Health-Promoting Nutrients and Potential Bioaccessibility of Breads Enriched with Fresh Kale and Spinach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bread Preparation
2.2. Chemicals and Reagents
2.3. Preparation of Bread Extracts and In Vitro Digestion of Samples
2.4. Total Phenolic Content (TPC) and Antioxidant Properties of Bread Extracts and Digested Samples Measured by PHOTOCHEM®
2.5. Mineral Determination
2.6. Folates Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. TPC and Antioxidant Activity Measured by PCL Assay
3.2. Minerals
3.3. Folates
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The European Health Report 2021. Available online: https://apps.who.int/iris/bitstream/handle/10665/352131/9789289057608-eng.pdf (accessed on 17 August 2022).
- Vargas, L.; Kapoor, R.; Nemzer, B.; Feng, H. Application of different drying methods for evaluation of phytochemical content and physical properties of broccoli, kale, and spinach. LWT-Food Sci. Technol. 2022, 155, 112892. [Google Scholar] [CrossRef]
- Kristi, A.; Steinmetz, R.D.; Potter, J.D. Vegetables, Fruit, and Cancer Prevention: A Review. J. Am. Diet. Assoc. 1996, 96, 1027–1039. [Google Scholar] [CrossRef]
- Kessler, J.C.; Martins, V.V.I.M.; Manrique, Y.A.; Ferreira, P.; Calhelha, R.C.; Afonso, A.; Barros, L.; Rodrigues, A.E.; Dias, M.M. Chemical and organoleptic properties of bread enriched with Rosmarinus officinalis L.: The potential of natural extracts obtained through green extraction methodologies as food ingredients. Food Chem. 2022, 384, 132514. [Google Scholar] [CrossRef]
- Lachowicz, S.; Świeca, M.; Pejcz, E. Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chem. 2021, 338, 128026. [Google Scholar] [CrossRef] [PubMed]
- Qazi, W.M.; Ballance, S.; Kousoulaki, K.; Uhlen, A.K.; Kleinegris, D.M.M.; Skjånes, K.; Rieder, A. Protein Enrichment of Wheat Bread with Microalgae: Microchloropsis gaditana, Tetraselmis chui and Chlorella vulgaris. Foods 2021, 10, 3078. [Google Scholar] [CrossRef] [PubMed]
- Mafu, A.; Ketnawa, S.; Phongthai, S.; Schönlechner, R.; Rawdkuen, S. Whole Wheat Bread Enriched with Cricket Powder as an Alternative Protein. Foods 2022, 11, 2142. [Google Scholar] [CrossRef] [PubMed]
- Plustea, L.; Negrea, M.; Cocan, I.; Radulov, I.; Tulcan, C.; Berbecea, A.; Popescu, I.; Obistioiu, D.; Hotea, I.; Suster, G.; et al. Lupin (Lupinus spp.)-Fortified Bread: A Sustainable, Nutritionally, Functionally, and Technologically Valuable Solution for Bakery. Foods 2022, 11, 2067. [Google Scholar] [CrossRef] [PubMed]
- Elkatry, H.O.; Ahmed, A.R.; El-Beltagi, H.S.; Mohamed, H.I.; Eshak, N.S. Biological Activities of Grape Seed By-Products and Their Potential Use as Natural Sources of Food Additives in the Production of Balady Bread. Foods 2022, 11, 1948. [Google Scholar] [CrossRef] [PubMed]
- López-Nicolás, R.; Frontela-Saseta, C.; González-Abellán, R.; Barado-Piqueras, A.; Perez-Conesa, D.; Ros-Berruezo, G. Folate fortification of white and whole-grain bread by adding Swiss chard and spinach. Acceptability by consumers. LWT-Food Sci. Technol. 2014, 59, 263–269. [Google Scholar] [CrossRef]
