Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules
Abstract
:1. Introduction
2. Anti-Oxidation
3. Anti-Tumor
4. Immunomodulatory
5. Antibacterial Action
6. Antiviral Activities
7. Skin Protection
8. Treating Metabolic Diseases
9. Neuroprotective Effect
10. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grubišić, M.; Šantek, B.; Zorić, Z.; Čošić, Z.; Vrana, I.; Gašparović, B.; ČožRakovac, R.; Ivančić, Š.M. Bioprospecting of Microalgae Isolated from the Adriatic Sea Characterization of Biomass Pigment Lipid and Fatty Acid Composition and Antioxidant and Antimicrobial Activity. Molecules 2022, 27, 1248. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhao, J.R.; Chang, F.; Qi, C.; Xing, M.C.; Xia, L.; Hou, J.F.; Ai, G.J.; Song, S.L. Advances in Studies on the Pharmacological Activities of Fucoxanthin. Mar. Drugs 2020, 18, 634–653. [Google Scholar]
- Zhao, Z. The Screen Enlarge Cultication of Microalgae for Antioxidant Activity and the Analysis and Utilixation of Microlgal Metabolites. Master’s Thesis, Hainan University, Hainan, China, 2018. [Google Scholar]
- Wang, Y.; Tibbetts, S.M.; Berrue, F.; McGinn, P.J.; MacQuarrie, S.P.; Puttaswamy, A.; Patelakis, S.; Schmidt, D.; Melanson, R.; MacKenzie, S.E. A rat study to evaluate the protien quality of three green microalgal species and the impact of mechanical cell wall disruption. Foods 2020, 9, 1531. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef] [PubMed]
- Fatemeh, K.H.; Massoud, S.; Mohammad, T.; Fatemeh, N. Microalgae: Therapeutic potentialsand applications. Mol. Biol. Rep. 2021, 48, 4757–4765. [Google Scholar]
- Fernandes, T.; Cordeiro, N. Microalgae as Sustainable Biofactories to Produce High-Value Lipids Biodiversity Exploitation and Biotechnological Applications. Mar. Drugs 2021, 14, 573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N. Actively carry out microalgae research Ensuring the long-term food security of our country. China Anim. Husb. Newsl. 2010, 7, 2–3. [Google Scholar]
- Sajjadi, B.; Chen, W.Y.; Raman, A.A.A. Ibrahim Microalgae lipid and biomass for biofuel production A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew. Sustain. Energy Rev. 2018, 97, 200–232. [Google Scholar] [CrossRef]
- Qiao, Y.; Yang, F.; Xie, T.T.; Du, Z.; Zhong, D.N.; Qi, Y.C.; Li, Y.Y.; Li, W.L.; Lu, Z.M.; Rao, J.H.; et al. Engineered algae A novel oxygen-generating system for effective treatment of hypoxic cancer. Sci. Adv. 2020, 6, eaba5996. [Google Scholar] [CrossRef]
- Babich, O.; Sukhikh, S.; Larina, V.; Kalashnikova, O.; Kashirskikh, E.; Prosekov, A.; Noskova, S.; Ivanova, S.; Fendri, I.; Smaoui, S.; et al. Algae Study of Edibleand Biologically Active Fractions, Their Properties and Applications. Plants 2022, 15, 780. [Google Scholar] [CrossRef]
- Decamp, A.; Michelo, O.; Rabbat, C.; Laroche, C.; Grizeau, D.; Pruvost, J.; Gonçalves, O. A New Quick and Simple Protocol to Evaluate Microalgae Polysaccharide Composition. Mar. Drugs 2021, 19, 101. [Google Scholar] [CrossRef] [PubMed]
- Jakhwal, P.; Kumar, B.J.; Tiwari, A.; Kwon, E.E.; Bhatnagar, A. Genetic and non-genetic tailoring for the enhanced production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from microalgae—A review. Bioresour. Technol. 2021, 344, 126250. [Google Scholar] [CrossRef] [PubMed]
- Mitsuyoshi, M.; Shunsuke, I.; Chie, K.M.; Masahiro, T.; Mayu, K.; Masaki, I.; Takanori, M.; Sho-ichi, Y.; Hiroyuki, I.; Shigeru, M. Kuniyoshi Kaseda A Novel Mucidosphaerium sp. Downregulates Inflammatory Gene Expression in Skin and Articular Cells. Altern. Ther. Healthand Med. 2021, 27, 28–34. [Google Scholar]
