Phytochemical Profile of Opuntia ficus-indica (L.) Mill Fruits (cv. ‘Orito’) Stored at Different Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sample Processing
2.2. Extraction of Phytochemical Compounds
2.3. HPLC-DAD (High-Performance Liquid Chromatographic-Diode Array Detector) Analysis
2.4. HPLC-DAD-MS/MS Analysis
2.5. Statistical Analyses
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andreu, L.; Nuncio-Jáuregui, N.; Carbonell-Barrachina, Á.A.; Legua, P.; Hernández, F. Antioxidant properties and chemical characterization of Spanish Opuntia ficus-indica Mill. cladodes and fruits. J. Sci. Food Agric. 2018, 98, 1566–1573. [Google Scholar] [CrossRef]
- Mena, P.; Tassotti, M.; Andreu, L.; Nuncio-Jáuregui, N.; Legua, P.; Del Rio, D.; Hernández, F. Phytochemical characterization of different prickly pear (Opuntia ficus-indica (L.) Mill.) cultivars and botanical parts: UHPLC-ESI-MSn metabolomics profiles and their chemometric analysis. Food Res. Int. 2018, 108, 301–308. [Google Scholar] [CrossRef]
- El-Mostafa, K.; El Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; El Kebbaj, M.S.; Latruffe, N.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef] [Green Version]
- Andreu-Coll, L.; Cano-Lamadrid, M.; Noguera-Artiaga, L.; Lipan, L.; Carbonell-Barrachina, Á.A.; Rocamora-Montiel, B.; Legua, P.; Hernández, F.; López-Lluch, D. Economic estimation of cactus pear production and its feasibility in Spain. Trends Food Sci. Technol. 2020, 103, 379–385. [Google Scholar] [CrossRef]
- Saenz, C. Processing technologies: An alternative for cactus pear (Opuntia spp.) fruits and cladodes. J. Arid Environ. 2000, 46, 209–225. [Google Scholar] [CrossRef] [Green Version]
- FAO (Food and Agricultural Organization). Ecologia Del Cultivo, Manejo Y Usos Del Nopal; Inglese, P., Mondragon, C., Nefzaoui, A., Sáenz, C., Eds.; FAO: Roma, Italy, 2018; ISBN 9789251304945. [Google Scholar]
- Serra, A.T.; Poejo, J.; Matias, A.A.; Bronze, M.R.; Duarte, C.M.M. Evaluation of Opuntia spp. derived products as antiproliferative agents in human colon cancer cell line (HT29). Food Res. Int. 2013, 54, 892–901. [Google Scholar] [CrossRef]
- Ochoa-Velasco, C.E.; Guerrero-Beltrán, J.Á. The effects of modified atmospheres on prickly pear (Opuntia albicarpa) stored at different temperatures. Postharvest Biol. Technol. 2016, 111, 314–321. [Google Scholar] [CrossRef]
- Valero, D.; Serrano, M. Postharvest Biology and Technology for Preserving Fruit Quality; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781439802663. [Google Scholar]
- Corrales-García, J.; Andrade-rodríguez, J.; Bernabé-Cruz, E. Response of six cultivars of tuna fruits to cold storage. J. Prof. Assoc. Cactus Dev. 1997, 2, 160–168. [Google Scholar]
- Díaz-Mula, H.M. Bioactive Compounds, Antioxidant Activity and Quality of Plum and Sweet Cherry Cultivars as Affected by Ripening on-tree, Cold Storage and Postharvest Treatments. Ph.D. Thesis, Universidad Miguel Hernández de Elche, Elche, Spain, 2011. [Google Scholar]