- Šamec, D.; Urlić, B.; Salopek-Sondi, B. Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Crit. Rev. Food Sci. Nutr. 2018, 20, 2411–2422. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Piljac-Ţegarac, J.; Bogović, M.; Habjanić, K.; Grúz, J. Antioxidant potency of white (Brassica oleracea L. var. capitata) and Chinese (Brassica rapa L. var. pekinensis (Lour.)) cabbage: The influence of development stage, cultivar choice and seed selection. Sci. Hortic. 2011, 128, 78–83. [Google Scholar] [CrossRef]
- Roberts, J.L.; Moreau, R. Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct. 2016, 7, 3337–3353. [Google Scholar] [CrossRef]
- Zhou, K.; Yu, L. Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. LWT-Food Sci. Technol. 2006, 39, 1155–1162. [Google Scholar] [CrossRef]
- Ko, S.H.; Park, J.H.; Kim, S.Y.; Lee, S.W.; Chun, S.S.; Park, E. Antioxidant Effects of Spinach (Spinacia oleracea L.) Supplementation in Hyperlipidemic Rats. Prev. Nutr. Food Sci. 2014, 19, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Terashima, M.; Fukukita, A.; Kodama, R.; Miki, H.; Suzuki, M.; Ikegami, M.; Tamura, N.; Yasuda, A.; Morikawa, M.; Matsumura, S. Evaluation of antioxidant activity of leafy vegetables and beans with myoglobin method. Plant Cell Rep. 2013, 32, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Arru, L.; Mussi, F.; Forti, L.; Buschini, A. Biological Effect of Different Spinach Extracts in Comparison with the Individual Components of the Phytocomplex. Foods 2021, 10, 382. [Google Scholar] [CrossRef] [PubMed]
- Junejo, S.A.; Rashid, A.; Yang, L.; Xu, Y.; Kraithong, S.; Zhou, Y. Effects of spinach powder on the physicochemical and antioxidant properties of durum wheat bread. LWT-Food Sci. Technol. 2021, 150, 112058. [Google Scholar] [CrossRef]
- Galla, N.R.; Pamidighantam, P.R.; Karakala, B.; Gurusiddaiah, M.R.; Akula, S. Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). Int. J. Gastron. Food Sci. 2017, 7, 20–26. [Google Scholar] [CrossRef]
- Chen, L.; Cao, H.; Xiao, J. 2-Polyphenols: Absorption, bioavailability, and metabolomics. Polyphen. Prop. Recovery Appl. 2018, 45–67. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Serrano, J.; Gońi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Tabele składu i wartości odżywczej żywności, wydanie II zmienione. In Food Composition Tables; PZWL: Warsaw, Poland, 2017. [Google Scholar]
- U.S. Department of Agriculture. Agricultural Research Service. FoodData Central Search Results. Available online: https://fdc.nal.usda.gov/ (accessed on 16 August 2022).
- Edelman, M.; Colt, M. Nutrient Value of Leaf vs. Seed. Front. Chem. 2016, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, M. Nutrition Standards for the Polish Population; Food and Nutrition Institute: Warsaw, Poland, 2017; Available online: http://zywnosc.com.pl/wp-content/uploads/2017/12/normy-zywienia-dla-populacji-polski-2017-1.pdf/ (accessed on 30 August 2022).
