Uptake of Soil-Residual Diazinon by Rotational Lettuce under Greenhouse Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Diazionon Application
2.3. Greenhouse Conditions and Experiments
2.4. Sample Preparation
2.5. Instrumentals
3. Results
3.1. Validation and Establishment of Methods
3.2. Residue and Uptake Patterns of Diazinon
3.3. Plant Back Interval of Diazinon
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, M. Management and regulation on the minor use of pesticides in Korea and foreign countries. Korean J. Pestic. Sci. 2013, 17, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.H.; Lee, S.W.; Lim, D.J.; Kim, S.W.; Kim, I.S. Evaluation of cyantraniliprole residues translocated by lettuce, spinach and radish. Korean J. Environ. Agric. 2021, 40, 335–344. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Zhou, Z.; Lin, Z.; Pang, S.; Bhatt, P.; Mishra, S.; Chen, S. Environmental occurrence, toxicity concerns, and degradation of diazinon using a microbial system. Front. Microbiol. 2021, 12, 717286. [Google Scholar] [CrossRef] [PubMed]
- Arias-Andrés, M.; Rämö, R.; Mena Torres, F.; Ugalde, R.; Grandas, L.; Ruepert, C.; Castillo, L.E.; Van den Brink, P.J.; Gunnarsson, J.S. Lower tier toxicity risk assessment of agriculture pesticides detected on the Río Madre de Dios watershed, Costa Rica. Environ. Sci. Pollut. Res. 2018, 25, 13312–13321. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, K.; Hassan, M.; Xu, C.; Zhang, B.; Gin, K.Y.-H.; He, Y. Occurrence, distribution and risk assessment of pesticides in a river-reservoir system. Ecotoxicol. Environ. Saf. 2018, 166, 320–327. [Google Scholar] [CrossRef]
- Aronzon, C.M.; Marino, D.J.G.; Ronco, A.E.; Coll, C.S.P. Differential toxicity and uptake of diazinon on embryo-larval development of Rhinella arenarum. Chemosphere 2014, 100, 50–56. [Google Scholar] [CrossRef]
- Velki, M.; Di Paolo, C.; Nelles, J.; Seiler, T.-B.; Hollert, H. Diuron and diazinon alter the behavior of zebrafish embryos and larvae in the absence of acute toxicity. Chemosphere 2017, 180, 65–76. [Google Scholar] [CrossRef]
- Toledo-Ibarra, G.A.; Díaz-Resendiz, K.J.G.; Pavón-Romero, L.; Rojas-García, A.E.; Medina-Díaz, I.M.; Girón-Pérez, M.I. Effects of diazinon on the lymphocytic cholinergic system of Nile tilapia fish (Oreochromis niloticus). Vet. Immunol. Immunopathol. 2016, 176, 58–63. [Google Scholar] [CrossRef]
- Hajirezaee, S.; Mirvaghefi, A.; Farahmand, H.; Agh, N. NMR-based metabolomic study on the toxicological effects of pesticide, diazinon on adaptation to sea water by endangered Persian sturgeon, Acipenser persicus fingerlings. Chemosphere 2017, 185, 213–226. [Google Scholar] [CrossRef]
- Gao, B.; Bian, X.; Chi, L.; Tu, P.; Ru, H.; Lu, K. Editor’s Highlight: Organophosphate diazinon altered quorum sensing, cell motility, stress response, and carbohydrate metabolism of gut microbiome. Toxicol. Sci. 2017, 157, 354–364. [Google Scholar] [CrossRef]
- Adamovsky, O.; Buerger, A.N.; Wormington, A.M.; Ector, N.; Griffitt, R.J.; Bisesi, J.H. The gut microbiome and aquatic toxicology: An emerging concept for environmental health. Environ. Toxicol. Chem. 2018, 37, 2758–2775. [Google Scholar] [CrossRef] [Green Version]
