The Use of Saccharomyces cerevisiae Supplemented with Intracellular Magnesium Ions by Means of Pulsed Electric Field (PEF) in the Process of Bread Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Maintenance and Inoculum Preparation
2.2. Biomass Cultivation under Optimised Conditions
2.3. PEF Treatment and Enrichment with Magnesium
2.4. Bread-Making Procedure
2.5. Evaluation of Bread Quality Characteristics
2.6. Determination of Magnesium Concentration in Yeast Cells and Bread
2.7. Chemical Analysis of Bread
2.8. Antioxidant Properties
2.8.1. Extraction of Bioactive Compounds
2.8.2. DPPH (2,2-Difenylo-1-pikrylohydrazyl) Radical Scavenging Activity
2.8.3. ABTS (3-Etylobenzotiazolino-6-sulfonianu) Radical Scavenging Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Determination of Magnesium Concentration in Saccharomyces cerevisiae and Bread
3.2. Bread Quality
3.3. Antioxidant Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wesley, A.S.; Horton, S. Economics of Food Fortification. In Nutrients, Dietary Supplements, and Nutriceuticals; Gerald, J., Watson, R., Preedy, V., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 31–40. [Google Scholar] [CrossRef]
- Rylander, R. Magnesium in pregnancy blood pressure and pre-eclampsia—A review. Pregnancy Hypertens. Int. J. Women’s Cardiovasc. Health 2014, 4, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Derom, M.L.; Sayón-Orea, C.; Martínez-Ortega, J.M.; Martínez-González, M.A. Magnesium and depression: A systematic review. Nutr. Neurosci. 2013, 16, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayman, M.P. The use of high-selenium yeast to raise selenium status: How does it measure up? Br. J. Nutr. 2004, 92, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Knop, M.; Miller, K.J.; Mazza, M.; Feng, D.J.; Weber, M.; Keränen, S.; Jäntti, J. Molecular interactions position Mso1p, a novel PTB domain homologue, in the interface of the exocyst complex and the exocytic SNARE machinery in yeast. Mol. Biol. Cell 2005, 16, 4543–4556. [Google Scholar] [CrossRef] [Green Version]
- De Nicola, R.; Walker, G.M. Accumulation and cellular distribution of zinc by brewing yeast. Enzym. Microb. Technol. 2009, 44, 210–216. [Google Scholar] [CrossRef]
- Mrvčić, J.; Stanzer, D.; Šolić, E.; Stehlik-Tomas, V. Interaction of lactic acid bacteria with metal ions: Opportunities for improving food safety and quality. World J. Microbiol. Biotechnol. 2012, 28, 2771–2782. [Google Scholar] [CrossRef]
- Liu, G.J.; Martin, D.K.; Gardner, R.C.; Ryan, P.R. Large Mg(2+)-dependent currents are associated with the increased expression of ALR1 in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2002, 213, 231–237. [Google Scholar] [CrossRef]
- Mrvčić, J.; Prebeg, T.; Barišić, L.; Stanzer, D.; Bačun-Drùina, V.; Stehlik-Tomas, V. Zinc binding by Lactic acid bacteria. Food Technol. Biotechnol. 2009, 47, 381–388. [Google Scholar]
- Pankiewicz, U.; Jamroz, J. Effect of pulsed electric fields upon accumulation of magnesium in Saccharomyces cerevisiae. Eur. Food Res. Technol. 2010, 231, 663–668. [Google Scholar] [CrossRef]
- Koubaa, M.; Barba, F.J.; Grimi, N.; Mhemdi, H.; Koubaa, W.; Boussetta, N.; Vorobiev, E. Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound. Innov. Food Sci. Emerg. Technol. 2016, 37, 336–344. [Google Scholar] [CrossRef]
- Vaessen, E.M.J.; den Besten, H.M.W.; Patra, T.; van Mossevelde, N.T.M.; Boom, R.M.; Schutyser, M.A.I. Pulsed electric field for increasing intracellular trehalose content in Lactobacillus plantarum WCFS1. Innov. Food Sci. Emerg. Technol. 2018, 47, 256–261. [Google Scholar] [CrossRef]
- Kolosnjaj-Tabi, J.; Gibot, L.; Fourquaux, I.; Golzio, M.; Rols, M.P. Electric field-responsive nanoparticles and electric fields: Physical, chemical, biological mechanisms and therapeutic prospects. Adv. Drug Deliv. Rev. 2019, 138, 56–67. [Google Scholar] [CrossRef]