- Ames, B.N. Micronutrient Deficiencies: A Major Cause of DNA Damage. Ann. N. Y. Acad. Sci. 2006, 889, 87–106. [Google Scholar] [CrossRef]
- Czeizel, A.E.; Dudas, I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N. Engl. J. Med. 1992, 327, 1832–1835. [Google Scholar] [CrossRef]
- Dhonukshe-Rutten, R.A.M.; de Vries, J.H.M.; de Bree, A.; van der Put, N.; van Staveen, W.A.; de Groot, L.C.P.G.M. Dietary intake and status of folate and vitamin B12 and their association with homocysteine and cardiovascular disease in European populations. Eur. J. Clin. Nutr. 2009, 63, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ye, R.; Zhang, L.; Li, H.; Liu, J.; Ren, A. Folic acid supplementation during early pregnancy and the risk of gestational hypertension and preeclampsia. Hypertension 2013, 61, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Quinlivan, E.P.; Hanson, A.D.; Gregory, J.F. The analysis of folate and its metabolic precursors in biological samples. Anal. Biochem. 2006, 348, 163–184. [Google Scholar] [CrossRef]
- Lintas, C. Linking genetics to epigenetics: The role of folate and folate-related pathways in neurodevelopmental disorders. Clin. Genet. 2019, 95, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Czarnowska-Kujawska, M.; Draszanowska, A.; Gujska, E.; Klepacka, J.; Kasińska, M. Folate Content and Yolk Color of Hen Eggs from Different Farming Systems. Molecules 2021, 26, 1034. [Google Scholar] [CrossRef] [PubMed]
- Krupa-Kozak, U.; Drabińska, N.; Bączek, N.; Šimková, K.; Starowicz, M.; Jeliński, T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021, 10, 819. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Andrade, C.; Conde-Aguilera, J.A.; Haro, A.; De La Cueva, S.P.; Rufián -Henares, J.A. A combined procedure to evaluate the global antioxidant response of bread. J. Cereal Sci. 2010, 56, 239–246. [Google Scholar] [CrossRef]
- Bączek, N.; Jarmułowicz, A.; Wronkowska, M.; Monika Haros, C. Assessment of the glycaemic index, content of bioactive compounds, and their in vitro bioaccessibility in oat-buckwheat breads. Food Chem. 2020, 330, 127199. [Google Scholar] [CrossRef]
- Zieliński, H.; Zielińska, D.; Kostyra, H. Antioxidant capacity of a new crispy type food products determined by updated analytical strategies. Food Chem. 2012, 130, 1098–1104. [Google Scholar] [CrossRef]
- Whiteside, P.; Miner, B. Pye Unicam Atomic Absorption Data Book; Pye Unicam Ltd.: Cambridge, UK, 1984. [Google Scholar]
- Blakley, R.L. The biochemistry of folic acid and related pteridines. In North-Holland Research Monographs; North-Holland Publishing Company: Amsterdam, The Netherlands, 1969; pp. 1–570. [Google Scholar]
- Nazzaro, F.; Cardinale, F.; Cozzolino, A.; Granese, T.; Fratianni, F. Polyphenol Composition and Antioxidant Activity of Different Potentially Functional Kale-Based Snacks. Food Nutr. Sci. 2014, 5, 1145–1152. [Google Scholar] [CrossRef] [Green Version]
- Duthie, G.; Campbell, F.; Bestwick, C.; Stephen, S.; Russell, W. Antioxidant Effectiveness of Vegetable Powders on the Lipid and Protein Oxidative Stability of Cooked Turkey Meat Patties: Implications for Health. Nutrients 2013, 5, 1241–1252. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Estévez, M.; Barba, F.J.; Thirumdas, R.; Franco, D.; Munekata, P.E.S. Polyphenols: Bioaccessibility and bioavailability of bioactive components. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Woodhead Publishing: Suffolk, UK, 2019; pp. 309–332. [Google Scholar] [CrossRef]
