Incidence of Drug-Resistant Enterobacteriaceae Strains in Organic and Conventional Watermelons Grown in Tennessee
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Design
2.2. Microbial Isolation
2.3. Microbial Identification
2.4. Antimicrobial Susceptibility Test
2.5. Statistical Analysis
3. Results and Discussion
3.1. Enterobacteriaceae
3.2. Effects of Farming System and Plastic Mulch on Enterobacteriaceae Count
3.3. Susceptibility Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilonzo-Nthenge, A.; Liu, S.; Hashem, F.; Millner, P.; Githua, S. Prevalence of Enterobacteriaceae on fresh produce and food safety practices in small-acreage farms in Tennessee, USA. J. Consum. Prot. Food Saf. 2018, 13, 279–287. [Google Scholar] [CrossRef]
- Zheng, L.; Bae, Y.M.; Jung, K.S.; Heu, S.; Lee, S.Y. Antimicrobial activity of natural antimicrobial substances against spoilage bacteria isolated from fresh produce. Food Control 2013, 32, 665–672. [Google Scholar] [CrossRef]
- Goodburn, C.; Wallace, C.A. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control 2013, 32, 418–427. [Google Scholar] [CrossRef]
- Liu, S.; Kilonzo-Nthenge, A. Prevalence of multidrug-resistant bacteria from U.S.-grown and imported fresh produce retailed in chain supermarkets and ethnic stores of Davidson County, Tennessee. J. Food Prot. 2017, 80, 506–514. [Google Scholar] [CrossRef]
- Walsh, K.A.; Bennett, S.D.; Mahovic, M.; Gould, L.H. Outbreaks associated with cantaloupe, watermelon, and honeydew in the United States, 1973-2011. Foodborne Pathog. Dis. 2014, 11, 945–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivapalasingam, S.; Friedman, C.R.; Cohen, L.; Tauxe, R.V. Fresh produce: A growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J. Food Prot. 2004, 67, 2342–2353. [Google Scholar] [CrossRef] [PubMed]
- Ngene, A.C.; Ohaegbu, C.G.; Awom, I.E.; Egbere, J.O.; Onyimba, I.A.; Coulthard, O.D.; Umar, U.; Ohaeri, U.C.; Nnadi, N.N.; Aguiyi, J.C. High prevalence of multidrug resistant enterobacteriaceae isolated from wastewater and soil in Jos Metropolis, Plateau State, Nigeria. Afr. J. Bacteriol. Res. 2021, 13, 22–29. [Google Scholar] [CrossRef]
- Sheoran, H.S.; Phogat, V.K.; Dahiya, R. Effect of organic and conventional farming practices on soil microbial population. J. Environ. Biol. 2019, 40, 125–129. [Google Scholar] [CrossRef]
- November, S.T.E. Commodity Specific Food Safety Guidelines for the Melon Supply Chain. 2005. Available online: https://www.fda.gov/media/116691/ (accessed on 10 September 2022).
- Takahashi, Y.; Tatsuma, T. Metal oxides and hydroxides as rechargeable materials for photocatalysts with oxidative energy storage abilities. Electrochemistry 2014, 82, 749–751. [Google Scholar] [CrossRef] [Green Version]
- Khanal, S.; Khadka, U.; Dhungel, L. REVIEW ARTICLE ISSN:2467-9151. Open Access 2017, 2020. [Google Scholar]
- Hamilton, W.L.; Wenlock, R. Antimicrobial resistance: A major threat to public health. Camb. Med. J. 2016. [Google Scholar] [CrossRef]
- Kilonzo-Nthenge, A.; Nahashon, S.N.; Chen, F.; Adefope, N. Prevalence and antimicrobial resistance of pathogenic bacteria in chicken and guinea fowl. Poult. Sci. 2008, 87, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Dolinsky, A.L. A Consumer Complaint Framework with Resulting Strategies. In Clinical and laboratory Standard Institute; Clinical and laboratory Standard Institute: PA, USA, 1994; Volume 8. [Google Scholar]
- Heperkan, D.; Dalkilic-Kaya, G.; Juneja, V.K. Cronobacter sakazakii in baby foods and baby food ingredients of dairy origin and microbiological profile of positive samples. LWT—Food Sci. Technol. 2017, 75, 402–407. [Google Scholar] [CrossRef]