- Yehia, M.A.H.; Ei-Banna, S.G.; Okab, A.B. Diazinon toxicity affects histophysiological and biochemical parameters in rabbits. Exp. Toxicol. Pathol. 2007, 59, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-E.; Lee, M.-Y.; Kim, S.-H.; Song, S.-M.; Park, B.-K.; Seo, S.-J.; Song, J.-Y.; Hur, M.-J. A survey on the residual pesticides on agricultural products on the markets in Incheon from 2016 to 2018. Korean J. Environ. Agric. 2019, 38, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.E.; Kim, S.W.; Lim, D.J.; Kim, I.S. Residues analysis of acetamiprid, boscalid, imidacloprid and pyraclostrobin in the minor crop mustard green under greenhouse conditions for evaluation of their potentiality of PLS violation. Korean J. Environ. Agric. 2020, 39, 214–221. [Google Scholar] [CrossRef]
- Lim, D.-J.; Kim, S.-W.; Kim, Y.-E.; Yoon, J.-H.; Cho, H.-J.; Shin, B.-G.; Kim, H.-Y.; Kim, I.-S. Plant-back intervals of imicyafos based on its soil dissipation and plant uptake for rotational cultivation of lettuce and spinach in greenhouse. Agriculture 2021, 11, 495. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Lehotay, S.J.; M’sstovská, K.; Lightfield, A.R. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J. AOAC Int. 2005, 88, 615–629. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Document on Analytical Quality Control and Validation Procedures for Pesticide Analysis in Food and Feed, Guidance SANTE/11312/2021; European Commission Directorate General for Health and Food Safety: Brussels, Belgium, 2022. [Google Scholar]
- Dong, M.; Nie, D.; Tang, H.; Rao, Q.; Qu, M.; Wang, W.; Han, L.; Song, W.; Han, Z. Analysis of amicarbazone and its two metabolites in grains and soybeans by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2015, 38, 2245–2252. [Google Scholar] [CrossRef]
- Choi, G.Y.; Kim, J.-H.; Han, B.-J.; Jeong, Y.-M.; Seo, H.-Y.; Shim, S.-L.; Kim, K.S. Characterization of decomposition of residual pesticides on diazinon and endosulfan in young radish. Appl. Biol. Chem. 2004, 47, 238–243. [Google Scholar]
- Fu, Y.; Zhang, Y.; Fan, F.; Wang, B.; Cao, Z. Degradation of pesticides diazinon and diazoxon by phosphotriesterases: Insight into divergent mechanisms from QM/MM and MD simulations. Phys. Chem. Phys. 2022, 24, 687–696. [Google Scholar] [CrossRef]
- Bhatt, P.; Zhou, X.; Huang, Y.; Zhang, W.; Chen, S. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. J. Hazard. Mater. 2021, 411, 125026. [Google Scholar] [CrossRef]
- Cycon, M.; Wójcik, M.; Piotrowska-Seget, Z. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 2009, 76, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Góngora-Echeverría, V.R.; Marti-Laurent, F.; Quintal-Franco, C.; Lorenzo-Flores, A.; Giácoman-Vallejos, G.; Ponce-Caballero, C. Dissipation and adsorption of 2,4-D, atrazine, diazinon, and glyphosate in an agricultural soil from Yucatan State, Mexico. Water Air Soil Pollut. 2019, 230, 131. [Google Scholar] [CrossRef]
- Gevao, B.; Semple, K.T.; Jones, K.C. Bound pesticide residues in soils: A review. Environ. Pollut. 2000, 108, 3–14. [Google Scholar] [CrossRef]
- Alam, M.N. Residual concentrations of diazinon and dursban and its Impacts on soil and carrot. J. Bioremediation Biodegrad. 2016, 7, 1000351. [Google Scholar]
- Anderson, J.J.; Bookhart, S.W.; Clark, J.M.; Jemberg, K.M.; Kingston, C.K.; Snyder, N.; Wallick, K.; Watson, L.J. Uptake of cyantraniliprole into tomato fruit and foliage under hydroponic conditions: Application to calibration of a plant/soil uptake model. J. Agric. Food Chem. 2013, 61, 9027–9035. [Google Scholar] [CrossRef]