- Lafarga, T.; Gallagher, E.; Bademunt, A.; Bobo, G.; Echeverria, G.; Viñas, I.; Aguiló-Aguayo, I. Physicochemical and nutritional characteristics, bioaccessibility and sensory acceptance of baked crackers containing broccoli co-products. Int. J. Food Sci. Technol. 2019, 54, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Burgos-Edwards, A.; Jiménez-Aspee, F.; Thomas-Valdés, S.; Schmeda-Hirschmann, G.; Theoduloz, C. Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion. Food Chem. 2017, 237, 1073–1082. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Waseem, M.; Akhtar, S.; Manzoor, M.F.; Mirani, A.A.; Ali, Z.; Ismail, T.; Ahmad, N.; Karrar, E. Nutritional characterization and food value addition properties of dehydrated spinach powder. Food Sci. Nutr. 2021, 9, 1213–1221. [Google Scholar] [CrossRef]
- Platta, A.; Kolenda, H. The concentration of mineral compounds in selected carrot varieties. Bromat. Chem. Toksykol 2009, 3, 294–298. [Google Scholar]
- Rosa, E.; Heaney, R. Seasonal variation in protein, mineral and glucosinolate composition of Portuguese cabbages and kale. Anim. Feed Sci. Technol. 1996, 57, 111–127. [Google Scholar] [CrossRef]
- Karak, T.; Kutu, F.R.; Nath, J.R.; Sonar, I.; Paul, R.K.; Boruah, R.K.; Sanyal, S.; Sabhapondit, S.; Dutta, A.K. Micronutrients (B, Co, Cu, Fe, Mn, Mo and Zn) content in made tea (Camellia sinensis L.) and tea infusion with health prospect: A critical review. Crit. Rev. Food Sci. Nutr. 2017, 57, 14. [Google Scholar] [CrossRef]
- Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef]
- Kuchrska, A.; Oleksiak, N.; Sińska, B.; Zegan, M.; Michota-Katulska, E. Fruits and vegetables as a source of vitamins and minerals in the diet of female students of dietetics. Bromat. Chem. Toksykol 2016, 2, 145–151. [Google Scholar]
- Gregory, J.F. Chemical and nutritional aspects of folate research, analytical procedures, methods of folate synthesis, stability, and bioavailabilty of dietary folates. Adv. Nutr. 1989, 33, 1–101. [Google Scholar] [CrossRef]
- Dang, J.; Arcot, J.; Shrestha, A. Folate retention in selected processed legumes. Food Chem. 2000, 68, 295–298. [Google Scholar] [CrossRef]
- Delchier, N.; Herbig, A.L.; Rychlik, M.; Renard, C.M.G.C. Folates in fruits and vegetables: Contents, processing and stability. Compr. Rev. Food Sci. Food Saf. 2016, 15, 506–528. [Google Scholar] [CrossRef] [Green Version]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for folate. EFSA J. 2014, 12, 1–59. [Google Scholar] [CrossRef]
- Brevik, A.; Vollset, S.E.; Tell, G.S.; Refsum, H.; Ueland, P.M.; Loeken, E.B. Plasma concentration of folate as a biomarker for the intake of fruit and vegetables: The Hordaland Homocysteine Study. Am. J. Clin. Nutr. 2005, 81, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Czarnowska-Kujawska, M.; Draszanowska, A.; Starowicz, M. Effect of different cooking methods on the folate content, organoleptic and functional properties of broccoli and spinach. LWT-Food Sci. Technol. 2022, 167, 113825. [Google Scholar] [CrossRef]
- Patring, J.; Wandel, M.; Jägerstad, M.; Frølich, W. Folate content of Norwegian and Swedish flours and bread analysed by use of liquid chromatography–mass spectrometry. J. Food Compost. Anal. 2009, 22, 649–656. [Google Scholar] [CrossRef]
