Screening of Saccharomyces and Non-Saccharomyces Wine Yeasts for Their Decarboxylase Activity of Amino Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Amino Acid Decarboxylation Test
2.3. Statistic
- (a)
- PERMANOVA (permutational analysis of variance), using yeast (S. cerevisiae, Z. bailii, and Hanseniaspora spp.) and amino acids (arginine, proline, serine, and tyrosine) as categorical predictors; moreover, the critical P was set to 0.05. PERMANOVA is a non-parametric approach similar to two-way ANOVA and is useful in order to point out the effect of two or more factors on a dependent variable. The outputs of this statistic are the sum of squares, the mean square (that is the sum of squares standardized to the degree of freedom), the results determined from the Fisher test, and the p-value;
- (b)
- Mann–Whitney pairwise comparison test, as the post hoc approach after PERMANOVA, was used in order to point out actual differences amongst batches. Critical P was set to 0.05;
- (c)
- Spearman’s rank order correlation, which is a non-parametric approach in order to highlight the correlation amongst ordinal or ranked variables. Critical P was set to 0.05.
- (d)
- Neighbor joining run on all yeasts, which is a clustering approach in order to group yeasts in phenotypic classes. The similarity index was based on Euclidean distance, while the root was designed through the final branch method.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Fleet, G.H. Wine yeasts for the future. FEMS Yeast Res. 2008, 8, 979–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 2016, 7, 411. [Google Scholar] [CrossRef] [Green Version]
- Fleet, G.H. Yeast interactions and wine flavour. Int. J. Food Microbiol. 2003, 86, 11–22. [Google Scholar] [CrossRef]
- Bauer, F.F.; Pretorius, I.S. Yeast stress response and fermentation efficiency: How to survive the making of wine—A review. S. Afr. J. Enol. Vitic. 2000, 21, 27–51. [Google Scholar] [CrossRef]
- Romano, P.; Fiore, C.; Paraggio, M.; Caruso, M.; Capece, A. Function of yeast species and strains in wine flavour. Int. J. Food Microbiol. 2003, 86, 169–180. [Google Scholar] [CrossRef]
- Capece, A.; Fiore, C.; Maraz, A.; Romano, P. Molecular and technological approaches to evaluate strain biodiversity in Hanseniaspora uvarum of wine origin. J. Appl. Microbiol. 2005, 98, 136–144. [Google Scholar] [CrossRef]
- Strauss, M.L.A.; Jolly, N.P.; Lambrechts, M.G.; van Rensburg, P. Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J. Appl. Microbiol. 2001, 91, 182–190. [Google Scholar] [CrossRef]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef] [Green Version]
- van Wyk, S.; Silva, F.V.M. Non thermal Preservation of Wine. In Preservatives and Preservation Approaches in Beverages, The Science of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 15, pp. 203–235. [Google Scholar]
- Csoma, H.; Zakany, N.; Capece, A.; Romano, P.; Sipiczki, M. Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: Comparative genotypic and phenotypic analysis. Int. J. Food Microbiol. 2010, 140, 239–248. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Siesto, G.; Romano, P. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneously fermenting grapes from an Italian “heroic vine-growing area”. Food Microbiol. 2012, 31, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Rainieri, S.; Pretorius, I.S. Selection and improvement of wine yeasts. Ann. Microbiol. 2000, 50, 15–31. [Google Scholar]
- Corich, V.; Nadai, C.; Giacomini, A. Lieviti selezionati. In Microbiologia Della Vite e del Vino; Romano, P., Ciani, M., Cocolin, L., Eds.; CEA Casa Editrice Ambrosiana: Milan, Italy, 2022; pp. 112–125. [Google Scholar]
- Sidari, R.; Ženišová, K.; Tobolková, B.; Belajová, E.; Cabicarová, T.; Bučková, M.; Puškárová, A.; Planý, M.; Kuchta, T.; Pangallo, D. Wine Yeasts Selection: Laboratory Characterization and Protocol Review. Microorganisms 2021, 9, 2223. [Google Scholar] [CrossRef] [PubMed]
