The Yeast Fermentation Effect on Content of Bioactive, Nutritional and Anti-Nutritional Factors in Rapeseed Meal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rapeseed Meal Samples
2.2. Chemicals and Materials
2.3. Determination of Proximate Chemical Composition of the Rapeseed Meal Samples
2.4. Samples Preparation
2.5. HPLC Determination of Intact Glucosinolates and 3-Butenyl Isothiocyanate
2.6. Analysis of Total Phenolic Compounds (TPC)
2.7. Determination of Antioxidant Activity
2.8. HPLC Determination of the Individual Phenolic Compounds, Carbohydrates and Organic Acids
2.9. Determination of Fatty Acids Profile
2.10. Determination of Minerals
2.11. Statistical Analysis
3. Results
3.1. Effect of the Fermentation on the Anti-Nutritional Compounds of the Rapeseed Meal
3.2. Effects of the Fermentation on the Proximate Chemical Composition of the Rapeseed Meal
3.3. Fermentation Effect on the Content of the Bioactive and Other Nutritional Compounds in the Rapeseed Meal Samples
3.3.1. Effects of Fermentation on Phenolic Compounds and Antioxidant Activity
3.3.2. Effects of Fermentation on Individual Phenolic Compounds
3.4. Fermentation Effects on Carbohydrates and Organic Acids Content
3.5. Fermentation Effects on Fatty Acids Concentration
3.6. Fermentation Effects on Minerals Concentration
4. Discussion
4.1. Effect of the Fermentation on the Anti-Nutritional Compounds of the Rapeseed Meal
4.2. Effects of the Fermentation on the Proximate Chemical Composition of the Rapeseed Meal
4.3. Effects of Fermentation on Phenolic Compounds and Antioxidant Activity
4.4. Effects of Fermentation on Carbohydrates and Organic Acids Content
4.5. Effects of Fermentation on Fatty Acids Content
4.6. Fermentation Effects on Minerals Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jansman, A.J.M. Health and Functions of the Gastrointestinal Tract in Pigs: Effects of Functional Ingredients and Feed and Ingredient Processing. J. Anim. Sci. 2016, 94, 12–21. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A. Rapeseed and Its Products—Sources of Bioactive Compounds: A Review of Their Characteristics and Analysis. Crit. Rev. Food Sci. Nutr. 2013, 53, 307–330. [Google Scholar] [CrossRef] [PubMed]
- Tie, Y.; Li, L.; Liu, J.; Liu, C.; Fu, J.; Xiao, X.; Wang, G.; Wang, J. Two-Step Biological Approach for Treatment of Rapeseed Meal. J. Food Sci. 2020, 85, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Teh, S.S.; Niven, B.E.; Bekhit, A.E.D.A.; Carne, A.; Birch, E.J. Microwave and Pulsed Electric Field Assisted Extractions of Polyphenols from Defatted Canola Seed Cake. Int. J. Food Sci. Technol. 2015, 50, 1109–1115. [Google Scholar] [CrossRef]
- Sharaf eldin, S.G.M.; Ziena, H.M.S.; Khair, S.T.M.; Rozan, M.A. Canola Seed Meal as a Potential Source of Natural Antioxidant. Alex. Sci. Exch. J. 2018, 39, 615–619. [Google Scholar] [CrossRef]
- Di Lena, G.; Del Pulgar, J.S.; Lucarini, M.; Durazzo, A.; Ondrejíčková, P.; Oancea, F.; Frincu, R.M.; Aguzzi, A.; Nicoli, S.F.; Casini, I.; et al. Valorization Potentials of Rapeseed Meal in a Biorefinery Perspective: Focus on Nutritional and Bioactive Components. Molecules 2021, 26, 6787. [Google Scholar] [CrossRef]