- Gujska, E.; Michalak, J.; Klepacka, J. Folates Stability in Two Types of Rye Breads during Processing and Frozen Storage. Plant Foods Hum. Nutr. 2009, 64, 129–134. [Google Scholar] [CrossRef]
- Gujska, E.; Majewska, K. Effect of baking process on added folic acid and endogenous folates stability in wheat and rye breads. Plant Foods Hum. Nutr. 2005, 60, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Kariluoto, S.; Vahteristo, L.; Salovaara, H.; Katina, K.; Liukkonen, K.H.; Piironen, V. Effect of baking method and fermentation on folate content of rye and wheat breads. Cereal Chem. 2004, 81, 134–139. [Google Scholar] [CrossRef]
- Delchier, N.; Ringling, C.; Le Grandois, J.; Aoudé-Wernerd, D.; Gallande, R.; Georgé, S.; Rychlik, M.; Renard, C.M.G.C. Effects of industrial processing on folate content in green vegetables. Food Chem. 2013, 139, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Hefni, M.; Witthöft, C. Folate content in processed legume foods commonly consumed in Egypt. LWT-Food Sci. Technol. 2014, 57, 337–343. [Google Scholar] [CrossRef]
- Bureau, S.; Mouhoubi, S.; Touloumet, L.; Garcia, L.; Moreau, F.; Bédouet, V.; Renard, C.M.G.C. Are folates, carotenoids and vitamin C affected by cooking? Four domestic procedures are compared on a large diversity of frozen vegetables. LWT-Food Sci. Technol. 2015, 64, 735–741. [Google Scholar] [CrossRef]
- Pan, Z.; Sun, Y.; Zhang, F.; Guo, X.; Liao, Z. Effect of thermal processing on carotenoids and folate changes in six varieties of sweet potato (Ipomoes batata L.). Foods 2019, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Czarnowska-Kujawska, M.; Draszanowska, A.; Gujska, E. Effect of Different Cooking Methods on Folate Content in Chicken Liver. Foods 2020, 9, 1431. [Google Scholar] [CrossRef]
- Czarnowska-Kujawska, M.; Klepacka, J.; Zielińska, O.; Samaniego-Vaesken, M.d.L. Characteristics of Dietary Supplements with Folic Acid Available on the Polish Market. Nutrients 2022, 14, 3500. [Google Scholar] [CrossRef]
- Samaniego-Vaesken, M.L.; Alonso-Aperte, E.; Varela-Moreiras, G. Voluntary fortification with folic acid in Spain: An updated food composition database. Food Chem. 2016, 193, 148–153. [Google Scholar] [CrossRef]
- Gujska, E.; Michalak, J.; Czarnowska, M. Wpływ czasu i temperatury przechowywania na stabilność kwasu foliowego i folianów w wybranych sokach owocowych i owocowo-warzywnych. Effect of storage time and temperature on the stability of folic acid and folate in selected fruit and fruit and vegetable juices. Żywność Nauka Technol. Jakość 2013, 6, 130–138. [Google Scholar]
- De Wals, P.; Tairou, F.; Van Allen, M.I.; Uh, S.; Lowry, R.; Sibbald, B.; Evans, J.A.; Van den Hof, M.C.; Zimmer, P.; Crowley, M.; et al. Reduction in neural-tube defects after folic acid fortification in Canada. N. Engl. J. Med. 2007, 357, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.R.; McPartlin, J.; Scott, J. Folic acid fortification and public health: Report on threshold doses above which unmetabolised folic acid appear in serum. BMC Public Health 2007, 7, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Scientific Committee on Food, Scientific Panel of Dietetic Products, Nutrition and Allergies. Tolerable Upper Intake Levels for Vitamins and Minerals; European Food Safety Authority (EFSA): Brussels, Belgium, 2006; Available online: https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf (accessed on 17 August 2022).
