitoleic acid (C16:1) | 0.2 |
Choline | 1684 | Oleic acid (C18:1) | 18.2 |
Biotin (B7) (μg/kg) | 0.23 | Eicosenoic acid (C20:1) | 0.1 |
Vitamin B12 (μg/kg) | <1.2 | Polyunsaturated Fatty Acids (g/kg) | |
Vitamin A (IU/kg) | <1000 | Linoleic acid (C18:2) | 0.3 |
Vitamin D (IU/kg) | <251 | Linolenic acid (C18:3) | 0.4 |
Vitamin E (IU/kg) | <5.0 | Eicosadienoic acid (C20:2) | 0.1 |
Components | Larvae | Pupae | |
---|---|---|---|
Macro Components 1 | Moisture (g/100 g) | 74.4 | 79.3 |
Protein (g/100 g d.m.) | 35.3 | 45.9 | |
Fat (g/100 g d.m.) | 14.5 | 16.0 | |
Ash (g/100 g d.m.) | 4.1 | 3.8 | |
Carbohydrates (g/100 g d.m.) | 46.1 | 34.3 | |
Energy (kcal/100 g d.m.) | 455.8 | 465.0 | |
Essential Amino Acids (g/100 g d.m.) | Valine | 1.7 | 2.4 |
Isoleucine | 1.6 | 2.3 | |
Leucine | 2.5 | 3.2 | |
Lysine | 1.9 | 3.0 | |
Tyrosine | 1.5 | 2.0 | |
Threonine | 1.6 | 1.9 | |
Phenylalanine | 0.2 | 0.2 | |
Histidine | 0.7 | 1.1 | |
Tryptophan | Not detected | Not detected | |
Nonessential Amino Acids (g/100 g d.m.) | Arginine | 1.6 | 2.3 |
Aspartic acid | 2.6 | 3.5 | |
Serine | 1.4 | 2.0 | |
Glutamic acid | 5.0 | 8.4 | |
Glycine | 1.4 | 2.5 | |
Alamine | 1.6 | 2.9 | |
Cysteine | 0.3 | 0.4 | |
Saturated Fatty Acids (mg/100 g d.m.) | Capric acid (C10:0) | Not detected | Not detected |
Lauric acid (C12:0) | 15.5 | 24.6 | |
Myristic acid (C14:0) | 116.6 | 157.5 | |
Palmitic acid (C16:0) | 1844.0 | 1942.2 | |
Stearic acid (C18:0) | 584.9 | 696.8 | |
Monounsaturated Fatty Acids (mg/100 g d.m.) | Hexadecenoic acid (C16:1) | 35.1 | 31.1 |
Oleic acid (C18:1) | 2346.1 | 2632.1 | |
Eicosenoic acid (C20:1) | Not detected | Not detected | |
Polyunsaturated Fatty Acids (mg/100 g d.m.) | Linoleic acid (C18:2) | Not detected | Not detected |
Minerals (mg/100 g) | Calcium | 84.9 | 97.0 |
Magnesium | 177.0 | 193.9 | |
Sodium | 59.4 | 60.8 | |
Potassium | 1871.9 | 2207.3 | |
Iron | 13.3 | 15.3 | |
Zinc | 11.6 | 11.7 | |
Copper | 3.6 | 3.7 | |
Manganese | 1.2 | 0.7 | |
Phosphorous | 782.5 | 900.0 |
Components | Larvae | Pupae | |
---|---|---|---|
Macro Components (%) | Protein | 19.0 | 24.6–26.6 |
Fat | 28.1 | 19.1–21.1 | |
Ash | 2.8 | 3.5–3.2 | |
Carbohydrates | 50.1 | 50.8–51.1 | |
Saturated Fatty Acids (%) | Myristic acid (C14:0) | 3.0 | 2.4–2.7 |
Palmitic acid (C16:0) | 34.5 | 28.7–31.2 | |
Stearic acid (C18:0) | 10.4 | 11.3–12.5 | |
Arachidic acid (C20:0) | 1.0 | 1.8 | |
Behenic acid (C22:0) | 1.0 | 2.0–2.1 | |
Unsaturated Fatty Acids (%) | Oleic acid (C18:1) | 45.9 | 46.6–48.7 |
Linoleic acid (C18:2) | 1.5 | 2.2–2.3 | |
Linolenic acid (C18:3) | 2.6 | 2.2–2.3 |
Amino Acids (g/100 g d.m.) 1 | Apis mellifera mellifera2 | Apis mellifera carnica2 | Apis mellifera ligustica2 | Apis mellifera buckfast2 |
---|---|---|---|---|
Essential AA | ||||
Valine | 1.9–2.4 | 1.8–2.5 | 2.6–3.0 | 2.9–3.0 |
Isoleucine | 1.6–2.2 | 1.6–2.2 | 2.1–2.4 | 2.4–2.6 |
Leucine | 2.7–3.5 | 2.6–3.6 | 3.5–4.1 | 4.0–4.3 |
Lysine | 2.4–3.1 | 2.3–3.2 | 3.0–3.5 | 3.5–3.7 |
Threonine | 1.4–1.7 | 1.3–1.7 | 1.9 | 1.6–1.9 |