- Pohl, F.; Goua, M.; Bermano, G.; Russell, W.R.; Scobbie, L.; Maciel, P.; Kong Thoo Lin, P. Revalorisation of Rapeseed Pomace Extracts: An In Vitro Study into Its Anti-Oxidant and DNA Protective Properties. Food Chem. 2018, 239, 323–332. [Google Scholar] [CrossRef]
- Aider, M.; Barbana, C. Canola Proteins: Composition, Extraction, Functional Properties, Bioactivity, Applications as a Food Ingredient and Allergenicity—A Practical and Critical Review. Trends Food Sci. Technol. 2011, 22, 21–39. [Google Scholar] [CrossRef]
- Yates, K.; Pohl, F.; Busch, M.; Mozer, A.; Watters, L.; Shiryaev, A.; Kong Thoo Lin, P. Determination of Sinapine in Rapeseed Pomace Extract: Its Antioxidant and Acetylcholinesterase Inhibition Properties. Food Chem. 2019, 276, 768–775. [Google Scholar] [CrossRef]
- Szydlowska-Czerniak, A.; Trokowski, K.; Karlovits, G.; Szlyk, E. Determination of Antioxidant Capacity, Phenolic Acids, and Fatty Acid Composition of Rapeseed Varieties. J. Agric. Food Chem. 2010, 58, 7502–7509. [Google Scholar] [CrossRef]
- Huang, Y.; Jansen, O.; Frédérich, M.; Mouithys-Mickalad, A.; Nys, G.; Servais, A.C.; Crommen, J.; Jiang, Z.; Fillet, M. Capillary Electrophoresis, High-Performance Liquid Chromatography, and Thin-Layer Chromatography Analyses of Phenolic Compounds from Rapeseed Plants and Evaluation of Their Antioxidant Activity. J. Sep. Sci. 2019, 42, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Sharaf Eldin, M.G.; Kassem, H.; Abou El Fetouh, M. Metabolome Classification of Brassica napus L. Organs via UPLC-QTOF-PDA-MS and Their Anti-Oxidant Potential. Phytochem. Anal. 2013, 24, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Deng, L.; Zhang, L.; Yue, X.; Mao, J.; Ma, F.; Wang, X.; Zhang, Q.; Zhang, W.; Li, P. Comparative Metabolomic Analysis of Rapeseeds from Three Countries. Metabolites 2019, 9, 161. [Google Scholar] [CrossRef]
- Choi, H.B.; Jeong, J.H.; Kim, D.H.; Lee, Y.; Kwon, H.; Kim, Y.Y. Influence of Rapeseed Meal on Growth Performance, Blood Profiles, Nutrient Digestibility and Economic Benefit of Growing-Finishing Pigs. Asian-Australas. J. Anim. Sci. 2015, 28, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.K.; Mishra, A.S. Glucosinolates in Animal Nutrition: A Review. Anim. Feed Sci. Technol. 2007, 132, 1–27. [Google Scholar] [CrossRef]
- Mejicanos, G.; Sanjayan, N.; Kim, I.H.; Nyachoti, C.M. Recent Advances in Canola Meal Utilization in Swine Nutrition. J. Anim. Sci. Technol. 2016, 58, 7. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Y.; Li, A.; Wang, Z.; Zhang, X.; Yun, T.; Qiu, L.; Yin, Y. Effects of Fermented Rapeseed Meal on Antioxidant Functions, Serum Biochemical Parameters and Intestinal Morphology in Broilers. Food Agric. Immunol. 2016, 27, 182–193. [Google Scholar] [CrossRef]
- Grela, E.R.; Czech, A.; Kiesz, M.; Wlazło, Ł.; Nowakowicz-Dębek, B. A Fermented Rapeseed Meal Additive: Effects on Production Performance, Nutrient Digestibility, Colostrum Immunoglobulin Content and Microbial Flora in Sows. Anim. Nutr. 2019, 5, 373–379. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Seok, W.J.; Kim, I.H. Organic Acids Mixture as a Dietary Additive for Pigs—A Review. Animals 2020, 10, 952. [Google Scholar] [CrossRef]