- Paul, V.; Pandey, R.; Srivastava, G.C. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene-An overview. J. Food Sci. Technol. 2012, 49, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Andreu-Coll, L.; García-Pastor, M.E.; Valero, D.; Amorós, A.; Almansa, M.S.; Legua, P.; Hernández, F. Influence of storage on physiological properties, chemical composition, and bioactive compounds on cactus pear fruit (Opuntia ficus-indica (l.) mill.). Agriculture 2021, 11, 62. [Google Scholar] [CrossRef]
- Zuzunaga, M.; Serrano, M.; Martinez-Romero, D.; Valero, D.; Riquelme, F. Comparative Study of Two Plum (Prunus salicina Lindl.) Cultivars during Growth and Ripening. Food Sci. Technol. Int. 2001, 7, 123–130. [Google Scholar] [CrossRef]
- Minas, I.S.; Forcada, C.F.; Dangl, G.S.; Gradziel, T.M.; Dandekar, A.M.; Crisosto, C.H. Discovery of non-climacteric and suppressed climacteric bud sport mutations originating from a climacteric Japanese plum cultivar (Prunus salicina lindl.). Front. Plant Sci. 2015, 6, 316. [Google Scholar] [CrossRef] [Green Version]
- Katsinas, N.; Bento Da Silva, A.; Enríquez-De-Salamanca, A.; Fernández, N.; Bronze, M.R.; Rodríguez-Rojo, S. Pressurized Liquid Extraction Optimization from Supercritical Defatted Olive Pomace: A Green and Selective Phenolic Extraction Process. ACS Sustain. Chem. Eng. 2021, 9, 5590–5602. [Google Scholar] [CrossRef]
- Addinsoft, S.A.R.L. XLSTAT Software 2010; Addinsoft: Barcelona, Spain, 2010. [Google Scholar]
- Petruk, G.; Illiano, A.; Del Giudice, R.; Raiola, A.; Amoresano, A.; Rigano, M.M.; Piccoli, R.; Monti, D.M. Malvidin and cyanidin derivatives from açai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts. J. Photochem. Photobiol. B Biol. 2017, 172, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benayad, Z.; Martinez-Villaluenga, C.; Frias, J.; Gomez-Cordoves, C.; Es-Safi, N.E. Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficus-indica flowers obtained by different extraction methods. Ind. Crops Prod. 2014, 62, 412–420. [Google Scholar] [CrossRef] [Green Version]
- El-Hawary, S.S.; Sobeh, M.; Badr, W.K.; Abdelfattah, M.A.O.; Ali, Z.Y.; El-Tantawy, M.E.; Rabeh, M.A.; Wink, M. HPLC-PDA-MS/MS profiling of secondary metabolites from Opuntia ficus-indica cladode, peel and fruit pulp extracts and their antioxidant, neuroprotective effect in rats with aluminum chloride induced neurotoxicity. Saudi J. Biol. Sci. 2020, 27, 2829–2838. [Google Scholar] [CrossRef] [PubMed]
- García-Cayuela, T.; Gómez-Maqueo, A.; Guajardo-Flores, D.; Welti-Chanes, J.; Cano, M.P. Characterization and quantification of individual betalain and phenolic compounds in Mexican and Spanish prickly pear (Opuntia ficus-indica L. Mill) tissues: A comparative study. J. Food Compos. Anal. 2019, 76, 1–13. [Google Scholar] [CrossRef]
- Mata, A.; Ferreira, J.P.; Semedo, C.; Serra, T.; Duarte, C.M.M.; Bronze, M.R. Contribution to the characterization of Opuntia spp. juices by LC-DAD-ESI-MS/MS. Food Chem. 2016, 210, 558–565. [Google Scholar] [CrossRef] [PubMed]
- MassBank. Available online: https://massbank.eu/MassBank/ (accessed on 1 March 2021).
- Phytohub. Available online: https://phytohub.eu/ (accessed on 1 March 2021).