- Yang, G.Y.; Li, Q.D.; Peng, J.; Jin, L.; Zhu, X.Y.; Zheng, D.X.; Zhang, Y.X.; Wang, R.; Song, Y.T.; Hu, W.T.; et al. Fucoxanthin regulates Nrf2 signaling to decrease oxidative stress and improves renalfibrosis depending on Sirt1 in HG-induced GMCs and STZ-induced diabetic rats. Eur. Pharmacol. 2021, 15, 913–924. [Google Scholar]
- Fu, X.Y.; Fan, C.D.; Wang, Y. Induction of Apoptosis in Human Glioma Cells by Fucoxanthin via Triggering of ROS-Mediated Oxidative Damage and Regulation of MAPKsand PI3K-AKT Pathways. J. Agric. Food Chem. 2019, 67, 2212–2219. [Google Scholar]
- Guvatova, Z.; Dalina, A.; Marusich, E.; Pudova, E.; Snezhkina, A.; Krasnov, G.; Kudryavtseva, A.; Leonov, S.; Moskalev, A. Protective effects of carotenoid fucoxanthin in fibroblasts cellular senescence. Mech. Ageing Dev. 2020, 189, 111260. [Google Scholar] [CrossRef] [PubMed]
- Yi, R.K.; Deng, L.; Mu, J.F.; Li, C.; Tan, F.; Zhao, X. The Impact of Antarctic Ice Microalgae Polysaccharides on D-Galactose-Induced Oxidative Damage in Mice. Front. Nutr. 2021, 9, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.B.; Wu, S.J.; Liu, D. Preparation of polysaccharides from cyanobacteria Nostoc commune and their antioxidant activities. Carbohydr. Polym. 2014, 99, 553–555. [Google Scholar] [CrossRef]
- Zhu, S.N.; Xu, J.C.; Adhikari, B.; Lv, W.Q.; Chen, H.Z. Nostoc sphaeroides Cyanobacteria: A reviewof its nutritional characteristics and processing technologies. Crit. Rev. Food Sci. Nutr. 2022, 13, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.N.; Li, T.; Li, Y.; Zhang, Y.; Wu, H.L.; Xiang, W.Z.; Li, A.F. Exopolysaccharides from the Energy Microalga Strain Botryococcus braunii: Purification, Characterization, and Antioxidant Activity. Foods 2022, 11, 110. [Google Scholar] [CrossRef]
- Babić, O.; Kovač, D.; Rašeta, M. Evaluation of antioxidant activity and phenolic profile of filamentous terrestrial cyanobacterial strains isolated from forest ecosystem. J. Appl. Phycol. 2016, 28, 2333–2342. [Google Scholar] [CrossRef]
- Fan, Q.; Chen, Z.; Wu, Y.; Zhu, J.; Yu, Z. Study on the Enhancement of Immune Function of Astaxanthin from Haematococcus pluvialis. Foods 2021, 10, 1847. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Hong, C.L.; Wang, Y.T.; Wang, T.J.; Chen, J.R. The effect of astaxanthin treatment on the rat model of fetal alcohol spectrum disorders. Brainresbull 2022, 183, 57–72. [Google Scholar] [CrossRef]
- Walter, P.; Chiara, S.; Laura, P.; Virginia, G.; Antonio, G.; Matteo, T.; Martin, V.; Paola, G. Extractionof astaxanthin from Haematococcus pluvialis with hydrophobic deep eutectic solvents basedon oleic acid. Food Chem. 2022, 15, 379–388. [Google Scholar]
- Brasil, F.B.; Bertolini, G.R.C.; Souza de Almeida, F.J.; Luckachaki, M.D.; Dall’Oglio, E.L.; de Oliveira, M.R. The signaling pathway PI3K/Akt/Nrf2/HO-1 plays a role in the mitochondrial protection promoted by astaxanthin in the SH-SY5Y cells exposed to hydrogen peroxide. Neurochem Int. 2021, 146, 024–038. [Google Scholar] [CrossRef] [PubMed]
- Arab, S.; Ghasemi, S.; Ghanbari, A.; Bahraminasab, M.; Satari, A.; Mousavi, M.; Dehcheshme, H.G.; Asgharzade, S. Chemopreventive effect of spirulina microalgae on an animal model of glioblastoma via down-regulation of PI3K/AKT/mTOR and up-regulation of miR-34a/miR-125B expression. Phytother. Res. 2021, 35, 6452–6461. [Google Scholar] [CrossRef]