- Satessa, G.D.; Tamez-Hidalgo, P.; Hui, Y.; Cieplak, T.; Krych, L.; Kjærulff, S.; Brunsgaard, G.; Nielsen, D.S.; Nielsen, M.O. Impact of Dietary Supplementation of Lactic Acid Bacteria Fermented Rapeseed with or without Macroalgae on Performance and Health of Piglets Following Omission of Medicinal Zinc from Weaner Diets. Animals 2020, 10, 137. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, H.A.; Piao, M.; Ma, T.; Huo, R.; Tu, Y. Enhancing the Quality of Total Mixed Ration Containing Cottonseed or Rapeseed Meal by Optimization of Fermentation Conditions. Fermentation 2021, 7, 234. [Google Scholar] [CrossRef]
- Shi, C.; He, J.; Yu, J.; Yu, B.; Mao, X.; Zheng, P.; Huang, Z.; Chen, D. Physicochemical Properties Analysis and Secretome of Aspergillus Niger in Fermented Rapeseed Meal. PLoS ONE 2016, 11, e0153230. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, H.A.; Piao, M.; Ma, T.; Huo, R.; Tu, Y. Effect of Lactic Acid Bacteria and Yeast Supplementation on Anti-Nutritional Factors and Chemical Composition of Fermented Total Mixed Ration Containing Cottonseed Meal or Rapeseed Meal. Anim. Biosci. 2022, 35, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cheng, P.; Zhang, J.-B.; Zhao, L.-M.; Ma, Y.-B.; Ding, K. Synergism of Microorganisms and Enzymes in Solid-State Fermentation of Animal Feed. A Review. J. Anim. Feed Sci. 2021, 30, 3–10. [Google Scholar] [CrossRef]
- de Souza, H.F.; Carosia, M.F.; Pinheiro, C.; de Carvalho, M.V.; de Oliveira, C.A.F.; Kamimura, E.S. On Probiotic Yeasts in Food Development: Saccharomyces boulardii, a Trend. Food Sci. Technol. 2022, 42, e92321. [Google Scholar] [CrossRef]
- Plaipetch, P.; Yakupitiyage, A. Use of Yeast-Fermented Canola Meal to Replace Fishmeal in the Diet of Asian Sea Bass Lates calcarifer (Bloch, 1790). J. Aquac. Res. Dev. 2012, 3, 125. [Google Scholar] [CrossRef]
- Ishikawa, S.; Maruyama, A.; Yamamoto, Y.; Hara, S. Extraction and Characterization of Glucosinolates and Isothiocyanates from Rape Seed Meal. J. Oleo Sci. 2014, 63, 303–308. [Google Scholar] [CrossRef]
- Kaushik, N.; Agnihotri, A. High-Performance Liquid Chromatographic Method for Separation and Quantification of Intact Glucosinolates. Chromatographia 1999, 49, 281–284. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Tułodziecka, A. Antioxidant Capacity of Rapeseed Extracts Obtained by Conventional and Ultrasound-Assisted Extraction. JAOCS, J. Am. Oil Chem. Soc. 2014, 91, 2011–2019. [Google Scholar] [CrossRef]
- Alashi, A.M.; Blanchard, C.L.; Mailer, R.J.; Agboola, S.O.; Mawson, A.J.; He, R.; Girgih, A.; Aluko, R.E. Antioxidant Properties of Australian Canola Meal Protein Hydrolysates. Food Chem. 2014, 146, 500–506. [Google Scholar] [CrossRef]
