Reuse of Wasted Bread as Soil Amendment: Bioprocessing, Effects on Alkaline Soil and Escarole (Cichorium endivia) Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bread-Based Amendments Preparation and Characterization
2.1.1. Raw Material, Enzymes, and Microorganisms
2.1.2. Bioprocessing
2.1.3. Characterization of Wasted Bread Biomasses
2.2. Pot Trial
2.2.1. Experimental Design
2.2.2. Soil Characterization
2.2.3. Plant Characterization
2.3. Statistical Analysis
3. Results
3.1. Amendment Characterization
3.2. Soil Characterization
3.3. Plant Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Mastro, F.; Cocozza, C.; Traversa, A.; Savy, D.; Abdelrahman, H.M.; Brunetti, G. Influence of crop rotation, tillage and fertilization on chemical and spectroscopic characteristics of humic acids. PLoS ONE 2019, 14, e0219099. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, F.; Maiorana, M.; Convertini, G.; Ferri, D. Alternative sugar beet production using shallow tillage and municipal solid waste fertilizer. Agron. Sustain. Dev. 2007, 27, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Abdeldaym, E.A.; Traversa, A.; Cocozza, C.; Brunetti, G. Effects of a 2-Year application of different residual biomasses on soil properties and potato yield. Clean Soil Air Water 2018, 46, 180026. [Google Scholar] [CrossRef]
- Hardgrove, S.J.; Livesley, S.J. Applying spent coffee grounds directly to urban agriculture soils greatly reduces plant growth. Urban For. Urban Green. 2016, 18, 1–8. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Conant, R.T.; Calderón, F.; Wallenstein, M.D. A novel soil amendment for enhancing soil moisture retention and soil carbon in drought-prone soils. Geoderma 2019, 337, 256–265. [Google Scholar] [CrossRef]
- Capone, R.; El Bilali, H.; Debs, D.; Bottalico, F.; Cardone, G.; Berjan, S.; Elmenofi, G.A.G.; Aboubdillah, A.; Charbel, L.; Ali Arous, S. Bread and bakery products waste in selected mediterranean arab countries. Am. J. Food Nutr. 2016, 4, 40–50. [Google Scholar]
- Melikoglu, M.; Webb, C. Use of waste bread to produce fermentation products. In Food Industry Wastes; Kosseva, M., Webb, C., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 63–76. [Google Scholar]
- Verni, M.; Minisci, A.; Convertino, S.; Nionelli, L.; Rizzello, C.G. Wasted bread as substrate for the cultivation of starters for the food industry. Front. Microbiol. 2019, 11, 293. [Google Scholar] [CrossRef] [Green Version]
- Sposito, G. The Chemistry of Soil; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Brunetti, A.; Traversa, A.; De Mastro, F.; Cocozza, C. Short term effects of synergistic inorganic and organic fertilization on soil properties and yield and quality of plum tomato. Sci. Hortic. 2019, 252, 342–347. [Google Scholar] [CrossRef]
- Cocozza, C.; Ercolani, G.L. Siderophore production and associated characteristics in rhizosphere and non-rhizosphere fluorescent pseudomonads. Ann. Microbiol. 1997, 47, 17–28. [Google Scholar]
- Lamont, J.R.; Wilkins, O.; Bywater-Ekegärd, M.; Smith, D.L. From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biol. Biochem. 2017, 111, 1–9. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemistry, 11th ed.; AACC: St. Paul, MN, USA, 2010. [Google Scholar]
- Weiss, W.; Vogelmeier, C.; Gorg, A. Electrophoretic characterization of wheat grain allergens from different cultivars involved in bakers’ asthma. Electrophoresis 1993, 14, 805–816. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Nionelli, L.; Coda, R.; De Angelis, M.; Gobbetti, M. Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chem. 2017, 119, 1079–1089. [Google Scholar] [CrossRef]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- De Pasquale, I.; Verni, M.; Verardo, V.; Gómez-Caravaca, A.M.; Rizzello, C.G. Nutritional and functional advantages of the use of fermented black chickpea flour for semolina-pasta fortification. Foods 2021, 10, 182. [Google Scholar] [CrossRef]
- Trinchera, L.; Leita, P.; Sequi, P. Metodi di Analisi per i Fertilizzanti; Ministero delle Politiche Agricole Alimentari e Forestali: Rome, Italy, 2006. [Google Scholar]
- Ciavatta, C.; Antisari, L.V.; Sequi, P. Determination of organic carbon in soils and fertilizers. Commun. Soil Sci. Plant Anal. 1989, 20, 759–773. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939); US Department of Agriculture: Washington, DC, USA, 1954.