- Voráčová, K.; Hájek, J.; Mareš, J.; Urajová, P.; Kuzma, M.; Cheel, J.; Villunger, A.; Kapuscik, A.; Bally, M.; Novák, P.; et al. The cyanobacterial metabolite nocuolin a is a naturaloxadiazine that triggers apoptosis in human cancer cells. PLoS ONE 2017, 12, e0172850. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.T.L.; Nguyen, L.T.T.; Duong, T.A.; Bui, D.T.; Doan, Q.T.; Nguyen, H.T.; Mundt, S. Diversity and bioactivities of nostocaceancyanobacteria isolated from paddy soil in Vietnam. Syst. Appl. Microbiol. 2017, 40, 470–481. [Google Scholar] [CrossRef]
- Humisto, A.; Herfindal, L.; Jokela, J. Cyanobacteria as a Source for Novel Anti-Leukemic Compounds. Curr. Pharm. Biotechnol. 2016, 17, 78–91. [Google Scholar] [CrossRef]
- Upreti, D.; Ishiguro, S.; Robben, N.; Nakashima, A.; Suzuki, K.; Comer, J.; Tamura, M. Oral Administration of Water Extract from Euglena gracilis Alters the Intestinal Microbiota and Prevents Lung Carcinoma Growth in Mice. Nutrients 2022, 14, 678. [Google Scholar] [CrossRef]
- Silva-Stenico, M.E.; Kaneno, R.; Zambuzi, F.A. Natural products from cyanobacteria with anti-microbial and antitumor activity. Curr. Pharm. Biotechnol. 2014, 14, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Li, J.Q.; Wu, S.W.; He, X.M.; Xuan, J.C.; Long, H.; Liu, H.Q. Corrigendum to Transcriptome analysis reveals possible antitumor mechanism of Chlorella exopolysaccharide. Gene 2022, 15, 811. [Google Scholar]
- Lazado, C.C.; Nayak, S.; Khozin-Goldberg, I.; Zilberg, D. The gut mucosal barrier of zebrafish (Danio rerio) responds to the time-restricted delivery of Lobosphaera incisa—Enriched diets. Fish Shellfish Immunol. 2019, 89, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, H.; Li, S.; Sun, H.; He, X.; Huang, Y.; Long, H. Transcriptome Analysis Reveals Possible Immunomodulatory Activity Mechanism of Chlorella sp. Exopolysaccharides on RAW264. 7 Macrophages. Mar. Drugs 2021, 19, 217. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Song, L.; Wang, H.; Liu, S.; Yu, H.; Wang, X.; Li, R.; Liu, T.; Li, P. Partial Characterization, the Immune Modulation and Anticancer Activities of Sulfated Polysaccharides from Filamentous Microalgae Tribonema sp. Molecules 2019, 24, 322. [Google Scholar] [CrossRef] [PubMed]
- Patwal, T.; Baranwal, M. Scenedesmus acutus extracellular polysaccharides produced underincreased concentration of sulphur and phosphorus exhibited enhanced proliferation of peripheral blood mononuclear cells. Biotech 2021, 11, 171–179. [Google Scholar]
- Jia, Q.; Sang, M.K. Characterization and immunomodulatory activities of polysaccharides Extracted from green alga Chlorella ellipsoidea. Int. J. Biol. Macromol. 2017, 95, 106–114. [Google Scholar]
- Mehendi, G.; Manoj, B.; Satyendra, K.P.; Mondem, S.R. Hetero-Polysaccharides Secreted from Dunaliella salina Exhibit Immunomodulatory Activity Against Peripheral Blood MononuclearCells and RAW 264.7 Macrophages. Indian J. Microbiol. 2019, 59, 428–435. [Google Scholar]
- Alexandros, M.; Georgios, T.; Ioannis, P.; Eleni, T. Dietary supplementation modify Toll-like receptor 4 (TLR4) transcriptional regulation in monocytes and neutrophils of dairy goats. Cytokine 2021, 12, 148. [Google Scholar]
- Dai, C.; Wan, Z.D.; Zhang, X.Y.; Li, J.; Li, H.; Wang, C.L. Dietary Chlorella vulgaris Ameliorates Altered Immunomodulatory Functions in Cyclophosphamide-Induced Immunosuppressive Mice. Nutrients 2017, 9, 708. [Google Scholar] [CrossRef]