- Hwang, J.; Zimmerman, A.; Kim, J. Bioconcentration factor-based management of soil pesticide residues: Endosulfan uptake by carrot and potato plants. Sci. Total Environ. 2018, 627, 514–522. [Google Scholar] [CrossRef]
- Turner, J.A. The Pesticide Manual, 19th ed.; British Crop Protection Council, Alton: Hampshire, UK, 2021; p. 1357. [Google Scholar]
- Nemeth-Konda, L.; Füleky, G.; Morovjan, G.; Csokan, P. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil. Chemosphere 2002, 48, 545–552. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, Y.; Liu, Y.; Chang, H.; Li, Z.; Xue, J. Uptake and translocation of organic pollutants in plants: A review. J. Integr. Agric. 2017, 16, 1659–1668. [Google Scholar] [CrossRef] [Green Version]
- Boxall, A.B.A.; Johnson, P.; Smith, E.J.; Sinclair, S.C.; Stutt, E.; Levy, L.S. Uptake of veterinary medicines from soils to plants. J. Agric. Food Chem. 2006, 54, 2288–2297. [Google Scholar] [CrossRef]
- Kansouj, A.S.H.; Hopkins, T.L. Diazinon absorption, translocation, and metabolism in bean plants. J. Agric. Food Chem. 1968, 16, 446–450. [Google Scholar] [CrossRef]
- Hwang, K.; Yoo, S.C.; Le, S.; Moon, J.K. Residue level of chlorpyrifos in lettuces grown on chlorpyrifos-treated soils. Appl. Sci. 2018, 8, 2343. [Google Scholar] [CrossRef]
- Park, S.; Yoo, J.; Oh, K.; Park, B.; Kim, S.; Chon, K.; Kwon, H.; Hong, S.; Moon, B.; Choi, H. Uptake and translocation of the soil residual pesticides into the vegetable crop. Korean J. Pestic. Sci. 2017, 21, 298–309. [Google Scholar] [CrossRef]
- Horská, T.; Kocourek, F.; Stará, I.; Holý, K.; Mráz, P.; Krátký, F.; Kocourek, V.; Hajšlová, J. Evaluation of pesticide residue dynamics in lettuce, onion, leek, carrot and parsley. Foods 2020, 9, 680. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cho, Y.-J.; Song, J.-W.; Kim, Y.-J.; Seo, J.-S.; Kim, J.-H. Residue behavior of methoxyfenozide and pymetrozine in Chinese cabbage and their health risk assessment. Foods 2022, 11, 2995. [Google Scholar] [CrossRef]
- Ham, H.J.; Choi, J.Y.; Jo, Y.J.; Sardar, S.W.; Ishag, A.E.S.A.; Abdelbagi, A.O.; Hur, J.H. Residues and uptake of soil-applied dinotefuran by lettuce (Lactuca sativa L.) and celery (Apium graveolens L.). Agriculture 2022, 12, 1443. [Google Scholar] [CrossRef]
- Kumar, S.V.; Subhashchandran, K.P.; George, T.; Paul, A.; Xavier, G.; Vijayasree, V.; Suryamol, S. Dinotefuran residues and their dissipation in chili Pepper (Capsicum annuum L.) and soil and their risk assessment. Pestic. Res. J. 2019, 31, 211–219. [Google Scholar] [CrossRef]
- Kwak, S.Y.; Hwang, J.-I.; Lee, S.-H.; Kang, M.-S.; Ryu, J.-S.; Kang, J.-G.; Hong, S.-H.; You, O.-J.; Kim, J.-E. Plant uptake and residual patterns of insecticide dinotefuran by radish. Korean J. Pestic. Sci. 2017, 21, 233–240. [Google Scholar] [CrossRef]
- OECD. Maximum Residue Limit Calculator. Available online: https://www.oecd.org/env/ehs/pesticides-biocides/oecdmaximumresiduelimitcal-cullator.htm (accessed on 30 September 2022).
- OECD. Draft Guidance Document on Residues in Rotational Crops. OECD Environ. Health Saf. Public 2016, 1, 1–46. Available online: https://www.oecd.org/env/ehs/testing/OECDRotationalCropGuidanceDraftVersion_19%20July2016_AE.pdf (accessed on 11 October 2022).
