Interest in Insects as Food and Feed: It Does Not Wane in the Public Domain
Author Contributions
Funding
Conflicts of Interest
References
- Meyer-Rochow, V.B. Can insects help to ease the problem of world food shortage? Search 1975, 6, 261–262. [Google Scholar]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2013; pp. 1–190. [Google Scholar]
- Evans, J.; Alemu, M.H.; Flore, R.; Frost, M.B.; Halloran, A.; Jensen, A.B.; Maciel-Vergara, G.; Meyer-Rochow, V.B.; Münke-Svendsen, C.; Olsen, S.B.; et al. ‘Entomophagy’: An evolving terminology in need of review. J. Insects Food Feed 2015, 1, 293–305. [Google Scholar] [CrossRef]
- Müller, A.; Evans, J.; Payne, C.L.R.; Roberts, R. Entomophagy and power. J. Insects Food Feed 2016, 2, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Bodenheimer, F.S. Insects as Human Food; W. Junk Publishers: The Hague, The Netherlands, 1951. [Google Scholar]
- Khan, S.H. Recent advances in the role of insects as an alternative protein source in poultry nutrition. J. Appl. Anim. Res. 2018, 46, 1144–1157. [Google Scholar] [CrossRef] [Green Version]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar]
- Arru, B.; Furesi, R.; Gasco, L.; Madau, F.A.; Pulina, P. The first economic analysis on European Sea Bass farming. Sustainability 2019, 11, 1697. [Google Scholar] [CrossRef] [Green Version]
- Szendrö, K.; Nagy, M.Z.; Toth, K. Consumer acceptance of meat from animals reared on insect meal as feed. Animals 2020, 10, 1312. [Google Scholar] [CrossRef]
- Penazzi, L.; Schiavone, A.; Russo, N.; Nery, J.; Valle, E.; Madrid, J.; Martinez, S.; Hernandez, F. In vivo and in vitro digestibility of an extruded complete dog food containing black soldier fly (Hermetia illucens) larvae meal as protein source. Front. Vet. Sci. 2021, 8, 542. [Google Scholar] [CrossRef]
- Jung, C.; Meyer-Rochow, V.B. Edible Insects as Innovative Foods—Nutritional, Functional and Acceptability Assessments. 2020 Foods (ISSN 2304-8158). Available online: https://www.mdpi.com/journal/foods/special_issues/edible_insects_innovative_food (accessed on 2 August 2022).
- New Scientist. Available online: https://books.google.fi/books?id=txDVQ-vzXMQC&pg=PA307&source=gbs_toc&cad=2#v=onepage&q&f=false (accessed on 12 September 2022).
- Cho, W.-H.; Park, J.-M.; Kim, E.-J.; Mohibbullah, M.; Choi, J.-S. Evaluation of the Quality Characteristics and Development of a Puffed-Rice Snack Enriched with Honeybee (Apis mellifera L.) Drone Pupae Powder. Foods 2022, 11, 1599. [Google Scholar] [CrossRef]
- Kim, T.-K.; Lee, J.-H.; Yong, H.I.; Kang, M.-C.; Cha, J.Y.; Chun, J.Y.; Choi, Y.-S. Effects of Defatting Methods on the Physicochemical Properties of Proteins Extracted from Hermetia illucens Larvae. Foods 2022, 11, 1400. [Google Scholar] [CrossRef]
- Maiyo, N.C.; Khamis, F.M.; Okoth, M.W.; Abong, G.O.; Subramanian, S.; Egonyu, J.P.; Xavier, C.; Ekesi, S.; Omuse, E.R.; Nakimbugwe, D.; et al. Nutritional Quality of Four Novel Porridge Products Blended with Edible Cricket (Scapsipedus icipe) Meal for Food. Foods 2022, 11, 1047. [Google Scholar] [CrossRef]
- Vanqa, N.; Mshayisa, V.V.; Basitere, M. Proximate, Physicochemical, Techno-Functional and Antioxidant Properties of Three Edible Insect (Gonimbrasia belina, Hermetia illucens and Macrotermes subhylanus) Flours. Foods 2022, 11, 976. [Google Scholar] [CrossRef]
- Mshayisa, V.V.; Van Wyk, J.; Zozo, B. Nutritional, Techno-Functional and Structural Properties of Black Soldier Fly (Hermetia illucens) Larvae Flours and Protein Concentrates. Foods 2022, 11, 724. [Google Scholar] [CrossRef]