- Sabeena Farvin, K.H.; Andersen, L.L.; Nielsen, H.H.; Jacobsen, C.; Jakobsen, G.; Johansson, I.; Jessen, F. Antioxidant Activity of Cod (Gadus morhua) Protein Hydrolysates: In Vitro Assays and Evaluation in 5% Fish Oil-in-Water Emulsion. Food Chem. 2014, 149, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.S.; Alvarenga Brizola, V.R.; Granato, D. High-Throughput Assay Comparison and Standardization for Metal Chelating Capacity Screening: A Proposal and Application. Food Chem. 2017, 214, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Filip, M.; Silaghi-Dumitrescu, L.; Prodan, D.; Codruţa, S.; Moldovan, M.; Cojocaru, I. Analytical Approaches for Characterization of Teeth Whitening Gels Based on Natural Extracts. Key Eng. Mater. 2017, 752, 24–28. [Google Scholar] [CrossRef]
- Filip, M.; Vlassa, M.; Coman, V.; Halmagyi, A. Simultaneous Determination of Glucose, Fructose, Sucrose and Sorbitol in the Leaf and Fruit Peel of Different Apple Cultivars by the HPLC-RI Optimized Method. Food Chem. 2016, 199, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Filip, M.; Moldovan, M.; Vlassa, M.; Sarosi, C.; Cojocaru, I. HPLC Determination of the Main Organic Acids in Teeth Bleaching Gels Prepared with the Natural Fruit Juices. Rev. Chim. 2016, 67, 2440–2445. [Google Scholar]
- Panaite, T.D.; Nour, V.; Vlaicu, P.A.; Ropota, M.; Corbu, A.R.; Saracila, M. Flaxseed and Dried Tomato Waste Used Together in Laying Hens Diet. Arch. Anim. Nutr. 2019, 73, 222–238. [Google Scholar] [CrossRef]
- Plaipetch, P.; Yakupitiyage, A. Effect of Replacing Soybean Meal with Yeast-Fermented Canola Meal on Growth and Nutrient Retention of Nile tilapia, Oreochromis niloticus (Linnaeus 1758). Aquac. Res. 2014, 45, 1744–1753. [Google Scholar] [CrossRef]
- Pal Vig, A.; Walia, A. Beneficial Effects of Rhizopus Oligosporus Fermentation on Reduction of Glucosinolates, Fibre and Phytic Acid in Rapeseed (Brassica napus) Meal. Bioresour. Technol. 2001, 78, 309–312. [Google Scholar] [CrossRef]
- Drażbo, A.A.; Juśkiewicz, J.; Józefiak, A.; Konieczka, P. The Fermentation Process Improves the Nutritional Value of Rapeseed Cake for Turkeys—Effects on Performance, Gut Bacterial Population and Its Fermentative Activity. Animals 2020, 10, 1711. [Google Scholar] [CrossRef]
- Yamada, E.A.; Sgarbieri, V.C. Yeast (Saccharomyces cerevisiae) Protein Concentrate: Preparation, Chemical Composition, and Nutritional and Functional Properties. J. Agric. Food Chem. 2005, 53, 3931–3936. [Google Scholar] [CrossRef]
- Shi, C.; He, J.; Yu, J.; Yu, B.; Huang, Z.; Mao, X.; Zheng, P.; Chen, D. Solid State Fermentation of Rapeseed Cake with Aspergillus niger for Degrading Glucosinolates and Upgrading Nutritional Value. J. Anim. Sci. Biotechnol. 2015, 6, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kräling, K.; Röbbelen, G.; Thies, W.; Herrmann, M.; Ahmadi, M.R. Variation of Seed Glucosinolates in Lines of Brassica napus. Plant Breed. 1990, 105, 33–39. [Google Scholar] [CrossRef]
- Bille, N.; Eggum, B.O.; Jacobsen, I.; Olsen, O.; Sørensen, H.S. Antinutritional and Toxic Effects. J. Anim. Physiol. Anim. Nutr. (Berl). 1983, 49, 195–210. [Google Scholar]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for Testing Antioxidant Activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef]