- Chidley, C.; Davison, G. The effect of Chlorella pyrenoidosa supplementation on immune responses to 2 days of intensified training. Eur. J. Nutr. 2017, 57, 2529–2536. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.J.; Seo, J.B.; Kim, S.H.; Youn, E.J.; Kim, S.; Suh, S.S. Antarctic Freshwater Microalga, Micractinium simplicissimum, Suppresses Inflammation. J. Nanosci. Nanotechnol. 2021, 21, 4098–4103. [Google Scholar] [CrossRef] [PubMed]
- Bigagli, E.; D’Ambrosio, M.; Cinci, L.; Niccolai, A.; Biondi, N.; Rodolfi, L.; Dos Santos Nascimiento, L.B.; Tredici, M.R.; Luceri, C. A Comparative In Vitro Evaluation of the Anti-InflammatoryEffects of a Tisochrysis lutea Extract and Fucoxanthin. Mar. Drugs 2021, 19, 334. [Google Scholar] [CrossRef]
- Pratt, R.; Daniels, T.C.; Eiler, J.J.; Gunnison, J.B.; Kumler, W.D.; Oneto, J.F.; Strait, L.A.; Spoehr, H.A.; Hardin, G.J.; Milner, H.W.; et al. Chlorellin an antibacterial substance from chlorella. Science 1944, 99, 351–352. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, T.M.; Adamczak, A. Fucoxanthin—An Antibacterial Carotenoid. Antioxidants 2019, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Sudomova, M.; Shariati, M.A.; Echeverria, J.; Berindan-Neagoe, I.; Nabavi, S.M.; Hassan, S.T. A Microbiological, Toxicological, and Biochemical Study of the Effects of Fucoxanthin, a Marine Carotenoid, on Mycobacterium tuberculosis and the Enzymes Implicated in Its Cell Wall: A Link Between Mycobacterial Infection and Autoimmune Diseases. Mar. Drugs 2019, 17, 641. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, D.R. Chemical Composition and Biological Activities of the Black Sea Algae Polysiphonia denudata (Dillw.) Kutz. and Polysiphonia denudata f. fragilis (Sperk) Woronich. Z. Nat. C 2001, 56, 1008–1014. [Google Scholar]
- Lauritano, C.; Martín, J.; Cruz, M.; Reyes, F.; Romano, G.; Ianora, A. First identificationof marine diatoms with anti-tuberculosis activity. Sci Rep. 2018, 8, 2284–2293. [Google Scholar] [CrossRef]
- Niveshika, V.E.; Maurya, S.K.; Mishra, R.; Mishra, A.K. The Combined Use of in Silico, in Vitro, and in Vivo Analyses to Assess Anti-cancerous Potential of a Bioactive Compound from Cyanobacterium nostoc sp. MGL001. Front. Pharmacol. 2017, 8, 873–887. [Google Scholar] [CrossRef]
- Martínez, K.A.; Lauritano, C.; Druka, D.; Romano, G.; Grohmann, T.; Jaspars, M.; Martín, J.; Díaz, C.; Cautain, B.; Mercedes, J.; et al. Amphidinol 22, a New Cytotoxic and Antifungal Amphidinol from the Dinoflagellate Amphidinium carterae. Mar. Drugs 2019, 17, 385. [Google Scholar] [CrossRef]
- Dantas, D.M.M.; Oliveira, C.Y.B.; Costa, R.M.P.B.; Carneiro-da-Cunha, M.D.G.; Gálvez, A.O.; Bezerra, R.S. Evaluation of antioxidant and antibacterial capacity of green microalgae Scenedesmus subspicatus. Food Sci. Technol. Int. 2019, 25, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Levert, A.; Alvariño, R.; Bornancin, L.; Abou Mansour, E.; Burja Adam, M.; Genevière, A.-M.; Bonnard, I.; Alonso, E.; Botana, L.; Banaigs, B. Structures and Activities of Tiahuramides A-C, Cyclic Depsipeptides from a Tahitian Collection of the Marine Cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2018, 81, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Abdul, F.S.; Nazlina Haiza, M.Y.; Nazlina, I.; Mohd Sobri, T.; Darvien, G.; Mahmud, Y.Y. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi J. Biol. Sci. 2022, 29, 1043–1052. [Google Scholar]
- Diaa, A.M.; Mohamed, M.N.; Yousef, Y.; Sultan, A.M. Higazy. Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites. Heliyon 2019, 27, 5. [Google Scholar]