Histidine | 0.8–1.1 | 0.8–1.1 | 0.9–1.1 | 1.2–1.3 |
Sulphur-containing AA | 1.0–1.8 | 0.6–1.1 | 0.4–0.7 | 1.4–1.5 |
Aromatic AA | 3.0–3.9 | 3.0–3.8 | 4.0–4.8 | 4.6–4.9 |
Nonessential AA | ||||
Arginine | 1.7–2.3 | 1.7–2.3 | 2.2–2.6 | 2.2–2.5 |
Aspartic acid | 2.4–3.0 | 2.4–2.8 | 2.5–2.7 | 3.2 |
Serine | 1.4–2.0 | 1.4–1.9 | 1.8–2.1 | 2.0–2.4 |
Glutamic acid | 6.6–8.1 | 6.3–7.4 | 10.0–10.6 | 7.9–8.8 |
Glycine | 1.6–2.4 | 1.5–2.6 | 2.1–2.8 | 2.3–2.7 |
Alamine | 1.5–2.5 | 1.5–2.9 | 2.6–3.4 | 2.4–2.9 |
Cysteine | 2.8–3.6 | 2.4–3.7 | 3.0–3.6 | 1.6–1.5 |
Fatty Acids (mg/100 g d.m.) 1 | Apis mellifera mellifera2 | Apis mellifera carnica2 | Apis mellifera ligustica2 | Apis mellifera buckfast2 |
---|---|---|---|---|
Saturated FA | ||||
Capric acid (C10:0) | 0–1.8 | 2.0 | n.d. | n.d. |
Lauric acid (C12:0) | 20.9–26.0 | 27.6–29.8 | 32.5–33.4 | 26.0–31.4 |
Myristic acid (C14:0) | 284.1–354.0 | 234.7–379.3 | 258.1–333.1 | 359.5–365.5 |
Palmitic acid (C16:0) | 3804–4848 | 3307–4699 | 3571–4518 | 4810–4879 |
Margaric acid (C17:0) | 4.3–4.5 | 4.1–4.2 | n.d. | n.d. |
Stearic acid (C18:0) | 1181–1260 | 1207–1363 | 1267–1357 | 1110–1303 |
Arachidic acid (C20:0) | 45.1–67.7 | 46.8–72.4 | 120.6–145.8 | 0–56.2 |
Behenic acid (C22:0) | 16.9–27.6 | 16.0–30.3 | 14.4–23.3 | n.d. |
Lignoceric acid (C24:0) | n.d. | n.d. | 39.2–42.6 | n.d. |
Subtotal | 5397–6484 | 4885–6476 | 5341–6414 | 6306–6635 |
Monounsaturated FA | ||||
Myristoleic acid (C14:1) | 2.4–3.1 | 0–2.4 | n.d. | n.d. |
Palmitoleic acid (C16:1) | 56.1–72.3 | 47.9–55.4 | 47.7–48.3 | 51.9–56.4 |
Elaidic acid (C18:1t) | n.d. | n.d. | 0–6.8 | n.d. |
Oleic acid (C18:1) | 4197–4579 | 4316–4771 | 4412–4903 | 4720–5105 |
Eicosenoic acid (C20:1) | 6.6–8.5 | 7.3–9.1 | 8.7–10.4 | n.d. |
Subtotal | 4264–4655 | 4373–4832 | 4471–4966 | 4777–5156 |
Polyunsaturated FA | ||||
Linolelaidic acid (C18:2t) | 21.3–22.2 | 10.2–17.3 | n.d. | n.d. |
Linoleic acid (C18:2) | 31.3–56.8 | 36.3–49.0 | 22.8–30.7 | 0–67.9 |
Linolenic acid (C18:3) | 77.4–118.7 | 151.9–154.1 | 61.2–83.2 | n.d. |
Mead acid (C20:3) | n.d. | 0–1.8 | n.d. | n.d. |
Docosadienoic acid (C22:2) | 13.0–19.4 | 14.9–26.2 | 15.2–17.2 | n.d. |
Eicosapentaenoic acid (C20:5) | 6.5–7.4 | 3.9–7.3 | n.d. | n.d. |
Subtotal | 149.4–223.8 | 228.6–242.8 | 99.2–131.2 | 0–67.9 |
Total | 9885–11,303 | 9502–11,547 | 9943–11,479 | 11,082–11,859 |
Minerals (mg/100 g d.m.) 1 | Apis mellifera mellifera2 | Apis mellifera carnica2 | Apis mellifera ligustica2 | Apis mellifera buckfast2 |
---|---|---|---|---|
Calcium (Ca) | 39.3–43.3 | 34.0–46.1 | 43.7–49.3 | 34.2–38.7 |
Magnesium (Mg) | 70.2–85.8 | 65.9–88.4 | 82.9–95.0 | 68.1–81.9 |
Sodium (Na) | 8.1–9.9 | 7.0–10.3 | 7.3–8.5 | 30.1–38.0 |
Potassium (K) | 1080–1342 | 1048–1401 | 544.6–643.1 | 891.1–1102.0 |
Phosphorus (Ph) | 673.5–812.3 | 651.7–869.2 | 774.0–892.4 | 686.9–802.6 |
Iron (Fe) | 4.7–5.7 | 5.6–6.1 | 4.9–5.7 | 5.6–6.0 |
Zinc (Zn) | 4.4–5.5 | 4.8–6.0 | 5.3–5.9 | 5.1–6.0 |
Copper (Cu) | 1.5–1.9 | 1.6–2.0 | 1.8–1.9 | 0.1–0.4 |