- Lücke, F.K.; Fritz, V.; Tannhäuser, K.; Arya, A. Controlled Fermentation of Rapeseed Presscake by Rhizopus, and Its Effect on Some Components with Relevance to Human Nutrition. Food Res. Int. 2019, 120, 726–732. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Bartkowiak-Broda, I.; Karlović, I.; Karlovits, G.; Szłyk, E. Antioxidant Capacity, Total Phenolics, Glucosinolates and Colour Parameters of Rapeseed Cultivars. Food Chem. 2011, 127, 556–563. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Liu, X. A Novel Fermented Rapeseed Meal, Inoculated with Selected Protease-Assisting Screened B. subtilis YY-4 and L. plantarum 6026, Showed High Availability and Strong Antioxidant and Immunomodulation Potential Capacity. Foods 2022, 11, 2118. [Google Scholar] [CrossRef]
- Nascimento, W.M.; Oliveira, J.R.S.; Cunha, R.X.; Gambôa, D.S.R.; Silva, A.P.S.A.; de Menezes Lima, V.L. Evaluation of the Treatment of Fever, Pain and Inflammation with Indigofera Suffruticosa Miller Leaves Aqueous Extract. J. Ethnopharmacol. 2022, 287, 114958. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Han, Z.; Sheng, H.; Wu, Y.; Wang, Y.; Guo, X.; Zhu, Y.; Li, X.; Wang, Y. Guhong Injection Promotes Post-Stroke Functional Recovery via Attenuating Cortical Inflammation and Apoptosis in Subacute Stage of Ischemic Stroke. Phytomedicine 2022, 99, 154034. [Google Scholar] [CrossRef]
- Magiera, A.; Czerwińska, M.E.; Owczarek, A.; Marchelak, A.; Granica, S.; Olszewska, M.A. Polyphenol-Enriched Extracts of Prunus Spinosa Fruits: Anti-Inflammatory and Antioxidant Effects in Human Immune Cells Ex Vivo in Relation to Phytochemical Profile. Molecules 2022, 27, 1691. [Google Scholar] [CrossRef]
- Schwarz, K. 7—Food Antioxidant Conjugates and Lipophilized Derivatives. In Woodhead Publishing Series in Food Science, Technology and Nutrition; Shahidi, F., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 161–176. ISBN 978-1-78242-089-7. [Google Scholar]
- Laguna, O.; Odinot, E.; Bisotto, A.; Baréa, B.; Villeneuve, P.; Sigoillot, J.C.; Record, E.; Faulds, C.B.; Fine, F.; Lesage-Meessen, L.; et al. Release of Phenolic Acids from Sunflower and Rapeseed Meals Using Different Carboxylic Esters Hydrolases from Aspergillus niger. Ind. Crops Prod. 2019, 139, 111579. [Google Scholar] [CrossRef]
- Quinn, L.; Gray, S.G.; Meaney, S.; Finn, S.; Kenny, O.; Hayes, M. Sinapinic and Protocatechuic Acids Found in Rapeseed. Irish J. Agric. Food Res. 2017, 56, 104–119. [Google Scholar] [CrossRef] [Green Version]
- Vuorela, S.; Meyer, A.S.; Heinonen, M. Quantitative Analysis of the Main Phenolics in Rapeseed Meal and Oils Processed Differently Using Enzymatic Hydrolysis and HPLC. Eur. Food Res. Technol. 2003, 217, 517–523. [Google Scholar] [CrossRef]
- Niu, Y.; Jiang, M.; Guo, M.; Wan, C.; Hu, S.; Jin, H.; Huang, F. Characterization of the Factors That Influence Sinapine Concentration in Rapeseed Meal during Fermentation. PLoS ONE 2015, 10, e0116470. [Google Scholar] [CrossRef] [PubMed]
- Olukomaiya, O.; Fernando, C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Solid-State Fermented Plant Protein Sources in the Diets of Broiler Chickens: A Review. Anim. Nutr. 2019, 5, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Fangel, J.U.; Willats, W.G.T.; Vivier, M.A.; Moore, J.P. Dissecting the Polysaccharide-Rich Grape Cell Wall Changes during Winemaking Using Combined High-Throughput and Fractionation Methods. Carbohydr. Polym. 2015, 133, 567–577. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, H.; Miao, Y.; Wei, P.; Chen, J. Simultaneous Saccharification and Fermentation of Acid-Pretreated Rapeseed Meal for Succinic Acid Production Using Actinobacillus succinogenes. Enzyme Microb. Technol. 2011, 48, 339–344. [Google Scholar] [CrossRef]