- MacRae, W.D.; Towers, G.H.N. Biological activities of lignans. Phytochemistry 1984, 23, 1207–1220. [Google Scholar] [CrossRef]
- Kassuya, C.A.L.; Leite, D.F.P.; De Melo, L.V.; Rehder, V.L.C.; Calixto, J.B. Anti-inflammatory properties of extracts, fractions and lignans isolated from Phyllanthus amarus. Planta Med. 2005, 71, 721–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, H.B.; Negi, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef] [PubMed]
- Albano, C.; Negro, C.; Tommasi, N.; Gerardi, C.; Mita, G.; Miceli, A.; de Bellis, L.; Blando, F. Betalains, phenols and antioxidant capacity in cactus pear [opuntia ficus-indica (L.) mill.] fruits from Apulia (South Italy) genotypes. Antioxidants 2015, 4, 269–280. [Google Scholar] [CrossRef]
- Hernández, F.; Andreu-Coll, L.; Cano-Lamadrid, M.; López Lluch, D.; Carbonell-Barrachina, Á.A.; Legua, P. Valorization of Prickly Pear [Opuntia ficus-indica (L.) Mill]: Nutritional Composition, Functional Properties and Economic Aspects. In Invasive Species-Introduction Pathways, Economic Impact, and Possible Management Options; IntechOpen: London, UK, 2020; pp. 1–9. [Google Scholar]
- Yoo, H.; Widhalm, J.R.; Qian, Y.; Maeda, H.; Cooper, B.R.; Jannasch, A.S.; Gonda, I.; Lewinsohn, E.; Rhodes, D.; Dudareva, N. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat. Commun. 2013, 4, 2833. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Joyce, D.C. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul. 2003, 39, 171–174. [Google Scholar] [CrossRef]
- Tomás-Barberan, F.A.; Ferreres, F.; Gil, M.I. Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. Stud. Nat. Prod. Chem. 2000, 23, 739–795. [Google Scholar] [CrossRef]
- Ramírez-Ramos, M.; Medina-Dzul, K.; García-Mateos, R.; Corrales-García, J.; Ybarra-Moncada, C.; Castillo-González, A.M. Nutraceutical components, antioxidant activity, and color of 11 varieties of prickly pear (Opuntia sp.). J. Appl. Bot. Food Qual. 2018, 91, 211–218. [Google Scholar] [CrossRef]
- Sogvar, O.B.; Rabiei, V.; Razavi, F.; Gohari, G. Phenylalanine alleviates postharvest chilling injury of plum fruit by modulating antioxidant system and enhancing the accumulation of phenolic compounds. Food Technol. Biotechnol. 2020, 58, 433–444. [Google Scholar] [CrossRef]
- Sanchez-Ballesta, M.T.; Lafuente, M.T.; Zacarias, L.; Granell, A. Involvement of phenylalanine ammonia-lyase in the response of Fortune mandarin fruits to cold temperature. Physiol. Plant. 2000, 108, 382–389. [Google Scholar] [CrossRef]
Code | Description |
---|---|
D0 | Day 0 (harvest) |
D7 | seven days in cold conservation |
D7SL | seven days in cold conservation + three days at room temperature to study shelf life |
D14 | 14 days in cold conservation |
D14SL | 14 days in cold conservation + three days at room temperature to study shelf life |