- Escoffre, J.M.; Portet, T.; Wasungu, L.; Teissié, J.; Dean, D.; Rols, M.P. What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol. Biotechnol. 2009, 41, 286–295. [Google Scholar] [CrossRef]
- Dermol-Černe, J.; Miklavčič, D.; Reberšek, M.; Mekuč, P.; Bardet, S.M.; Burke, R.; Arnaud-Cormos, D.; Leveque, P.; O’Connor, R. Plasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitability. Bioelectrochemistry 2018, 122, 103–114. [Google Scholar] [CrossRef]
- Cauvain, S.P.; Young, L.S. Baked Products: Science, Technology and Practice; Blackwell Publisher: Hoboken, NJ, USA, 2006; p. 228. [Google Scholar]
- Rosell, C.M. The Science of Doughs and Bread Quality. In Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2011; pp. 3–14. ISBN 9780123808875. [Google Scholar]
- Batifoulier, F.; Verny, M.A.; Chanliaud, E.; Rémésy, C.; Demigné, C. Effect of different breadmaking methods on thiamine, riboflavin and pyridoxine contents of wheat bread. J. Cereal Sci. 2005, 42, 101–108. [Google Scholar] [CrossRef]
- Ranhotra, G.S.; Loewe, R.J.; Lehmann, T.A.; Hepburn, F.N. Effect of various magnesium sources on breadmaking charakteristics of wheat flour. J. Food Sci. 2008, 41, 952–954. [Google Scholar] [CrossRef]
- Rojo-Gutiérrez, E.; Sánchez-Vega, R.; Olivas, G.I.; Gutiérrez-Méndez, N.; Baeza-Jiménez, R.; Rios-Velasco, C.; Sepúlveda, D.R. Manufacture of magnesium-fortified Chihuahua cheese. J. Dairy Sci. 2022, 105, 4915–4924. [Google Scholar] [CrossRef]
- Skibniewska, K.A.; Fiecko, M.; Fornal, Ł.; Smoczyński, S.S. Influence of starter culture and complex dough improver on in vitro digestibility of some minerals from bread. Curr. Trends Commodity Sci. Poznań Univ. Econo. Publ. House 2002, 2, 635–639. [Google Scholar]
- Capar, S.G.; Cunningham, W.C. Element and Radionuclide Concentrations in Food: FDA Total Diet. J. AOAC Int. 2000, 83, 157–177. [Google Scholar] [CrossRef] [Green Version]
- Rybicka, I.; Doba, K.; Bińczak, O. Improving the sensory and nutritional value of gluten-free bread. Int. J. Food Sci. Technol. 2019, 54, 2661–2667. [Google Scholar] [CrossRef]
- Blackwell, K.J.; Tobin, J.M.; Avery, S.V. Manganese uptake and toxicity in magnesium-supplemented and unsupplemented Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1997, 47, 180–184. [Google Scholar] [CrossRef]
- Wirkijowska, A.; Zarzycki, P.; Sobota, A.; Nawrocka, A.; Blicharz-Kania, A.; Andrejko, D. The possibility of using by-products from the flaxseed industry for functional bread production. LWT 2020, 118, 108860. [Google Scholar] [CrossRef]
- Ambrosewicz-Walacik, M.; Tańska, M.; Rotkiewicz, D.; Piȩtak, A. Effect of Various Sodium Chloride Mass Fractions on Wheat and Rye Bread Using Different Dough Preparation Techniques. Food Technol. Biotechnol. 2016, 54, 172. [Google Scholar] [CrossRef] [PubMed]
- Bakare, A.H.; Osundahunsi, O.F.; Olusanya, J.O. Rheological, baking, and sensory properties of composite bread dough with breadfruit (Artocarpus communis Forst) and wheat flours. Food Sci. Nutr. 2016, 4, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AACC. Approved Methods of the American Association of Cereal Chemist; The American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Wirkijowska, A.; Sobota, A.; Zarzycki, P.; Nawrocka, A.; Blicharz-Kania, A.; Andrejko, D. Chemical, technological, and sensory evaluation of the suitability of coconut by-products in white rolls. J. Sci. Food Agric. 2022, 102, 3370–3378. [Google Scholar] [CrossRef] [PubMed]
- Jorhem, L.; Engman, J.; Arvidsson, B.-M.; Åsman, B.; Åstrand, C.; Gjerstad, K.O.; Haugsnes, J.; Heldal, V.; Holm, K.; Jensen, A.M.; et al. Determination of Lead, Cadmium, Zinc, Copper, and Iron in Foods by Atomic Absorption Spectrometry after Microwave Digestion: NMKL1 Collaborative Study. J. AOAC Int. 2000, 83, 1189–1203. [Google Scholar] [CrossRef]
- US Department of Agriculture. Agricultural Research Service, Nutrient Data Laboratory; USDA: Washington, DC, USA, 2016.