- Yoon, J.H.; Lim, D.J.; Kim, S.W.; Kim, I.S. Evaluation of residues of fungicide Azoxystrobin in radish based on plant back interval Experiment. Korean J. Environ. Agric. 2022, 41, 1–8. [Google Scholar] [CrossRef]
- Kim, Y.E.; Yoon, J.H.; Lim, D.J.; Kim, S.W.; Cho, H.; Shin, B.G.; Kim, H.Y.; Kim, I.S. Plant back interval of fluopyram based on crop-derived and bare soil residues for rotational cultivation of radish. Korean J. Environ. Agric. 2021, 40, 99–107. [Google Scholar] [CrossRef]
- Marín-Benito, J.M.; Herrero-Hernández, E.; Andrades, M.S.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods. Sci. Total Environ. 2014, 476, 611–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ban, S.-E.; Lee, E.-J.; Lim, D.-J.; Kim, I.-S.; Lee, J.-W. Evaluation of sulfuric acid-pretreated biomass-derived biochar characteristics and its diazinon adsorption mechanism. Bioresour. Technol. 2022, 348, 126828. [Google Scholar] [CrossRef] [PubMed]
Matrix | Calibration Equation | R2 | Matrix Effect (%) (1) | Ion Ratio Tolerance (%) (2) | LOQ (mg kg−1) (3) |
---|---|---|---|---|---|
Soil | y = 16739x + 230.66 | 0.999 | 18.44 | −2.21 | 0.005 |
Lettuce leaf | y = 8536x + 15.17 | 0.998 | −7.10 | −0.31 | 0.005 |
Lettuce root | y = 7826x + 286.32 | 0.999 | −8.21 | 0.68 | 0.005 |
Sample | Recovery (%) (1) | |
---|---|---|
LOQ (2) | 10× LOQ | |
Soil | 104.2 ± 3.5 | 100.2 ± 3.5 |
Lettuce leaf | 103.4 ± 11.4 | 103.3 ± 0.9 |
Lettuce root | 108.7 ± 1.2 | 106.8 ± 0.6 |
Harvest Numbers (DAT) | Residues (mg kg−1) * | |
---|---|---|
Leaf | Root | |
1 (32) | 0.093 ± 0.012 b | 1.020 ± 0.033 b |
2 (36) | 0.117 ± 0.003 a | 1.578 ± 0.0071 a |
3 (40) | 0.032 ± 0.017 c | 0.250 ± 0.022 d |
4 (44) | 0.025 ± 0.004 cd | 0.299 ± 0.030 d |
5 (48) | 0.024 ± 0.001 cd | 0.159 ± 0.034 e |
6 (52) | 0.019 ± 0.001 de | 0.387 ± 0.016 c |
7 (56) | 0.009 ± 0.001 e | 0.418 ± 0.046 c |
Harvest Number (DAT) | Diazinon Amount (μg Plant−1) * | |
---|---|---|
Leaf | Root | |
1 (32) | 0.020 ± 0.003 a | 4.437 ± 0.143 a |
2 (36) | 0.011 ± 0.000 b | 3.034 ± 0.137 b |
3 (40) | 0.001 ± 0.000 c | 0.269 ± 0.024 c |
4 (44) | 0.001 ± 0.000 c | 0.270 ± 0.027 c |
5 (48) | 0.001 ± 0.000 c | 0.169 ± 0.037 c |
6 (52) | 0.001 ± 0.000 c | 0.155 ± 0.007 c |
7 (56) | 0.001 ± 0.000 c | 0.125 ± 0.014 c |
Harvest Number (DAT) | UTRs * | |
---|---|---|
Leaf | Root | |
1 (32) | 0.026 b | 0.252 b |
2 (36) | 0.028 a | 0.389 a |
3 (40) | 0.008 c | 0.062 d |
4 (44) | 0.005 cd | 0.074 d |
5 (48) | 0.006 cd | 0.039 e |
6 (52) | 0.004 de | 0.095 c |
7 (56) | 0.002 e | 0.103 c |
Plant Parts | PBI Factors | PBIs (Days) (4) | ||
---|---|---|---|---|
UTRs (1) | PLS (mg kg−1) (2) | MSRs (mg kg−1) (3) | ||
Leaf | 0.028 | 0.01 | 0.357 | 93.9 |
Root | 0.389 | 0.01 | 0.026 | 177.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.; Lim, D.; Lee, S.; Kim, J.; Kim, I. Uptake of Soil-Residual Diazinon by Rotational Lettuce under Greenhouse Conditions. Foods 2022, 11, 3510. https://doi.org/10.3390/foods11213510
Yoon J, Lim D, Lee S, Kim J, Kim I. Uptake of Soil-Residual Diazinon by Rotational Lettuce under Greenhouse Conditions. Foods. 2022; 11(21):3510. https://doi.org/10.3390/foods11213510
Chicago/Turabian StyleYoon, Jihyun, Dajung Lim, Seungwon Lee, Jiyu Kim, and Inseon Kim. 2022. "Uptake of Soil-Residual Diazinon by Rotational Lettuce under Greenhouse Conditions" Foods 11, no. 21: 3510. https://doi.org/10.3390/foods11213510
APA StyleYoon, J., Lim, D., Lee, S., Kim, J., & Kim, I. (2022). Uptake of Soil-Residual Diazinon by Rotational Lettuce under Greenhouse Conditions. Foods, 11(21), 3510. https://doi.org/10.3390/foods11213510