- Ramos, D.F.; Bartolomeu Halicki, P.C.; da Silva Canielles Caprara, C.; Borges, P.; da RMD’Oca, C.; de Fátima, C.; Santos, M.; D’Oca, M.G.; Roselet, F.; Almeida da Silva, P.E.; et al. Chemical profile and antimicrobial activity of the marine diatom Chaetoceros muelleri. Chem. Biodivers. 2022, 5, 19. [Google Scholar] [CrossRef]
- Deyab, M.; Mofeed, J.; El-Bilawy, E.; Ward, F. Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Arch. Microbiol. 2020, 202, 213–223. [Google Scholar] [CrossRef]
- Liu, S.S.; Wei, D.; Want, Y.F. Antiviral Activity of Extracellular Polysaccharide from Porphyridium sp. against Respiratory Syncytial Virus (RSV). (English). Nat. Prod. Res. Dev. 2007, 19, 401–404. [Google Scholar]
- Santoyo, S.; Plaza Merichel, J.L.; Ibañez, E.; Reglero, G.; Señorans, F.J. Pressurized liquid extraction as an alternative process to obtain antiviral agents from the edible microalga Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 8522–8527. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, A.; Suzuki, K.; Asayama, Y.; Konno, M.; Saito, K.; Yamazaki, N.; Takimoto, H. Oral administration of Euglena gracilis Z. and its carbohydrate storage substance provides survival protection against influenza virus infection in mice. Biochem. Biophys. Res. Commun. 2017, 494, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, A.; Horio, Y.; Suzuki, K.; Isegawa, Y. Antiviral Activity and Underlying Action Mechanism of Euglena Extract against Influenza Virus. Nutrients 2021, 13, 3911. [Google Scholar] [CrossRef]
- Mader, J.; Gallo, A.; Schommartz, T.; Handke, W.; Nagel, C.H.; Günther, P.; Brune, W.; Reich, K. Calcium spirulan derived from Spirulina platensis inhibits herpes simplex virus 1 attachment to human keratinocytes and protects against herpes labialis. J. Allergy Clin. Immunol. 2016, 137, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Chang, G.K.; Kuo, S.M. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality. Sci. Rep. 2016, 12, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Fabregas, J.; García, D.; Fernandez-Alonso, M.I. In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antivir. Res. 1999, 44, 67–73. [Google Scholar] [CrossRef]
- Gupta, D.K.; Kaur, P.; Leong, S.T. Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum. Mar. Drugs 2014, 12, 115. [Google Scholar] [CrossRef]
- Atmaja, P.S.P.; Bengen, D.G.; Madduppa, H.H. The Second Skin of Seagrass Leaves: A Comparison of Microalgae Epiphytic Communities Between Two Different Species Across Two Seagrass Meadows in Lesser Sunda Island. Trop. Life Sci. Res. 2021, 32, 97–119. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.A.; Kim, B.A. Protective Effect of Spirulina-Derived C-Phycocyanin against Ultraviolet B-Induced Damage in HaCaT Cells. Medicina 2021, 57, 273. [Google Scholar] [CrossRef]
- Ng, Q.X.; De Deyn, M.L.Z.Q.; Loke, W.; FooNadine, X.; Chan, H.; Wuen, Y.W.S. Effects of Astaxanthin Supplementation on Skin Health: A Systematic Review of Clinical Studies. J. Diet. Suppl. 2021, 18, 169–182. [Google Scholar] [CrossRef]
- Ikarashi, N.; Kon, R.; Nagoya, C.; Ishikura, A.; Sugiyama, Y.; Takahashi, J.; Sugiyama, K. Effect of Astaxanthin on the Expression and Activity of Aquaporin-3 in Skin in an In-Vitro Study. Life 2020, 10, 193. [Google Scholar] [CrossRef]
- Zhou, X.; Cao Qing, m.; Orfila, C.; Zhao, J.; Zhang, L. Systematic Review and Meta-Analysis on the Effects of Astaxanthin on Human Skin Ageing. Nutrients 2021, 13, 2917. [Google Scholar] [CrossRef]
- Sun, Y.K.; Yong, M.K.; Kyung, W.K.; Jaoon Young, H.K. Exploring the Potential of Nannochloropsis sp. Extract for Cosmeceutical Applications. Mar. Drugs 2021, 19, 690–706. [Google Scholar]