- Olu-Taiwo, M.; De-Graft, B.M.; Forson, A.O. Microbial Quality of Sliced Pawpaw (Carica papaya) and Watermelon (Citrullus lanatus) Sold on Some Streets of Accra Metropolis, Ghana. Int. J. Microbiol. 2021, 2021, 6695957. [Google Scholar] [CrossRef] [PubMed]
- Batz, M.B.; Hoffmann, S.; Morris, J.G. Ranking the disease burden of 14 pathogens in food sources in the united states using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 2012, 75, 1278–1291. [Google Scholar] [CrossRef] [Green Version]
- Jonas, D.; Spitzmüller, B.; Daschner, F.D.; Verhoef, J.; Brisse, S. Discrimination of Klebsiella pneumoniae and Klebsiella oxytoca phylogenetic groups and other Klebsiella species by use of amplified fragment length polymorphism. Res. Microbiol. 2004, 155, 17–23. [Google Scholar] [CrossRef]
- Kim, H.; Beuchat, L.R. Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juices as affected by storage temperature. J. Food Prot. 2005, 68, 2541–2552. [Google Scholar] [CrossRef] [PubMed]
- Szczech, M.; Kowalska, B.; Smolińska, U.; Maciorowski, R.; Oskiera, M.; Michalska, A. Microbial quality of organic and conventional vegetables from Polish farms. Int. J. Food Microbiol. 2018, 286, 155–161. [Google Scholar] [CrossRef]
- Maffei, D.F.; de Arruda Silveira, N.F.; Catanozi, M.D.P.L.M. Microbiological quality of organic and conventional vegetables sold in Brazil. Food Control 2013, 29, 226–230. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Usall, J.; Viñas, I.; Anguera, M.; Gatius, F.; Abadias, M. Microbiological quality of fresh lettuce from organic and conventional production. Food Microbiol. 2010, 27, 679–684. [Google Scholar] [CrossRef]
- Vaish, S.; Garg, N.; Ahmad, I. Microbial basis of organic farming systems with special reference to biodynamic preparations. Indian J. Agric. Sci. 2020, 90, 1219–1225. [Google Scholar]
- Bandopadhyay, S.; Martin-Closas, L.; Pelacho, A.M.; DeBruyn, J.M. Biodegradable plastic mulch films: Impacts on soil microbial communities and ecosystem functions. Front. Microbiol. 2018, 9, 819. [Google Scholar] [CrossRef] [PubMed]
- Mukuna, W.; Mafiz, A.I.; Pokharel, B.; Tobenna, A.; Kilonzo-nthenge, A. Antibiotic Resistant Enterobacteriaceae in Milk Alternatives. Foods 2021, 10, 3070. [Google Scholar] [CrossRef] [PubMed]
Organic Watermelon Field | Conventional Watermelon Field | ||
---|---|---|---|
Ground | Plastic Mulch | Ground | Plastic Mulch |
Citrobacter freundii | Aeromonas hydrophila | Enterobacter aerogenes | Citrobacter freundii |
Acinetobacter baumannii | Chryseomonas luteola | Providential alcalifactiens | Enterobacter sakazakii |
Enterobacter aerogenes | Proteus mirabilis | Klebsiella oxytoca | |
Pantoea spp. | Citrobacter freundii | Citrobacter braakii | |
Providencia rettigeri | Citrobacter youngae | ||
Aeromonas hydrophila | Pantoea spp. | ||
Chryseomonas luteola | Enterobacter cloacae | ||
Klebsiella oxytoca | Klebsiella oxytoca | ||
Enterobacter cloacae | Klebsiella Pneumonia | ||
Providential alcalifactiens | |||
Pseudomonas flourescence |
Strain Type | (n) | Antimicrobial (s) Resistant Isolates | |||||
C | CN | CRO | CIP | TE | FOX | ||
Acinetobacter baumannii | 3 | 0(0) | 0(0) | 2(66) | 0(0) | 0(0) | 3(100) |
Aeromonas hydrophila | 4 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 4(100) |
Chryseomonas luteola | 4 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 4(100) |
Citrobacter braakii | 2 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 2(100) |