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- FAO. Developing Sustainable Food Value Chains—Guiding Principles; FAO: Rome, Italy, 2014. [Google Scholar]
- Statista. 2021. Available online: https://www.statista.com/outlook/40050100/100/bread/worldwide (accessed on 10 December 2021).
- Brancoli, P.; Bolton, K.; Eriksson, M. Environmental impacts of waste management and valorisation pathways for surplus bread in Sweden. Waste Manag. 2020, 117, 136–145. [Google Scholar] [CrossRef]
- Kwan, T.H.; Ong, K.L.; Haque, M.A.; Kwan, W.H.; Kulkarni, S.; Lin, C.S.K. Valorisation of food and beverage waste via saccharification for sugars recovery. Biores. Technol. 2018, 255, 67–75. [Google Scholar] [CrossRef]
- Riaukaite, J.; Basinskiene, L.; Syrpas, M. Bioconversion of waste bread to glucose fructose syrup as a value-added product. In Proceedings of the FOODBALT 2019 13th Baltic Conference on Food Science and Technology “Food, Nutrition, Well-Being”, Jelgava, Latvia, 2–3 May 2019; pp. 120–124. [Google Scholar]
- Dlusskaya, E.; Jänsch, A.; Schwab, C.; Gänzle, M.G. Microbial and chemical analysis of a kvass fermentation. Eur. Food Res. Technol. 2008, 227, 261–266. [Google Scholar] [CrossRef]
- Immonen, M.; Maina, N.H.; Wang, Y.; Coda, R.; Katina, K. Waste bread recycling as a baking ingredient by tailored lactic acid fermentation. Int. J. Food Microbiol. 2020, 327, 108652. [Google Scholar] [CrossRef]
- Nionelli, L.; Wang, Y.; Pontonio, E.; Immonen, M.; Rizzello, C.G.; Maina, H.N.; Katina, K.; Coda, R. Antifungal effect of bioprocessed surplus bread as ingredient for bread-making: Identification of active compounds and impact on shelf-life. Food Control 2020, 118, 107437. [Google Scholar] [CrossRef]
- Verni, M.; Vekka, A.; Immonen, M.; Katina, K.; Rizzello, C.G.; Coda, R. Biosynthesis of γ-aminobutyric acid by lactic acid bacteria in surplus bread and its use in bread-making. J. Appl. Microbiol. 2021, 00, 1–15. [Google Scholar] [CrossRef]
- O’Connor, J.; Hoang, S.A.; Bradney, L.; Dutta, S.; Xiong, X.; Tsang, D.C.; Ramadass, K.; Vinu, A.; Kirkham, M.B.; Bolan, N.S. A review on the valorisation of food waste as a nutrient source and soil amendment. Environ. Pollut. 2021, 272, 115985. [Google Scholar] [CrossRef]
- Sogn, T.A.; Dragicevic, I.; Linjordet, R.; Krogstad, T.; Eijsink, V.G.; Eich-Greatorex, S. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int. J. Recycl. Org. Waste Agric. 2018, 7, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Tampio, E.; Salo, T.; Rintala, J. Agronomic characteristics of five different urban waste digestates. J. Environ. Manag. 2016, 169, 293–302. [Google Scholar] [CrossRef]