- Oboh, G.; Oladunmoye, M.K. Biochemical Changes in Micro-Fungi Fermented Cassava Flour Produced from Low- And Medium-Cyanide Variety of Cassava Tubers. Nutr. Health 2007, 18, 355–367. [Google Scholar] [CrossRef]
Anti-Nutritional Factors (mg/g) | RSM | FRSM-SC | FRSM-SB | SEM Time | p Time | SEM Yeast | p Yeast | ||
---|---|---|---|---|---|---|---|---|---|
0 h, no Yeast | 24 h | 72 h | 24 h | 72 h | |||||
Sinigrin | 3.74 a ± 0.06 | 1.81 b ± 0.16 | 1.74 b ± 0.13 | 1.27 c ± 0.16 | 1.49 bc ± 0.04 | 0.043 | 0.447 | 0.053 | <0.001 |
3-butenyl isothiocyanate | 16.12 a ± 0.11 | 7.22 b ± 0.98 | 6.83 b ± 0.16 | 5.90 b ± 0.71 | 5.98 b ± 0.16 | 0.205 | 0.727 | 0.252 | <0.001 |
Chemical Composition (%) | RSM | FRSM-SC | FRSM-SB | SEM Time | p Time | SEM Yeast | p Yeast | ||
---|---|---|---|---|---|---|---|---|---|
0 h, no Yeast | 24 h | 72 h | 24 h | 72 h | |||||
Dry mater | 90.56 a ± 0.35 | 87.56 b ± 0.86 | 88.41 b ± 0.34 | 90.70 a ± 1.52 | 88.37 b ± 1.78 | 0.101 | <0.001 | 0.124 | <0.001 |
Crude protein | 34.95 b ± 0.16 | 39.54 a ± 0.70 | 38.85 a ± 0.26 | 39.03 a ± 0.98 | 38.46 a ± 0.18 | 0.164 | 0.125 | 0.201 | <0.001 |
Crude fat | 1.30 a ± 0.07 | 0.89 c ± 0.17 | 1.13 b ± 0.17 | 1.36 a ± 0.10 | 1.18 b ± 0.16 | 0.008 | 0.147 | 0.010 | <0.001 |
Crude cellulose | 10.26 c ± 0.02 | 12.54 a ± 0.14 | 12.32 ab ± 0.12 | 11.95 b ± 0.07 | 12.35 ab ± 0.29 | 0.058 | 0.519 | 0.071 | <0.001 |
Ash | 8.040 b ± 0.14 | 8.64 a ± 0.14 | 8.23 ab ± 0.45 | 8.03 b ± 0.28 | 8.20 ab ± 0.05 | 0.055 | 0.332 | 0.068 | 0.014 |
RSM | FRSM-SC | FRSM-SB | SEM Time | p Time | SEM Yeast | p Yeast | |||
---|---|---|---|---|---|---|---|---|---|
0 h, no Yeast | 24 h | 72 h | 24 h | 72 h | |||||
TPC | 85.38 a ± 3.84 | 66.22 b ± 4.09 | 66.95 b ± 2.66 | 65.30 b ± 0.82 | 65.27 b ± 2.88 | 0.91 | 0.866 | 1.12 | <0.001 |
DPPH | 2254 a ± 0.77 | 1779 b ±11.06 | 1835 b ±181.19 | 1779 b ±49.95 | 1870 b ± 141.76 | 21.95 | 0.124 | 26.88 | <0.001 |
ABTS | 7319 a ± 12.20 | 6169 c ± 43.54 | 5807 d ± 89.01 | 6180 b ± 143.26 | 5258 e ± 273.02 | 31.21 | <0.001 | 38.23 | <0.001 |
Fe2+ chelating activity (%) | 5.59 c ± 1.98 | 34.45 a ± 1.82 | 24.11 b ± 1.64 | 40.93 c ± 2.15 | 23.06 b ± 1.36 | 0.399 | <0.001 | 0.489 | <0.001 |
Individual Polyphenol (mg/100 g) | RSM | FRSM-SC | FRSM-SB | SEM Time | p Time | SEM Yeast | p Yeast | ||
---|---|---|---|---|---|---|---|---|---|
0 h, no Yeast | 24 h | 72 h | 24 h | 72 h | |||||
Gallic acid | 1.32 c ± 0.27 | 4.98 a ± 0.47 | 4.23 ab ± 0.61 | 4.12 ab ± 0.64 | 2.29 bc ±1.03 | 0.239 | 0.044 | 0.293 | 0.001 |
Catechin | 6.02 a ± 0.13 | 4.15 ab ± 0.39 | 2.90 bc ±1.10 | 1.32 c ± 0.05 | 1.13 c ± 0.23 | 0.242 | 0.135 | 0.198 | <0.001 |
Vanillic acid | 29.80 a ± 0.76 | 12.55 c ±2.99 | 22.61 ab ±3.55 | 26.79 ab ± 0.61 | 19.59 bc ±2.76 | 0.905 | 0.485 | 1.108 | 0.001 |
Caffeic acid | 12.69 a ± 0.68 | 5.62 c ± 0.81 | 8.51 bc ± 0.95 | 10.72 ab ±1.69 | 10.69 ab ± 0.79 | 0.373 | 0.122 | 0.457 | <0.001 |