- Antoniewska, A.; Rutkowska, J.; Pineda, M.M.; Adamska, A. Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. LWT Food Sci. Technol. 2018, 89, 217–223. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Grembecka, M.; Kusiuk, A.; Szefer, P. Zawartość magnezu, fosforu, cynku i żelaza w różnych gatunkach pieczywa. Bromatol. I Chem. Toksykol. 2007, 4, 319–323. [Google Scholar]
- Hussein, L.; Bruggeman, J. Zinc analysis of Egyptian foods and estimated daily intakes among an urban population group. Food Chem. 1997, 58, 391–398. [Google Scholar] [CrossRef]
- Huang, Y.; He, M.; Kasapis, S.; Brennan, M.; Brennan, C. The influence of the fortification of red pitaya (Hylocereus polyrhizus) powder on the in vitro digestion, physical parameters, nutritional profile, polyphenols and antioxidant activity in the oat-wheat bread. Int. J. Food Sci. Technol. 2022, 57, 2729–2738. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ciudad-Mulero, M.; Fernández-Ruiz, V.; Ferreira, E.; Heleno, S.; Rodrigues, P.; Barros, L.; Ferreira, I.C.F.R. Comparison of different bread types: Chemical and physical parameters. Food Chem. 2020, 310, 125954. [Google Scholar] [CrossRef]
- Wronkowska, M.; Jadacka, M.; Soral-Śmietana, M.; Zander, L.; Dajnowiec, F.; Banaszczyk, P.; Jeliński, T.; Szmatowicz, B. ACID whey concentrated by ultrafiltration a tool for modeling bread properties. LWT Food Sci. Technol. 2015, 61, 172–176. [Google Scholar] [CrossRef]
- Ceglińska, A.; Pluta, A.; Skrzypek, J.; Krawczyk, P. Badania nad zastosowaniem do produkcji pieczywa składników mineralnych otrzymanych po nanofiltracji serwatki. Żywność. Nauk. Technol. Jakość. 2007, 6, 234–241. [Google Scholar]
- Lopez, H.W.; Leenhardt, F.; Remesy, C. New data on the bioavailability of bread magnesium. Magnes. Res. 2005, 17, 335–340. [Google Scholar]
- Bhise, S.; Kaur, A. Baking quality, sensory properties and shelf life of bread with polyols. J. Food Sci. Technol. 2014, 51, 2054–2061. [Google Scholar] [CrossRef] [Green Version]
- Litwinek, D.; Gambuś, H.; Buksa, K.; Makarewicz, M.; Zięć, G.; Gambuś, F.; Kowalczyk, M.; Boreczek, J. Jakość i proces starzenia się chlebów z razowych mąk pszennych: Z pszenicy zwyczajnej i orkisz oraz z żyta. Żywność. Nauk. Technol. Jakość. 2018, 25, 50–72. [Google Scholar] [CrossRef]
- Balestra, F.; Cocci, E.; Pinnavaia, G.G.; Romani, S. Evaluation of antioxidant, rheological and sensorial properties of wheat flour dough and bread containing ginger powder. LWT Food Sci. Technol. 2011, 44, 700–705. [Google Scholar] [CrossRef]
- Peng, X.; Ma, J.; Cheng, K.W.; Jiang, Y.; Chen, F.; Wang, M. The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem. 2010, 119, 49–53. [Google Scholar] [CrossRef]
- Hertadi, R.; Amari, M.M.S.; Ratnaningsih, E. Enhancement of antioxidant activity of levan through the formation of nanoparticle systems with metal ions. Heliyon 2020, 6, e04111. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Gao, G.; Zhang, S.; Wang, H.; Ke, L.; Zhou, J.; Rao, P.; Wang, Q.; Li, J. Influences of calcium and magnesium ions on cellular antioxidant activity (CAA) determination. Food Chem. 2020, 320, 126625. [Google Scholar] [CrossRef] [PubMed]
- Altundağ, E.M.; Özbilenler, C.; Ustürk, S.; Kerküklü, N.R.; Afshani, M.; Yilmaz, E. Metal-based curcumin and quercetin complexes: Cell viability, ROS production and antioxidant activity. J. Mol. Struct. 2021, 1245, 131107. [Google Scholar] [CrossRef]