- Barzee, T.J.; Edalati, A.; El-Mashad, H.; Wang, D.; Scow, K.; Zhang, R. Digestate biofertilizers support similar or higher tomato yields and quality than mineral fertilizer in a subsurface drip fertigation system. Front. Sustain. Food Syst. 2019, 3, 58. [Google Scholar] [CrossRef]
- Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Shrestha, A.; Kim, B.S.; Park, D.H. Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Sci. Technol. 2014, 24, 763–779. [Google Scholar] [CrossRef]
- Giassi, V.; Kiritani, C.; Kupper, K.C. Bacteria as growth-promoting agents for citrus rootstocks. Microbiol. Res. 2016, 190, 46–54. [Google Scholar] [CrossRef]
- Ameen, F.A.; Hamdan, A.M.; El-Naggar, M.Y. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci. Rep. 2020, 10, 314. [Google Scholar] [CrossRef]
- Kargar, S.H.M.; Shirazi, N.H. Lactobacillus fermentum and Lactobacillus plantarum bioremediation ability assessment for copper and zinc. Arch. Microbiol. 2020, 202, 1957–1963. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.; Gobbetti, M. Physiology and biochemistry of lactic acid bacteria. In Handbook on Sourdough Biotechnology; Gobbetti, M., Gänzle, M., Eds.; Springer: Boston, MA, USA, 2013; pp. 183–216. [Google Scholar]
- Fernández, M.; Zúñiga, M. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 2006, 32, 155–183. [Google Scholar] [CrossRef] [PubMed]
- Gerke, J. Phytate (Inositol hexakisphosphate) in soil and phosphate acquisition from inositol phosphates by higher plants. A review. Plants 2015, 4, 253–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina-Rueda, J.J.; Pascual, M.B.; Pissarra, J.; Gallardo, F. A putative role for γ-aminobutyric acid (GABA) in vascular development in pine seedlings. Planta 2015, 241, 257–267. [Google Scholar] [CrossRef]
Samples | Moisture (%) | Ash (%) | EC μS cm−1 | OC (%) | TN (%) | C/N | Total P mg kg−1 |
---|---|---|---|---|---|---|---|
WB | 61.81 ± 6 | 0.73 ± 0.05 | 1950 ± 50 a | 40.7 ± 1 b | 2.47 ± 0.04 a | 16.4 ± 0.07 b | 1716 ± 246 |
bWB | 65.04 ± 5 | 0.86 ± 0.06 | 1820 ± 60 b | 43.7 ± 2 a | 2.25 ± 0.02 b | 19.4 ± 0.03 a | 2150 ± 15 |
ns | ns | * | * | * | ** | ns ¥ |
Samples | pHH2O | pHKCl | EC μS cm−1 | OC g kg−1 | TN g kg−1 | Pava mg kg−1 |
---|---|---|---|---|---|---|
Uncultivated pots | ||||||
T0 | 8.20 ± 0.15 a | 7.20 ± 0.08 | 200 ± 7 b | 16.0 ± 0.45 b | 1.60 ± 0.10 bc | 45.5 ± 1.0 ab |
CTA | 8.20 ± 0.08 a | 7.30 ± 0.08 | 319 ± 57 b | 15.2 ±0.51 b | 1.5 ± 0.07 c | 46.9 ± 1.9 a |
WBA | 7.70 ± 0.07 b | 7.30 ± 0.04 | 805 ± 109 a | 20.3 ± 1.47 a | 2.1 ± 0.18 a | 37.3 ± 2.5 bc |
bWBA | 7.70 ± 0.07 b | 7.20 ± 0.02 | 764 ± 22 a | 20.8 ± 0.23 a | 1.9 ± 0.12 ab | 36.1 ± 2.0 c |