D21 | 21 days in cold conservation |
D21SL | 21 days in cold conservation + three days at room temperature to study shelf life |
D28 | 28 days in cold conservation |
D28SL | 28 days in cold conservation + three days at room temperature to study shelf life |
Id. | Compounds | RT (min) | Percursor Ion [M-H]− or [M]+ (m/z) | λmax (nm) | Product Ions † (m/z) | References |
---|---|---|---|---|---|---|
1 | L-Malic acid | 8.10 | 133† | 272 | 71 | [2] |
2 | Citric acid | 11.17 | 191 | 466, 270 | 111, 87, 85, 43, 41, 67, 57 | [2] |
3 | Piscidic acid | 19.20 | 255 | 466, 274 | 73, 107, 165, 58, 93, 133, 179 | [2,18] |
4 | Dicaffeoylferulic acid isomer 1 | 26.08 | 517 | 278 | 187, 239 | [19] |
5 | Eucomic acid | 27.75 | 239 | 274 | 107, 133, 149, 177, 179, 87 | [2,18,20] |
6 | Dicaffeoylferulic acid isomer 2 | 27.82 | 517 | 274 | 239, 198 | [19] |
7 | Eucomic acid isomer/derivative | 29.89 | 239 | 268 | 179, 91 | |
8 | Ferulic acid derivative | 30.45 | 517 | 268 | 175, 193, 235 | [2] |
9 | Guaiacyl(t8-O-4)guaiacyl-hexoside isomer 1 | 30.45 | 537 | 268 | 195, 324, 165 | [2] |
10 | Guaiacyl(t8-O-4)guaiacyl-hexoside isomer 2 | 32.26 | 537 | 273 | 375 | [2] |
11 | Secoisolariciresinol-hexoside | 35.19 | 523 | 276 | 361, 447 | [2] |
12 | Syringaresinol | 46.80 | 417 | 275 | 181, 387, 166, 123 | [2] |
13 | Feruloyl derivative | 57.98 | 562 | 321,285 | - | [2] |
14 | Betaxanthin- proline (indicaxanthin) isomer 1 | 19.85 | 309 | 480 | 106, 70, 263, 217 | [21,22] |
15 | Betaxanthin-proline (indicaxanthin) isomer 2 | 20.51 | 309 | 480 | 106, 70, 263, 217 | [21,22] |
16 | Tryptophan | 31.61 | 205 | 278 | 118, 146, 132, 170 | [23] |
17 | Phenylalanine-betaxanthin | 37.28 | 359 | 480 | 315, 313, 131 | [22] |
18 | Prenylnaringenin (trihydroxy-8-prenylflavanone) | 38.27 | 341 | 275 | 137, 175, 251, 119, 311 | [24] |
Id. | Component | D0 | D7 | D14 | D21 | D28 | |
---|---|---|---|---|---|---|---|
1 | L-Malic acid | After cold storage | 7.67 ± 0.86 A † | 6.23 ± 0.68 Aa | 11.32 ± 2.50 Aa | 8.71 ± 2.58 Aa | 8.0 ± 2.38 Aa |
After shelf life | 7.67 ± 0.86 A † | 7.93 ± 1.25 Aa | 15.39 ± 2.09 Aa | 10.87 ± 3.15 Aa | 6.04 ± 3.20 Aa | ||
2 | Citric acid | After cold storage | 45.3 ± 3.94 B | 44.62 ± 2.01 Ba | 29.45 ± 4.05 Aa | 24.50 ± 4.18 Aa | 28.58 ± 6.65 Aa |
After shelf life | 45.3 ± 3.94 A | 40.40 ± 3.2 Aa | 40.18 ± 4.92 Ab | 40.21 ± 4.04 Ab | 32.49 ± 4.52 Aa | ||
3 | Piscidic acid | After cold storage | 166.85 ± 25.99 A | 172.18 ± 5.59 Aa | 161.62 ± 11.07 Aa | 158.07 ± 7.99 Aa | 173.45 ± 3.33 Aa |
After shelf life | 166.85 ± 25.99 A | 180.19 ± 17.40 Aa | 162.25 ± 4.10 Aa | 150.47 ± 16.59 Aa | 171.55 ± 26.44 Aa | ||
5 | Eucomic acid | After cold storage | 43.77 ± 13.25 A | 42.10 ± 1.67 Aa | 37.81 ± 2.88 Aa | 42.66 ± 6.14 Aa | 37.66 ± 3.32 Aa |