Citrobacter freundii | 7 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 6(85.7) |
Citrobacter youngae | 2 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 2(100) |
Enterobacter aerogenes | 3 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 3(100) |
Enterobacter cloacae | 8 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 6(75) |
Enterobacter sakazakii | 1 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 1(100) |
Escherichia hermannii | 2 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 2(100) |
Klebsiella oxytoca | 4 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 2(50) |
Klebsiella Pneumonia | 1 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 1(100) |
Pantoea spp. | 2 | 0(0) | 0(0) | 1(50) | 0(0) | 1(50) | 2(100) |
Proteus mirabilis | 3 | 0(0) | 0(0) | 1(33.3) | 0(0) | 0(0) | 3(100) |
Providencia rettigeri | 1 | 0(0) | 0(0) | 0(0) | 0(0) | 1(100) | 1(100) |
Providential alcalifactiens | 2 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 2(100) |
Pseudomonas flourescence | 1 | 0(0) | 0(0) | 0(0) | 0(0) | 0(0) | 1(100) |
Strain Type | (n) | Antimicrobial (s) Resistant Isolates | |||||
K | KF | NA | CPD | N | S | ||
Acinetobacter baumannii | 3 | 0(0) | 3(100) | 0(0) | 2(66.7) | 1(33) | 0(0) |
Aeromonas hydrophila | 4 | 0(0) | 3(75) | 1(25) | 1(25) | 0(0) | 0(0) |
Chryseomonas luteola | 4 | 0(0) | 2(50) | 0(0) | 2(50) | 2(50) | 0(0) |
Citrobacter braakii | 2 | 0(0) | 1(50) | 0(0) | 2(100) | 1(50) | 0(0) |
Citrobacter freundii | 7 | 0(0) | 3(42.8) | 0(0) | 7(100) | 4(57.1) | 1(14.3) |
Citrobacter youngae | 2 | 0(0) | 1(50) | 0(0) | 2(100) | 0(0) | 0(0) |
Enterobacter aerogenes | 3 | 0(0) | 3(100) | 0(0) | 2(66.7) | 2(66.7) | 0(0) |
Enterobacter cloacae | 8 | 1(12.5) | 6(75) | 0(0) | 4(50) | 3(37.5) | 0(0) |
Enterobacter sakazakii | 1 | 0(0) | 0(0) | 0(0) | 0(0) | 1(100) | 0(0) |
Escherichia hermannii | 2 | 0(0) | 2(100) | 0(0) | 0(0) | 1(50) | 0(0) |
Klebsiella oxytoca | 4 | 0(0) | 2(50) | 0(0) | 0(0) | 3(75) | 0(0) |
Klebsiella Pneumonia | 1 | 0(0) | 0(0) | 0(0) | 0(0) | 1(100) | 0(0) |
Pantoea spp. | 2 | 0(0) | 2(100) | 0(0) | 0(0) | 0(0) | 0(0) |
Proteus mirabilis | 3 | 2(66.7) | 1(33.3) | 0(0) | 2(66.7) | 1(33.3) | 0(0) |
Providencia rettigeri | 1 | 0(0) | 1(100) | 0(0) | 1(100) | 0(0) | 0(0) |
Providential alcalifactiens | 2 | 0(0) | 2(100) | 1(50) | 1(50) | 2(100) | 0(0) |
Pseudomonas flourescence | 1 | 0(0) | 0(0) | 0(0) | 0(0) | 1(100) | 0(0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akaeze, O.; Kilonzo-Nthenge, A.; Nandwani, D.; Mafiz, A.I.; Nzomo, M.; Aniume, T. Incidence of Drug-Resistant Enterobacteriaceae Strains in Organic and Conventional Watermelons Grown in Tennessee. Foods 2022, 11, 3316. https://doi.org/10.3390/foods11213316
Akaeze O, Kilonzo-Nthenge A, Nandwani D, Mafiz AI, Nzomo M, Aniume T. Incidence of Drug-Resistant Enterobacteriaceae Strains in Organic and Conventional Watermelons Grown in Tennessee. Foods. 2022; 11(21):3316. https://doi.org/10.3390/foods11213316
Chicago/Turabian StyleAkaeze, Onyekachukwu, Agnes Kilonzo-Nthenge, Dilip Nandwani, Abdullah Ibn Mafiz, Maureen Nzomo, and Tobenna Aniume. 2022. "Incidence of Drug-Resistant Enterobacteriaceae Strains in Organic and Conventional Watermelons Grown in Tennessee" Foods 11, no. 21: 3316. https://doi.org/10.3390/foods11213316
APA StyleAkaeze, O., Kilonzo-Nthenge, A., Nandwani, D., Mafiz, A. I., Nzomo, M., & Aniume, T. (2022). Incidence of Drug-Resistant Enterobacteriaceae Strains in Organic and Conventional Watermelons Grown in Tennessee. Foods, 11(21), 3316. https://doi.org/10.3390/foods11213316