- Gan, J.; Zhao, M.; He, Z.; Sun, L.; Li, X.; Feng, Y. The Effects of Antioxidants and Packaging Methods on Inhibiting Lipid Oxidation in Deep Fried Crickets (Gryllus bimaculatus) during Storage. Foods 2022, 11, 326. [Google Scholar] [CrossRef]
- Selaledi, L.; Baloyi, J.; Mbajiorgu, C.; Sebola, A.N.; Kock, H.D.; Mabelebele, M. Meat Quality Parameters of Boschveld Indigenous Chickens as Influenced by Dietary Yellow Mealworm Meal. Foods 2021, 10, 3094. [Google Scholar] [CrossRef]
- Dürr, J.; Ratompoarison, C. Nature’s “Free Lunch”: The Contribution of Edible Insects to Food and Nutrition Security in the Central Highlands of Madagascar. Foods 2021, 10, 2978. [Google Scholar] [CrossRef]
- Su, Y.; Lu, M.-X.; Jing, L.-Q.; Qian, L.; Zhao, M.; Du, Y.-Z.; Liao, H.-J. Nutritional Properties of Larval Epidermis and Meat of the Edible Insect Clanis bilineata tsingtauica (Lepidoptera: Sphingidae). Foods 2021, 10, 2895. [Google Scholar] [CrossRef]
- Zhu, C.; Zhao, M.; Zhang, H.; Zhang, F.; Du, Y.; Lu, M. Extending the Storage Time of Clanis bilineata tsingtauica (Lepidoptera; Sphingidae) Eggs through Variable-Temperature Cold Storage. Foods 2021, 10, 2820. [Google Scholar] [CrossRef]
- Thrastardottir, R.; Olafsdottir, H.T.; Thorarinsdottir, R.I. Yellow Mealworm and Black Soldier Fly Larvae for Feed and Food Production in Europe, with Emphasis on Iceland. Foods 2021, 10, 2744. [Google Scholar] [CrossRef]
- Müller, A.; Seinige, D.; Grabowski, N.T.; Ahlfeld, B.; Yue, M.; Kehrenberg, C. Characterization of Escherichia coli from Edible Insect Species: Detection of Shiga Toxin-Producing Isolate. Foods 2021, 10, 2552. [Google Scholar] [CrossRef]
- Kipkoech, C.; Kinyuru, J.N.; Imathiu, S.; Meyer-Rochow, V.B.; Roos, N. In Vitro Study of Cricket Chitosan’s Potential as a Prebiotic and a Promoter of Probiotic Microorganisms to Control Pathogenic Bacteria in the Human Gut. Foods 2021, 10, 2310. [Google Scholar] [CrossRef]
- Lanng, S.K.; Zhang, Y.; Christensen, K.R.; Hansen, A.K.; Nielsen, D.S.; Kot, W.; Bertram, H.C. Partial Substitution of Meat with Insect (Alphitobius diaperinus) in a Carnivore Diet Changes the Gut Microbiome and Metabolome of Healthy Rats. Foods 2021, 10, 1814. [Google Scholar] [CrossRef]
- Fuso, A.; Barbi, S.; Macavei, L.I.; Luparelli, A.V.; Maistrello, L.; Montorsi, M.; Sforza, S.; Caligiani, A. Effect of the Rearing Substrate on Total Protein and Amino Acid Composition in Black Soldier Fly. Foods 2021, 10, 1773. [Google Scholar] [CrossRef]
- Placentino, U.; Sogari, G.; Viscecchia, R.; De Devitiis, B.; Monacis, L. The New Challenge of Sports Nutrition: Accepting Insect Food as Dietary Supplements in Professional Athletes. Foods 2021, 10, 1117. [Google Scholar] [CrossRef]
- Son, Y.-J.; Hwang, I.-K.; Nho, C.W.; Kim, S.M.; Kim, S.H. Determination of Carbohydrate Composition in Mealworm (Tenebrio molitor L.) Larvae and Characterization of Mealworm Chitin and Chitosan. Foods 2021, 10, 640. [Google Scholar] [CrossRef]
- Ghosh, S.; Namin, S.M.; Meyer-Rochow, V.B.; Jung, C. Chemical Composition and Nutritional Value of Different Species of Vespa Hornets. Foods 2021, 10, 418. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, C.-Y.; Sun, L.; He, Z.; Yang, P.-L.; Liao, H.-J.; Feng, Y. Edible Aquatic Insects: Diversities, Nutrition, and Safety. Foods 2021, 10, 3033. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B.; Gahukar, R.T.; Ghosh, S.; Jung, C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods 2021, 10, 1036. [Google Scholar] [CrossRef]
- Bequaert, J. Insects as food: How they have augmented the food supply of mankind in early and recentyears. Nat. Hist. J. 1921, 21, 191–200. [Google Scholar]
- Bergier, E. Peuples Entomophages et Insectes Comestibles: Étude sur les Moeurs de L’homme et de L’insecte; Imprimérie Rullière Frères: Avignon, France, 1941. [Google Scholar]