*** | ns | *** | *** | ** | ** | |
Cultivated pots | ||||||
T0 | 8.20 ± 0.15 a | 7,20 ± 0.08 | 200 ± 7 c | 16 ± 0.45 b | 1.60 ± 0.10 bc | 45.5 ± 1.0 |
CTP | 8.07 ± 0.05 a | 7.25 ± 0.01 | 417 ± 103 b | 17.5 ± 0.49 b | 1.31 ± 0.26 c | 46.1 ± 2.2 |
WBP | 7.67 ± 0.09 b | 7.25 ± 0.11 | 685 ± 109 a | 22.4 ± 1.23 a | 1.96 ±0.11 ab | 48 ± 7.9 |
bWBP | 7.57 ± 0.01 b | 7.23 ± 0.07 | 786 ± 56 a | 22.4 ± 0.83 a | 2.17 ± 0.16 a | 41.9 ± 1.8 |
*** | ns | *** | *** | ** | ns ¥ |
Samples | Mn | Fe | Cu |
---|---|---|---|
Uncultivated pots | |||
CTA | 8.06 ± 0.34 b | 2.02 ± 0.05 b | 1.23 ± 0.01 |
WBA | 22.04 ± 6.20 a | 2.88 ± 0.48 a | 1.37 ± 0.07 |
bWBA | 20.88 ± 1.90 a | 2.85 ± 0.32 ab | 1.49 ± 0.31 |
** ¥ | * | ns | |
Cultivated pots | |||
CTP | 10.72 ± 0.85 b | 2.08 ± 0.08 b | 1.24 ± 0.02 b |
WBP | 16.77 ± 1.65 a | 2.87 ± 0.32 a | 1.36 ± 0.05 ab |
bWBP | 16.68 ± 2.83 a | 3.15 ± 0.21 a | 1.43 ± 0.07 a |
* | ** | * |
Samples | Number of Leaves per Plant | Treated/CTP Leaves Ratio | Average Head Escarole Fresh Weight (g) | Treated/CTP Yield Ratio |
---|---|---|---|---|
CTP | 13 ± 1.15 b | - | 6.6 ± 0.47 b | - |
WBP | 22 ± 3.78 a | 1.7 ± 0.40 | 12.9 ± 0.95 a | 1.95 ± 0.22 |
bWBP | 19 ± 3.05 ab | 1.4 ± 0.15 | 11.2 ± 1.36 a | 1.70 ± 0.11 |
* | ns | *** | ns |
Sample | B | Mn | Fe | Cu | P |
---|---|---|---|---|---|
CTP | 15.45 ± 3.85 a | 0.74 ± 0.25 | 14.77 ± 6.60 | 0.16 ± 0.03 | 358 ± 111 a |
WBP | 7.36 ± 0.96 b | 0.76 ± 0.06 | 15.31 ± 2.93 | 0.15 ± 0.01 | 131 ± 50 b |
bWBP | 2.13 ± 2.52 b | 1.06 ± 0.26 | 10.61 ± 3.24 | 0.13 ± 0.01 | 144 ± 29 b |
** | ns | ns | ns | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacace, C.; Rizzello, C.G.; Brunetti, G.; Verni, M.; Cocozza, C. Reuse of Wasted Bread as Soil Amendment: Bioprocessing, Effects on Alkaline Soil and Escarole (Cichorium endivia) Production. Foods 2022, 11, 189. https://doi.org/10.3390/foods11020189
Cacace C, Rizzello CG, Brunetti G, Verni M, Cocozza C. Reuse of Wasted Bread as Soil Amendment: Bioprocessing, Effects on Alkaline Soil and Escarole (Cichorium endivia) Production. Foods. 2022; 11(2):189. https://doi.org/10.3390/foods11020189
Chicago/Turabian StyleCacace, Claudio, Carlo Giuseppe Rizzello, Gennaro Brunetti, Michela Verni, and Claudio Cocozza. 2022. "Reuse of Wasted Bread as Soil Amendment: Bioprocessing, Effects on Alkaline Soil and Escarole (Cichorium endivia) Production" Foods 11, no. 2: 189. https://doi.org/10.3390/foods11020189
APA StyleCacace, C., Rizzello, C. G., Brunetti, G., Verni, M., & Cocozza, C. (2022). Reuse of Wasted Bread as Soil Amendment: Bioprocessing, Effects on Alkaline Soil and Escarole (Cichorium endivia) Production. Foods, 11(2), 189. https://doi.org/10.3390/foods11020189