Type of Bread | Ingredients [g/1000 g] |
Toasted bread | Wheat flour (640), bakers’ yeast (1.5), salt (8), oil (9), sugar (10), milk powder (10) |
Toasted bread 10% kale | Wheat flour (590), bakers’ yeast (1.5), salt (8), kale (100), oil (9), sugar (10), milk powder (10) |
Toasted bread 20% kale | Wheat flour (550), bakers’ yeast (1.5), salt (8), kale (200), oil (9), sugar (10), milk powder (10) |
Wholemeal bread | Wholemeal wheat flour (460), wheat flour (240), bakers’ yeast (1.5), salt (10), oil (9), sugar (10), milk powder (10) |
Wholemeal bread 20% spinach | Wholemeal wheat flour (410), wheat flour (215), bakers’ yeast (1.5), salt (10), spinach (200), oil (9), sugar (10), milk powder (10) |
Wholemeal bread 40% spinach | Wholemeal wheat flour (310), wheat flour (160), bakers’ yeast (1.5), salt (10), spinach (400), oil (9), sugar (10), milk powder (10) |
PCL [µmol Trolox/g d.m.] | TPC [mg/g] | PCL [µmol Trolox/g d.m.] | TPC [mg/g] | ||||
---|---|---|---|---|---|---|---|
ACW | ACL | ACW | ACL | ||||
Extracts | |||||||
Toasted bread | 0.27 ± 0.02 g | 3.44 ± 0.04 h | 1.33 ± 0.08 d | Wholemeal bread | 1.32 ± 0.06 f | 2.39 ± 0.08 g | 1.73 ± 0.17 c |
Kale 10% | 3.24 ± 0.09 e | 6.21 ± 0.06 g | 2.00 ± 0.25 d | Spinach 20% | 2.50 ± 0.08 e | 3.68 ± 0.24 fg | 3.25 ± 0.08 c |
Kale 20% | 4.53 ± 0.08 c | 8.21 ± 0.06 f | 4.10 ± 0.06 d | Spinach 40% | 3.48 ± 0.04 d | 4.25 ± 0.22 f | 5.15 ± 0.48 c |
In vitro digestion ‘gastric stage’ | |||||||
Toasted bread | 1.38 ± 0.22 f | 13.34 ± 0.90 d | 69.44 ± 5.82 a | Wholemeal bread | 5.26 ± 0.60 b | 17.00 ± 1.08 cd | 63.68 ± 2.00 a |
Kale 10% | 6.49 ± 0.18 b | 10.06 ± 0.17 e | 69.62 ± 5.58 a | Spinach 20% | 1.22 ± 0.11 f | 38.18 ± 2.19 b | 65.49 ± 2.83 a |
Kale 20% | 4.05 ± 0.08 d | 21.85 ± 1.17 a | 67.44 ± 1.21 a | Spinach 40% | 3.54 ± 0.30 cd | 40.32 ± 1.34 a | 67.15 ± 4.78 a |
In vitro digestion ‘intestinal stage’ | |||||||
Toasted bread | 2.51 ± 0.24 e | 6.10 ± 0.07 g | 53.60 ± 5.91 c | Wholemeal bread | 5.83 ± 0.04 ab | 8.82 ± 0.06 e | 57.39 ± 3.98 b |
Kale 10% | 5.02 ± 0.33 c | 16.81 ± 0.38 c | 56.96 ± 4.24 bc | Spinach 20% | 4.03 ± 0.27 c | 16.89 ± 0.63 d | 62.54 ± 0.20 ab |
Kale 20% | 8.61 ± 0.17 a | 19.92 ± 1.19 b | 61.81 ± 0.55 ab | Spinach 40% | 6.06 ± 0.16 a | 18.68 ± 0.28 c | 63.70 ± 2.34 a |