- McGrew, W.C. The ‘other faunivory’ revisited: Insectivory in human and non-human primates and the evolution of human diet. J. Human Evol. 2014, 71, 4–11. [Google Scholar] [CrossRef]
- Kipkoech, C.; Kinyuru, J.N.; Imathiu, S.; Roos, N. Use of house cricket to address food security in Kenya; nutritional and chitin composition of farmed crickets as influenced by age. Afr. J. Agric. Res. 2017, 12, 3189–3197. [Google Scholar] [CrossRef]
- Seabrooks, L.; Hu, L. Insects: An underrepresented resource for tye discovery of biologically active natural products. Acta Pharm. Sin. B 2017, 7, 409–427. [Google Scholar] [CrossRef]
- Meyer-Rochow, V.B. Therapeutic arthropods and other, largely terrestrial, folk medicinally important invertebrates: Acomparative survey and review. J. Ethnobiol. Ethnomed. 2017, 13, 9. [Google Scholar] [CrossRef]
- Groib, F. Ameise und Volkskultur. Denisia Neue Ser. 2009, 85, 165–188. [Google Scholar]
- Zengin, E.; Karaca, I. Böceklerin Ilaçolarak kullanılmasi. Adü Zirrat Derg. 2017, 14, 71–78. [Google Scholar]
- Oonincx, D.G.A.B.; De Boer, I.J.M. Environmental impact of the production of mealworms as a protein source for humans—A life cycle assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, T.; Abbasi, T.; Abbasi, S.A. Reducing the global environmental impact of livestock production: The minilivestock option. J. Clean. Prod. 2015, 112, 1754–1766. [Google Scholar] [CrossRef]
- Halloran, A.; CaparrosMegido, R.; Oloo, J.; Weigel, T.; Nsevolo, P.; Francis, F. Comparative aspect of cricket framing in Thailand, Cambodia, Lao People’s Democratic Republic, Democratic Republic of the Congo, and Kenya. J. Insects Food Feed 2018, 4, 101–114. [Google Scholar] [CrossRef]
- Müller, A. Insects as food in Laos and Thailand—A case of “Westernisation”? Asian J. Soc. Sci. 2019, 47, 204–223. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. What governs selection and acceptance of edible insect species? In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer: Cham, Germany, 2018; pp. 331–351. [Google Scholar] [CrossRef]
- Tso, R.; Lim, A.J.Y.; Forde, G.C. A Critical Appraisal of the Evidence Supporting Consumer Motivations for Alternative Proteins. Foods 2021, 10, 24. [Google Scholar] [CrossRef]
- Castro, M.; Chambers, E.I.V. Consumer avoidance of insect containing food: Primary emotions, perceptions and sensory characteristics driving consumers considerations. Foods 2019, 8, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, S.; Sogari, G.; Menozzi, D.; Nuvoloni, R.; Torracca, B.; Moruzzo, R.; Paci, G. Factors predicting the intention of eating an insect-based product. Foods 2019, 8, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer-Rochow, V.B.; Jung, C. Insects used as food and feed: Isn’t that what we all need? Foods 2020, 9, 1003. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer-Rochow, V.B.; Jung, C. Interest in Insects as Food and Feed: It Does Not Wane in the Public Domain. Foods 2022, 11, 3184. https://doi.org/10.3390/foods11203184
Meyer-Rochow VB, Jung C. Interest in Insects as Food and Feed: It Does Not Wane in the Public Domain. Foods. 2022; 11(20):3184. https://doi.org/10.3390/foods11203184
Chicago/Turabian StyleMeyer-Rochow, Victor Benno, and Chuleui Jung. 2022. "Interest in Insects as Food and Feed: It Does Not Wane in the Public Domain" Foods 11, no. 20: 3184. https://doi.org/10.3390/foods11203184
APA StyleMeyer-Rochow, V. B., & Jung, C. (2022). Interest in Insects as Food and Feed: It Does Not Wane in the Public Domain. Foods, 11(20), 3184. https://doi.org/10.3390/foods11203184