After shelf life | 43.77 ± 13.25 A | 47.84 ± 4.71 Aa | 42.90 ± 12.43 Aa | 30.96 ± 2.81 Aa | 40.47 ± 7.38 Aa | ||
7 | Eucomic acid isomer/derivative | After cold storage | 19.85 ± 1.45 A | 24.19 ± 0.97 Ba | 25.52 ± 0.54 Ba | 24.32 ± 0.73 Ba | 25.25 ± 0.89 Ba |
After shelf life | 19.85 ± 1.45 A | 24.16 ± 1.67 Aa | 25.84 ± 1.27 Aa | 22.77 ± 3.58 Aa | 24.54 ± 2.20 Aa | ||
8 | Ferulic acid derivative | After cold storage | 50.35 ± 2.97 AB | 49.55 ± 2.35 Aa | 58.00 ±1.66 Ba | 56.66 ± 2.77 ABa | 52.49± 2.21 ABa |
After shelf life | 50.35 ± 2.97 A | 63.56 ± 7.57 Ab | 57.95 ± 6.30 Aa | 59.43 ± 3.40 Aa | 57.81 ± 6.68 Aa | ||
12 | Syringaresinol | After cold storage | 27.28 ± 1.61 A | 31.48 ± 0.37 Ba | 33.99 ± 0.67 Ba | 31.42 ± 0.71 Ba | 33.43 ± 0.83 Ba |
After shelf life | 27.28 ± 1.61 A | 30.77 ± 2.56 Aa | 32.74 ± 0.20 Aa | 29.87 ± 4.35 Aa | 34.15 ± 3.14 Aa | ||
13 | Feruloyl derivative | After cold storage | 6.79 ± 2.11 A | 5.74 ± 1.20 Aa | 8.38 ± 1.97 Aa | 8.25 ± 1.03 Aa | 6.55 ± 1.27 Aa |
After shelf life | 6.79 ± 2.11 A | 11.55 ± 1.77 Aa | 7.38 ± 1.55 Aa | 9.42 ± 2.16 Aa | 8.77 ± 2.92 Aa | ||
14–15 | Betaxanthin-proline (indicaxanthin) isomers 1 and 2 | After cold storage | 21.00 ± 1.03 A | 25.55 ± 1.62 Aa | 23.42 ± 3.13 Aa | 23.66 ± 1.01 Aa | 23.52 ± 2.14 Aa |
After shelf life | 21.00 ± 1.03 A | 27.72 ± 4.29 Aa | 25.67 ± 1.32 Aa | 21.46 ± 2.04 Aa | 22.15 ± 1.15 Aa | ||
16 | Tryptophan | After cold storage | 19.21 ± 6.51 A | 20.03 ± 8.77 Aa | 18.21 ± 3.21 Aa | 14.60 ± 0.53 Aa | 12.17 ± 1.03 Aa |
After shelf life | 19.21 ± 6.51 A | 15.73 ± 1.25 Aa | 21.71 ± 2.65 Aa | 14.85 ± 3.25 Aa | 18.22 ± 2.81 Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, F.; Andreu-Coll, L.; Bento-Silva, A.; Serra, A.T.; Mena, P.; Legua, P.; Bronze, M.R. Phytochemical Profile of Opuntia ficus-indica (L.) Mill Fruits (cv. ‘Orito’) Stored at Different Conditions. Foods 2022, 11, 160. https://doi.org/10.3390/foods11020160
Hernández F, Andreu-Coll L, Bento-Silva A, Serra AT, Mena P, Legua P, Bronze MR. Phytochemical Profile of Opuntia ficus-indica (L.) Mill Fruits (cv. ‘Orito’) Stored at Different Conditions. Foods. 2022; 11(2):160. https://doi.org/10.3390/foods11020160
Chicago/Turabian StyleHernández, Francisca, Lucía Andreu-Coll, Andreia Bento-Silva, Ana Teresa Serra, Pedro Mena, Pilar Legua, and Maria Rosario Bronze. 2022. "Phytochemical Profile of Opuntia ficus-indica (L.) Mill Fruits (cv. ‘Orito’) Stored at Different Conditions" Foods 11, no. 2: 160. https://doi.org/10.3390/foods11020160
APA StyleHernández, F., Andreu-Coll, L., Bento-Silva, A., Serra, A. T., Mena, P., Legua, P., & Bronze, M. R. (2022). Phytochemical Profile of Opuntia ficus-indica (L.) Mill Fruits (cv. ‘Orito’) Stored at Different Conditions. Foods, 11(2), 160. https://doi.org/10.3390/foods11020160