Minerals Content 1, RDA 2/AI 3 and DDC 4 | Toasted Bread | Kale 10% | Kale 20% | Wholemeal Bread | Spinach 20% | Spinach 40% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Children and Youth 10–18 | Adults ≥19 | Children and Youth 10–18 | Adults ≥ 19 | Children and Youth 10–18 | Adults ≥19 | Children and Youth 10–18 | Adults ≥19 | Children and Youth 10–18 | Adults ≥19 | Children and Youth 10–18 | Adults ≥19 | |
Cu [mg/100 g] | 0.10 ± 0.01 a | 0.09 ± 0.01 b | 0.10 ± 0.01 a | 0.17 ± 0.01 c | 0.19 ± 0.01 b | 0.23 ± 0.01 a | ||||||
RDA | 0.7–0.9 | 0.9 | 0.7–0.9 | 0.9 | 0.7–0.9 | 0.9 | 0.7–0.9 | 0.9 | 0.7–0.9 | 0.9 | 0.7–0.9 | 0.9 |
DDC [%] | 11–14 | 11 | 10–13 | 10 | 11–14 | 11 | 19–24 | 19 | 21–27 | 21 | 26–33 | 26 |
Mn [mg/100 g] | 0.31 ± 0.01 c | 0.38 ± 0.01 b | 0.50 ± 0.01 a | 0.70 ± 0.01 b | 0.82 ± 0.01 a | 0.84 ± 0.02 a | ||||||
AI | 1.5–2.2 | 1.8–2.3 | 1.5–2.2 | 1.8–2.3 | 1.5–2.2 | 1.8–2.3 | 1.5–2.2 | 1.8–2.3 | 1.5–2.2 | 1.8–2.3 | 1.5–2.2 | 1.8–2.3 |
DDC [%] | 14–21 | 13–17 | 17–25 | 17–21 | 23–33 | 22–28 | 32–47 | 30–39 | 37–55 | 36–46 | 38–56 | 37–47 |
Fe [mg/100 g] | 0.68 ± 0.01 c | 0.72 ± 0.02 b | 0.81 ± 0.01 a | 1.38 ± 0.03 c | 1.68 ± 0.02 b | 1.94 ± 0.01 a | ||||||
RDA | 10–15 | 10–18 | 10–15 | 10–18 | 10–15 | 10–18 | 10–15 | 10–18 | 10–15 | 10–18 | 10–15 | 10–18 |
DDC [%] | 5–7 | 4–7 | 5–7 | 4–7 | 5–8 | 4–8 | 9–14 | 8–14 | 11–17 | 9–17 | 13–19 | 11–19 |
Zn [mg/100 g] | 1.07 ± 0.02 a | 0.92 ± 0.01 b | 1.05 ± 0.02 a | 1.54 ± 0.05 c | 1.64 ± 0.03 b | 1.73 ± 0.01 a | ||||||
RDA | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 | 8–11 |
DDC [%] | 10–13 | 10–13 | 8–12 | 8–12 | 10–13 | 10–13 | 14–19 | 14–19 | 15–21 | 15–21 | 16–22 | 16–22 |
Mg [mg/100 g] | 14.17 ± 0.15 c | 19.10 ± 0.16 b | 23.61 ± 0.09 a | 37.41 ± 0.54 c | 50.69 ± 0.55 b | 55.45 ± 0.51 a | ||||||
RDA | 240–410 | 310–420 | 240–410 | 310–420 | 240–410 | 310–420 | 240–410 | 310–420 | 240–410 | 310–420 | 240–410 | 310–420 |
DDC [%] | 3–6 | 3–5 | 5–8 | 5–6 | 6–10 | 6–8 | 9–16 | 9–12 | 12–21 | 12–16 | 14–23 | 13–18 |
Ca [mg/100 g] | 45.26 ± 1.77 b | 45.05 ± 0.37 b | 56.26 ± 0.55 a | 24.05 ± 0.49 c | 41.66 ± 0.33 b | 47.33 ± 0.57 a | ||||||
RDA | 1300 | 1000–1200 | 1300 | 1000–1200 | 1300 | 1000–1200 | 1300 | 1000–1200 | 1300 | 1000–1200 | 1300 | 1000–1200 |
DDC [%] | 3 | 4–5 | 3 | 4–5 | 4 | 4–5 | 2 | 2 | 3 | 3–4 | 4 | 4–5 |
Na [mg/100 g] | 494.43 ± 4.67a | 410.16 ± 9.79 c | 437.05 ± 11.77 b | 319.86 ± 4.42 c | 355.25 ± 1.60 b | 407.50 ± 7.80 a | ||||||
AI | 1300–1500 | 1200–1500 | 1300–1500 | 1200–1500 | 1300–1500 | 1200–1500 | 1300–1500 | 1200–1500 | 1300–1500 | 1200–1500 | 1300–1500 | 1200–1500 |