- Kose, A.; Oncel, S.S. Design of melanogenesis regulatory peptides derived from phycocyanin of the microalgae Spirulina platensis. Peptides 2022, 6, 152. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Kim, J.; Heo, J.; Cho, D.; Kim, H.; An, I.; An, S.; Bae, S. The Inhibition of Melanogenesis Via the PKA and ERK Signaling Pathways by Chlamydomonas reinhardtii Extract in B16F10 Melanoma Cells and Artificial Human Skin Equivalents. J. Microbiol. Biotechnol. 2018, 28, 2121–2132. [Google Scholar] [CrossRef] [PubMed]
- Campiche, R.; Sandau, P.; Kurth, E.; Massironi, M.; Imfeld, D.; Schuetz, R. Protective effects of an extract of the freshwater microalga Scenedesmus rubescens on UV-irradiated skin cells. Int. J. Cosmet. Sci. 2018, 40, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Lee, J.Y.; Im, A.R.; Chae, S. Phycocyanin Protects Against UVB-Induced Apoptosis Through the PKC α/βII-Nrf-2/HO-1 Dependent Pathway in Human Primary Skin Cells. Molecules 2018, 23, 478. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhu, S.; Li, S.; Feng, Y.; Wu, H.; Zeng, M. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice. Int. J. Biol. Macromol. 2021, 182, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Du Preez, R.; Majzoub Marwan, E.; Thomas, T.; Panchal Sunil, K.; Brown, L. Nannochloropsis oceanica as a Microalgal Food Intervention in Diet-Induced Metabolic Syndrome in Rats. Nutrients 2021, 13, 3991. [Google Scholar] [CrossRef] [PubMed]
- Oriquat, G.A.; Ali, M.A.; Mahmoud, S.A.; Eid Rania, M.H.M.; Hassan, R.; Kamel, M.A. Improvinghepatic mitochondrial biogenesis as a postulated mechanism for the antidiabetic effect of Spirulina platensis in comparison with metformin. Appl. Physiol. Nutr. Metab. 2019, 44, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Mayer, C.; Richard, L.; Côme, M.; Ulmann, L.; Nazih, H.; Chénais, B.; Ouguerram, K.; Mimouni, V. The Marine Microalga, Tisochrysis lutea, Protects against Metabolic Disorders Associated with Metabolic Syndrome and Obesity. Nutrients 2021, 13, 430. [Google Scholar] [CrossRef] [PubMed]
- Du Preez, R.; Magnusson, M.; Majzoub, M.E.; Thomas, T.; Praeger, C.; Glasson Christopher, R.K.; Panchal, S.K.; Brown, L. Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats. Nutrients 2021, 13, 1754. [Google Scholar] [CrossRef]
- Ghanbari, F.; Amerizadeh, A.; Behshood, P.; Moradi, S.; Asgary, S. Effect of Microalgae Arthrospira on Biomarkers of Glycemic Control and Glucose Metabolism: A Systematic Review and Meta-analysis. Curr. Probl. Cardiol. 2021, 24, 942–960. [Google Scholar] [CrossRef]
- Nacer, W.; Baba Ahmed, F.Z.; Merzouk, H.; Benyagoub, O.; Bouanane, S. Evaluation of the anti-inflammatory and antioxidant effects of the microalgae Nannochloropsis gaditana in streptozotocin-induced diabetic rats. J. Diabetes Metab. Disord. 2020, 19, 1483–1490. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Mao, X.; Qi, P.; Zhang, X. Separation and Lipid Inhibition Effects of a Novel Decapeptide from Chlorella pyenoidose. Molecules 2019, 24, 3527. [Google Scholar] [CrossRef]
- Sun, Z.; Peng, X.; Liu, J. Inhibitory effects of microalgal extracts on the formation of advanced glycation endproducts (AGEs). Food Chem. 2010, 120, 261–267. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, J.; Zeng, X. Astaxanthin is responsible for antiglycoxidative properties of microalga Chlorella zofingiensis. Food Chem. 2011, 126, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, E.; Bhuvaneswari, S.; Anuradha, C.V. An intervention study in obese mice with astaxanthin, a marine carotenoid-effects on insulin signaling and pro-inflammatory cytokines. Food Funct. 2012, 3, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Geribaldi, D.N.; Wu, Q.; Davies, J.; Szele, F.G.; Isoda, H. Microalgae Aurantiochytrium Sp. Increases Neurogenesis and Improves Spatial Learning and Memory in Senescence-Accelerated Mouse-Prone 8 Mice. Front. Cell Dev. Biol. 2021, 9, 575–588. [Google Scholar] [CrossRef]