- Shindo, Y.; Yamanaka, R.; Suzuki, K.; Hotta, K.; Oka, K. Intracellular magnesium level determines cell viability in the MPP+ model of Parkinson’s disease. Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 3182–3191. [Google Scholar] [CrossRef] [Green Version]
- Zheltova, A.A.; Kharitonova, M.V.; Iezhitsa, I.N.; Spasov, A.A. Magnesium deficiency and oxidative stress: An update. BioMedicine 2016, 6, 8–14. [Google Scholar] [CrossRef]
Yeast | Magnesium Ions in Yeast (mgg d.m.) | Bread | Magnesium Ions in Bread (mg/100 g of bread) |
---|---|---|---|
S. cerevisiae (dry) K | 0.79 ± 0.017 d | K | 28.84 ± 0.30 c |
S. cerevisiae K1 | 1.16 ± 0.074 c | K1 | 26.182 ± 0.16 d |
S. cerevisiae K2 | 2.18 ± 0.126 b | K2 | 31.4 ± 0.71 b |
S. cerevisiae P | 4.72 ± 0.09 a | P | 39.3 ± 0.39 a |
Bread | Fat (%) | Protein (%) | Ash (%) | Dry Matter (%) | Carbohydrates (%) |
---|---|---|---|---|---|
K | 1.505 ± 0.02 a | 10.21 ± 0.03 a | 1.020 ± 0.00 a | 73.26 ± 0.57 a | 60.525 ± 0.64 a |
K1 | 1.492 ± 0.02 a | 10.20 ± 0.05 a | 1.020 ± 0.00 a | 73.87 ± 0.55 a | 61.158 ± 0.30 a |
K2 | 1.508 ± 0.11 a | 11.07 ± 0.93 a | 1.019 ± 0.00 a | 73.17 ± 0.29 a | 59.573 ± 0.73 a |
P | 1.514 ± 0.11 a | 11.02 ± 0.82 a | 1.019 ± 0.00 a | 73.47 ± 0.21 a | 59.917 ± 0.29 a |
Bread Samples | Bread Yield | Baking Loss | Total Baking Loss | Crumb Moisture | Specific Volume |
---|---|---|---|---|---|
(%) | (cm3 100 g−1) | ||||
K | 142.11 ± 0.7 b | 9.74 ± 0.23 a | 11.57 ± 0.44 a | 42.49 ± 0.35 b | 333.76 ± 14.77 a |
K1 | 143.03 ± 0.62 b | 8.45 ± 0.22 b | 10.99 ± 0.38 a | 42.63 ± 0.14 b | 269.33 ± 13.58 b |
K2 | 143.12 ± 1.01 b | 8.15 ± 0.21 b | 10.94 ± 0.63 a | 42.88 ± 0.26 b | 240.31 ± 11.65 b |
P | 145.69 ± 0.07 a | 7.71 ± 0.30 c | 9.34 ± 0.04 b | 54.03 ± 0.29 a | 239.54 ± 16.13 b |
Antioxidant Activity TEAC (mM/g) | ||
---|---|---|
Bread | ABTS | DPPH |
K | 0.766 ± 0.08 b | 0.184 ± 0.0 b |
K1 | 0.659 ± 0.04 b | 0.187 ± 0.01 b |
K2 | 0.766 ± 0.02 b | 0.190 ± 0.01 b |
P | 0.905 ± 0.05 a | 0.269 ± 0.04 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pankiewicz, U.; Zielińska, E.; Sobota, A.; Wirkijowska, A. The Use of Saccharomyces cerevisiae Supplemented with Intracellular Magnesium Ions by Means of Pulsed Electric Field (PEF) in the Process of Bread Production. Foods 2022, 11, 3496. https://doi.org/10.3390/foods11213496
Pankiewicz U, Zielińska E, Sobota A, Wirkijowska A. The Use of Saccharomyces cerevisiae Supplemented with Intracellular Magnesium Ions by Means of Pulsed Electric Field (PEF) in the Process of Bread Production. Foods. 2022; 11(21):3496. https://doi.org/10.3390/foods11213496
Chicago/Turabian StylePankiewicz, Urszula, Ewelina Zielińska, Aldona Sobota, and Anna Wirkijowska. 2022. "The Use of Saccharomyces cerevisiae Supplemented with Intracellular Magnesium Ions by Means of Pulsed Electric Field (PEF) in the Process of Bread Production" Foods 11, no. 21: 3496. https://doi.org/10.3390/foods11213496
APA StylePankiewicz, U., Zielińska, E., Sobota, A., & Wirkijowska, A. (2022). The Use of Saccharomyces cerevisiae Supplemented with Intracellular Magnesium Ions by Means of Pulsed Electric Field (PEF) in the Process of Bread Production. Foods, 11(21), 3496. https://doi.org/10.3390/foods11213496