Epicatechin | 51.28 a ± 0.72 | 4.76 c ± 0.62 | 9.86 b ±2.03 | 6.55 bc ± 1.58 | 3.79 c ± 0.08 | 0.441 | 0.257 | 0.540 | <0.001 |
p-Coumaric acid | 1.39 b ± 0.07 | 3.53 a ± 0.75 | 4.27 a ± 0.24 | 4.18 a ± 0.15 | 4.07 a ± 0.35 | 0.144 | 0.344 | 0.177 | <0.001 |
Ferulic acid | 12.2 a ± 0.04 | 0.45 b ± 0.07 | 0.24 c ± 0.02 | 0.23 c ± 0.04 | 0.17 c ± 0.01 | 0.014 | 0.004 | 0.017 | <0.001 |
Sinapic acid | 3.44 d ± 0.36 | 22.54 b ± 0.99 | 26.13 a ± 0.40 | 18.28 c ± 0.86 | 20.66 b ± 0.10 | 0.228 | 0.001 | 0.280 | <0.001 |
Rutin | 4.39 a ± 0.06 | 0.14 c ± 0.04 | 0.31 c ± 0.01 | 0.83 b ± 0.13 | 0.74 b ± 0.08 | 0.025 | 0.504 | 0.031 | <0.001 |
Quercetin | 1.90 ab ±1.24 | 1.07 b ±1.18 | 2.64 ab ± 0.12 | 3.22 a ± 0.33 | 3.35 a ± 0.31 | 0.211 | 0.107 | 0.258 | 0.013 |
Luteolin | 1.76 a ± 0.09 | 0.82 c ± 0.14 | 1.27 b ± 0.03 | 0.93 c ± 0.10 | 0.79 c ± 0.09 | 0.032 | 0.067 | 0.039 | <0.001 |
Sum | 126.20 a ± 2.07 | 60.61 c ±3.60 | 82.97 b ±2.42 | 77.17 b ± 0.97 | 67.27 bc ± 3.27 | 1.669 | 0.396 | 2.045 | <0.001 |
Carbohydrate (mg/100 g) | RSM | FRSM-SC | FRSM-SB | SEM Time | p Time | SEM Yeast | p Yeast | ||
---|---|---|---|---|---|---|---|---|---|
0 h, no Yeast | 24 h | 72 h | 24 h | 72 h | |||||
Fructose | 478.00 a ± 3.75 | 182.00 b ± 0.28 | 57.05 c ±23.69 | 21.50 d ±6.08 | 12.10 d ± 4.96 | 4.159 | <0.001 | 5.094 | <0.001 |
Glucose | 640.00 a ± 41.46 | 173.70 b ± 5.66 | 135.25 b ± 45.75 | 114.71 b ± 131.10 | 66.10 b ± 67.46 | 25.750 | 0.456 | 31.530 | <0.001 |
Sucrose | 4512.20 a ± 12.07 | 219.10 b ± 45.68 | 100.15 c ± 20.44 | 9.16 d ± 4.45 | 15.27 d ± 10.23 | 8.545 | 0.021 | 10.466 | <0.001 |
Maltose | 60.20 a ± 15.53 | 38.23 a ± 25.55 | 59.40 a ± 28.00 | 0.00 a ± 0.00 | 0.00 a ± 0.00 | 6.317 | 0.460 | 7.737 | <0.003 |
Total | 5690.40 a ± 22.81 | 613.03 b ± 25.51 | 351.85 bc ± 29.63 | 145.36 c ± 141.63 | 93.46 c ± 82.65 | 28.100 | 0.039 | 34.410 | <0.001 |
Organic Acid (OA, mg/100 g) | RSM | FRSM-SC | FRSM-SB | SEM Time | p Time | SEM Yeast | p Yeast | ||
---|---|---|---|---|---|---|---|---|---|
0 h, no Yeast | 24 h | 72 h | 24 h | 72 h | |||||
Oxalic | 567.60 a ± 1.28 | 393.70 b ± 5.52 | 220.40 c ± 3.96 | 164.80 d ± 1.56 | 152.50 d ± 32.95 | 5.613 | <0.001 | 6.875 | <0.001 |
Citric | 254.00 a ± 5.46 | 168.20 b ± 37.90 | 98.05 bc ± 18.31 | 39.90 cd ± 1.85 | 3.21 d ± 21.07 | 7.852 | 0.354 | 9.616 | <0.001 |
Tartaric | 452.80 a ± 3.02 | 150.15 b ± 25.24 | 33.05 c ± 7.00 | 7.63 c ± 0.95 | 3.56 c ± 1.94 | 4.381 | 0.001 | 5.366 | <0.001 |
Malic | 53.00 ab ± 3.42 | 28.50 bc ± 13.29 | 18.75 c ± 2.76 | 29.75 a ± 13.79 | 5.69 c ± 0.98 | 3.229 | 0.007 | 3.955 | 0.006 |
Succinic | 32.80 b ± 15.72 | 191.50 a ± 22.20 | 214.90 a ± 43.27 | 129.07 ab ± 29.18 | 229.35 a ± 45.18 | 12.09 | 0.052 | 14.80 | <0.001 |
Total OA | 1360.20 a ± 17.97 | 932.00 b ± 53.67 | 585.20 c ± 16.67 | 310.40 d ± 28.84 | 495.10 c ± 45.22 | 12.95 | 0.026 | 15.86 | <0.001 |
Fatty Acids (g/100 g FAME) | RSM | FRSM-SC | FRSM-SB | SEM Time | p Time | SEM Yeast | p Yeast | ||
---|---|---|---|---|---|---|---|---|---|
0 h, no Yeast | 24 h | 72 h | 24 h | 72 h | |||||