Vitamins (μg/100 g) 1 | Worker Larvae (Day 9) | Worker Pupae (Day 19) | Brood | Mature Larvae | Pupae | Drone Pupae |
---|---|---|---|---|---|---|
Vitamin A | 1.32 | 7.41 | <1 2 | 89–119 2 | 49.3–53.3 2 | Not detected |
Vitamin B1 (Thiamine) | 0.94 | 3.27 | 410 | — | — | 1550 |
Vitamin B2 (Riboflavin) | — | 251 | 910 | — | — | 2930 |
Vitamin B3 (Niacin) | — | — | 3670 | — | — | — |
Vitamin B5 (Pantothenic acid) | — | — | 1190 | — | — | — |
Vitamin B6 (Pyridoxine) | — | — | 120 | — | — | — |
Vitamin B7 (Biotin) | — | — | 0.023 | — | — | — |
Vitamin B9 (Folic acid) | — | — | <0.006 | — | — | — |
Vitamin B12 | — | — | <0.12 | — | — | — |
Vitamin C | 4020 | 4350 | 3800 | — | — | — |
Vitamin D | 390 | 410 | <0.25 2 | 6130–7430 2 | 5070–5260 2 | Not detected |
Vitamin E | 0.87 | 1.10 | <0.005 2 | — | — | 6060 |
Choline | — | — | 168.4 | — | — | — |
Gastronomic Preparations | Links (accessed on 20 May 2022) | |
---|---|---|
Bee Larvae Fritters | https://www.youtube.com/watch?v=vjDfZjtfqTc | |
Fermented Bee Larvae with Vegetables | http://www.thanhniennews.com/arts-culture/fermented-bee-larvae-a-gift-of-the-mekong-deltas-cajuput-forest-58938.html | |
Grilled Bee Larvae: A Cambodian Street Snack | https://www.youtube.com/watch?v=2h7F2Ca6szg | |
Honeybee Granola | https://www.bugsfeed.com/honeybee_granola | |
Sandwich Prepared with Bee Larvae | https://www.bugsfeed.com/bee_lt_sandwich | |
Grilled Bee Larvae with Honeycomb | https://www.streetfoodguy.com/grilled-bee-larvae-with-honeycomb/ | |
Vietnamese Fried Bee Pupae | http://kyspeaks.com/2007/08/27/ky-eats-fried-bee-pupae-at-vietnam/ | |
Peas and Bees | https://www.bugsfeed.com/peas_bees | |
Baby Bee Ceviche, with Bee larvae | https://www.bugsfeed.com/baby_bee_ceviche | |
Honeybee Larvae Appetizers | https://www.fao.org/3/w0076e/w0076e19.htm | |
Thai Cooking-Bee Eggs and Bee Larvae | https://www.youtube.com/watch?v=G3SAjesHYpk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guiné, R.P.F.; Florença, S.G.; Correia, P.M.R.; Anjos, O.; Coelho, C.; Costa, C.A. Honey Bee (Apis mellifera L.) Broods: Composition, Technology and Gastronomic Applicability. Foods 2022, 11, 2750. https://doi.org/10.3390/foods11182750
Guiné RPF, Florença SG, Correia PMR, Anjos O, Coelho C, Costa CA. Honey Bee (Apis mellifera L.) Broods: Composition, Technology and Gastronomic Applicability. Foods. 2022; 11(18):2750. https://doi.org/10.3390/foods11182750
Chicago/Turabian StyleGuiné, Raquel P. F., Sofia G. Florença, Paula M. R. Correia, Ofélia Anjos, Catarina Coelho, and Cristina A. Costa. 2022. "Honey Bee (Apis mellifera L.) Broods: Composition, Technology and Gastronomic Applicability" Foods 11, no. 18: 2750. https://doi.org/10.3390/foods11182750
APA StyleGuiné, R. P. F., Florença, S. G., Correia, P. M. R., Anjos, O., Coelho, C., & Costa, C. A. (2022). Honey Bee (Apis mellifera L.) Broods: Composition, Technology and Gastronomic Applicability. Foods, 11(18), 2750. https://doi.org/10.3390/foods11182750