DDC [%] | 33–38 | 33–41 | 27–32 | 27–34 | 29–34 | 29–36 | 21–25 | 21–27 | 24–27 | 24–30 | 27–31 | 27–34 |
K [mg/100 g] | 161.71 ± 2.25 c | 188.58 ± 1.48 b | 209.35 ± 0.35 a | 193.89 ± 2.45 c | 293.87 ± 1.01 b | 417.85 ± 4.87 a | ||||||
AI | 2400–3500 | 3500 | 2400–3500 | 3500 | 2400–3500 | 3500 | 2400–3500 | 3500 | 2400–3500 | 3500 | 2400–3500 | 3500 |
DDC [%] | 5–7 | 5 | 5–8 | 5 | 6–9 | 6 | 6–8 | 6 | 8–12 | 8 | 12–17 | 12 |
P [mg/100 g] | 112.16 ± 2.58 a | 101.57 ± 0.79 b | 104.36 ± 3.07 b | 186.29 ± 1.91 c | 193.44 ± 1.56 b | 205.16 ± 4.87 a | ||||||
RDA | 1250 | 700 | 1250 | 700 | 1250 | 700 | 1250 | 700 | 1250 | 700 | 1250 | 700 |
DDC [%] | 9 | 16 | 8 | 15 | 8 | 15 | 15 | 27 | 15 | 28 | 16 | 29 |
Group, Age | ||||||
Children and youth 10–18 | Adults ≥19 | Pregnant and breast feeding women | ||||
Sample | Folates [µg/100 g] | RDA 1 | ||||
H4PteGlu | 5-CH3-H4PteGlu | Total Folates 2 | 250–400 | 400 | 600 | |
DDC% 3 | ||||||
Toasted bread | 3.5 4 ± 0.3 | 14.5 ± 1.3 | 18.1 ± 1.3 a5 | 5–7 | 5 | 3 |
Kale 10% | 3.7 ± 0.2 | 24.0 ± 1.4 | 27.7 ± 1.3 b | 7–11 | 7 | 5 |
Kale 20% | 4.8 ± 0.2 | 40.5 ± 2.6 | 45.3 ± 2.4 c | 11–18 | 11 | 8 |
Wholemeal bread | 10.1 ± 0.9 | 27.1 ± 2.2 | 37.2 ± 2.5 a | 9–15 | 9 | 6 |
Spinach 20% | 13.8 ± 1.3 | 53.3 ± 4.6 | 67.0 ± 4.8 b | 17–27 | 17 | 11 |
Spinach 40% | 20.6 ± 1.0 | 62.6 ± 4.9 | 83.2 ± 4.7 c | 21–33 | 21 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czarnowska-Kujawska, M.; Starowicz, M.; Barišić, V.; Kujawski, W. Health-Promoting Nutrients and Potential Bioaccessibility of Breads Enriched with Fresh Kale and Spinach. Foods 2022, 11, 3414. https://doi.org/10.3390/foods11213414
Czarnowska-Kujawska M, Starowicz M, Barišić V, Kujawski W. Health-Promoting Nutrients and Potential Bioaccessibility of Breads Enriched with Fresh Kale and Spinach. Foods. 2022; 11(21):3414. https://doi.org/10.3390/foods11213414
Chicago/Turabian StyleCzarnowska-Kujawska, Marta, Małgorzata Starowicz, Veronika Barišić, and Wojciech Kujawski. 2022. "Health-Promoting Nutrients and Potential Bioaccessibility of Breads Enriched with Fresh Kale and Spinach" Foods 11, no. 21: 3414. https://doi.org/10.3390/foods11213414
APA StyleCzarnowska-Kujawska, M., Starowicz, M., Barišić, V., & Kujawski, W. (2022). Health-Promoting Nutrients and Potential Bioaccessibility of Breads Enriched with Fresh Kale and Spinach. Foods, 11(21), 3414. https://doi.org/10.3390/foods11213414