SFA | 13.72 a ± 0.14 | 13.49 a ± 0.75 | 11.62 a ± 1.89 | 13.05 a ± 0.37 | 12.58 a ± 0.30 | 0.366 | 0.406 | 0.449 | 0.237 |
MUFA | 42.15 b ± 0.07 | 47.81 a ± 0.01 | 46.90 a ± 1.30 | 46.34 a ± 0.07 | 46.30 a ± 0.13 | 0.218 | 0.344 | 0.267 | <0.001 |
PUFA | 43.68 a ± 0.05 | 38.71 c ± 0.73 | 40.02 bc ± 1.13 | 41.09 b ± 0.08 | 40.92 bc ± 0.16 | 0.243 | 0.309 | 0.297 | <0.001 |
UFA | 85.83 b ± 0.21 | 86.52 ab ± 0.74 | 86.92 ab ± 0.17 | 87.43 a ± 0.01 | 87.22 ab ± 0.29 | 0.163 | 0.787 | 0.199 | 0.005 |
SFA/UFA | 0.15 a ± 0.01 | 0.15 a ± 0.01 | 0.13 a ± 0.02 | 0.14 a ± 0.00 | 0.14 a ± 0.00 | 0.004 | 0.404 | 0.005 | 0.174 |
PUFA/MUFA | 1.03 a ± 0.01 | 0.80 b ± 0.01 | 0.85 b ± 0.05 | 0.88 b ± 0.00 | 0.88 b ± 0.00 | 0.008 | 0.297 | 0.010 | 0.000 |
Minerals (ppm) | RSM | FRSM-SC | FRSM-SB | SEM Time | p Time | SEM Yeast | p Yeast | ||
---|---|---|---|---|---|---|---|---|---|
0 h, no Yeast | 24 h | 72 h | 24 h | 72 h | |||||
Ca | 0.55 a ± 0.00 | 0.58 a ± 0.01 | 0.55 a ± 0.01 | 0.56 a ± 0.00 | 0.55 a ± 0.01 | 0.003 | 0.058 | 0.004 | 0.125 |
P | 1.38 a ± 0.02 | 1.44 a ± 0.04 | 1.44 a ± 0.08 | 1.39 a ± 0.01 | 1.39 a ± 0.11 | 0.024 | 0.963 | 0.029 | 0.349 |
Mg | 0.73 a ± 0.01 | 0.82 a ± 0.04 | 0.88 a ± 0.11 | 0.90 a ± 0.08 | 0.91 a ± 0.10 | 0.029 | 0.034 | 0.035 | 0.621 |
Na | 0.05 a ± 0.00 | 0.05 a ± 0.00 | 0.05 a ± 0.00 | 0.03 a ± 0.03 | 0.05 a ± 0.00 | 0.004 | 0.367 | 0.005 | 0.414 |
K | 1.38 ab ± 0.04 | 1.41 a ± 0.00 | 1.32 ab ± 0.12 | 1.26 ab ± 0.07 | 1.17 b ± 0.02 | 0.023 | 0.139 | 0.028 | 0.013 |
Cu | 10.31 b ± 0.74 | 23.25 a ± 0.30 | 23.74 a ± 1.11 | 24.62 a ± 0.83 | 24.25 a ± 0.42 | 0.167 | 0.882 | 0.205 | <0.001 |
Fe | 373.20 a ± 4.52 | 376.70 a ± 29.32 | 395.60 a ± 2.67 | 358.00 a ± 12.82 | 395.90 a ± 40.79 | 9.952 | 0.228 | 12.189 | 0.752 |
Mn | 93.25 a ± 3.51 | 97.51 a ± 1.52 | 94.51 a ± 2.72 | 94.09 a ± 13.02 | 86.04 a ± 1.63 | 2.330 | 0.307 | 2.854 | 0.396 |
Zn | 117.70 b ± 0.21 | 132.60 a ± 0.31 | 134.20 a ± 1.87 | 130.30 a ± 4.17 | 138.90 a ± 8.07 | 1.049 | 0.062 | 1.285 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlassa, M.; Filip, M.; Țăranu, I.; Marin, D.; Untea, A.E.; Ropotă, M.; Dragomir, C.; Sărăcilă, M. The Yeast Fermentation Effect on Content of Bioactive, Nutritional and Anti-Nutritional Factors in Rapeseed Meal. Foods 2022, 11, 2972. https://doi.org/10.3390/foods11192972
Vlassa M, Filip M, Țăranu I, Marin D, Untea AE, Ropotă M, Dragomir C, Sărăcilă M. The Yeast Fermentation Effect on Content of Bioactive, Nutritional and Anti-Nutritional Factors in Rapeseed Meal. Foods. 2022; 11(19):2972. https://doi.org/10.3390/foods11192972
Chicago/Turabian StyleVlassa, Mihaela, Miuța Filip, Ionelia Țăranu, Daniela Marin, Arabela Elena Untea, Mariana Ropotă, Cătălin Dragomir, and Mihaela Sărăcilă. 2022. "The Yeast Fermentation Effect on Content of Bioactive, Nutritional and Anti-Nutritional Factors in Rapeseed Meal" Foods 11, no. 19: 2972. https://doi.org/10.3390/foods11192972
APA StyleVlassa, M., Filip, M., Țăranu, I., Marin, D., Untea, A. E., Ropotă, M., Dragomir, C., & Sărăcilă, M. (2022). The Yeast Fermentation Effect on Content of Bioactive, Nutritional and Anti-Nutritional Factors in Rapeseed Meal. Foods, 11(19), 2972. https://doi.org/10.3390/foods11192972