- Sorrenti, V.; Castagna, D.A.; Fortinguerra, S.; Buriani, A.; Scapagnini, G.; Willcox, D.C. Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinica l Evidence. Mar. Drugs 2021, 19, 293. [Google Scholar] [CrossRef]
- Alghazwi, M.; Smid, S.; Musgrave, I.; Zhang, W. In vitro studies of the neuroprotective activities of astaxanthin and fucoxanthin against amyloid beta (Aβ 1-42 ) toxicity and aggregation. Neurochem. Int. 2019, 124, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, H.; Fan, Y.; Gao, Y.; Li, X.; Hu, Z.; Ding, K.; Wang, Y.; Wang, X. Fucoxanthinprovides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. Sci. Rep. 2017, 7, 46763–46777. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Chen, W.; Tian, F.; Yuan, C.; Wang, H.; Yue, H. Neuroprotective role of fucoxan-thin against cerebral ischemic/reperfusion injury through activation of Nrf2 /HO-1 signaling. Biomed. Pharm. 2018, 106, 1484–1489. [Google Scholar] [CrossRef] [PubMed]
- Paudel, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Characterizing fucoxanthin as a selective dopamine D3/D4 receptor agonist Relevance to Parkinson’s disease. Chemico-BiologicalInteractions 2019, 310, 108757. [Google Scholar] [CrossRef] [PubMed]
- Özugur, S.; Chávez, M.N.; Sanchez, G.R.; Kunz, L.; Nickelsen, J.; Straka, H. Transcardial injection and vascular distribution of microalgae in Xenopus laevis as means to supply the brain with photosynthetic oxygen. Star Protoc. 2022, 17, 250–269. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Cui, G.; Li, T.; Chen, H.; Zhu, J.; Ding, Y.; Zhao, L. Docosahexaenoic Acid Protects Traumatic Brain Injury by Regulating NOX2 Generation via Nrf2 Signaling Pathway. Neurochem. Res. 2020, 45, 1839–1850. [Google Scholar] [CrossRef]
- Scrimgeour, A.G.; Condlin, M.L.; Loban, A.; DeMar, J. Omega-3 Fatty Acids and Vitamin D Decrease Plasma T-tau, GFAP, and UCH-L1 in Experimental Traumatic Brain Injury. Curr. Dev. Nutr. 2021, 4, 220–234. [Google Scholar]
- Hernández, H.; Nunes, M.C.; Prista, C.; Raymund, A. Innovative and Healthier Dairy Products through the Addition of Microalgae: A Review. Foods 2022, 11, 755. [Google Scholar] [CrossRef]
- Dolganyuk, V.; Belova, D.; Babich, O.; Prosekov, A.; Ivanova, S.; Katserov, D.; Patyukov, N.; Sukhikh, S. Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules 2020, 10, 1153. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Hong, Y.; Xie, K.; Fan, Q. Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules. Foods 2022, 11, 2806. https://doi.org/10.3390/foods11182806
Yu Z, Hong Y, Xie K, Fan Q. Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules. Foods. 2022; 11(18):2806. https://doi.org/10.3390/foods11182806
Chicago/Turabian StyleYu, Zhou, Yan Hong, Kun Xie, and Qingsheng Fan. 2022. "Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules" Foods 11, no. 18: 2806. https://doi.org/10.3390/foods11182806
APA StyleYu, Z., Hong, Y., Xie, K., & Fan, Q. (2022). Research Progresses on the Physiological and Pharmacological Benefits of Microalgae-Derived Biomolecules. Foods, 11(18), 2806. https://doi.org/10.3390/foods11182806