- Escribano, R.; Gonzalez-Arenzana, L.; Garijo, P.; Berlanas, C.; Lopez-Alfaro, I.; Lopez, R.; Gutierrez, A.R.; Santamaria, P. Screening of enzymatic activities within different enological non-Saccharomyces yeasts. J. Food Sci. Technol. 2017, 54, 1555–1564. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.-J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Soufleros, E.; Bouloumpasi, E.; Tsarchopoulos, C.; Biliaderis, C. Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage. Food Chem. 2003, 80, 261–273. [Google Scholar] [CrossRef]
- Scutarașu, E.C.; Luchian, C.E.; Cioroiu, I.B.; Trincă, L.C.; Cotea, V.V. Increasing Amino Acids Content of White Wines with Enzymes Treatments. Agronomy 2022, 12, 1406. [Google Scholar] [CrossRef]
- Mandl, K.; Silhavy-Richter, K.; Korntheuer, K.; Prinz, M.; Patzl-Fischerleitner, E.; Eder, R. Influence of different yeasts on the amino acid pattern of rosé wine. BIO Web Conf. 2017, 9, 02014. [Google Scholar] [CrossRef] [Green Version]
- Styger, G.; Prior, B.; Bauer, F.F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145–1159. [Google Scholar] [CrossRef]
- Romano, P.; Braschi, G.; Siesto, G.; Patrignani, F.; Lanciotti, R. Role of Yeasts on the Sensory Component of Wines. Foods 2022, 11, 1921. [Google Scholar] [CrossRef]
- Smit, A.Y.; du Toit, W.J.; du Toit, M. Biogenic amines in wine: Understanding the headache. S. Afr. J. Enol. Vitic. 2008, 29, 109–127. [Google Scholar] [CrossRef]
- Marques, A.P.; Leita, M.C.; San Roma, M.V. Biogenic amines in wines: Influence of oenological factors. Food Chem. 2008, 107, 853–860. [Google Scholar] [CrossRef]
- Guo, Y.-Y.; Yang, Y.-P.; Peng, Q.; Han, Y. Biogenic amines in wine: A review. Int. J. Food Sci. Technol. 2015, 50, 1523–1532. [Google Scholar] [CrossRef]
- Landete, J.M.; Ferrer, S.; Pardo, I. Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control 2007, 18, 1569–1574. [Google Scholar] [CrossRef]
- Coton, M.; Romano, A.; Spano, G.; Ziegler, K.; Vetrano, C.; Desmarias, C.; Lonvaud-Funel, A.; Lucas, P.; Coton, E. Occurence of biogenic amine forming lactic acid bacteria in wine and cider. Food Microbiol. 2010, 27, 1078–1085. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Siesto, G.; Pietrafesa, R.; Massari, C.; Poeta, C.; Romano, P. Selection of indigenous Saccharomyces cerevisiae strains for Nero d’Avola wine and evaluation of selected starter implantation in pilot fermentation. Int. J. Food Microbiol. 2010, 144, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Capece, A.; Pietrafesa, R.; Romano, P. Experimental approach for target selection of wild wine yeasts from spontaneous fermentation of “Inzolia” grapes. World J. Microbiol. Biotechnol. 2011, 27, 2775–2783. [Google Scholar] [CrossRef]
- Siesto, G.; Capece, A.; Sipiczki, M.; Csoma, H.; Romano, P. Polymorphism detection among wild Saccharomyces cerevisiae strains of different wine origin. Ann. Microbiol. 2013, 63, 661–668. [Google Scholar] [CrossRef]
- Capece, A.; Poeta, C.; Siesto, G.; Massari, C.; Pietrafesa, R.; Romano, P. Control of inoculated fermentations in wine cellars by mitochondrial DNA analysis of starter yeast. Ann. Microbiol. 2011, 61, 49–56. [Google Scholar] [CrossRef]
- Capece, A.; Siesto, G.; Romaniello, R.; Lagreca, V.M.; Pietrafesa, R.; Calabretti, A.; Romano, P. Assessment of competition in wine fermentation among wild Saccharomyces cerevisiae strains isolated from Sangiovese grapes in Tuscany region. LWT-Food Sci. Technol. 2013, 54, 485–492. [Google Scholar] [CrossRef]
- Romano, P.; Capece, A.; Poeta, C. Biogenic amine formation in alcoholic fermentation. Bull. OIV 2007, 80, 251–262. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Fairbairn, S.; McKinnon, A.; Musarurwa, H.T.; Ferreira, A.C.; Bauer, F.F. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains. Front. Microbiol. 2017, 8, 2554. [Google Scholar] [CrossRef]
- Silva Ferreira, A.C.; Monforte, A.R.; Teixeira, C.S.; Martins, R.; Fairbairn, S.; Bauer, F.F. Monitoring alcoholic fermentation: An untargeted approach. J. Agric. Food Chem. 2014, 62, 6784–6793. [Google Scholar] [CrossRef]
- Burin, V.M.; Gomes, T.M.; Caliari, V.; Rosier, J.P.; Bordignon Luiz, M.T. Establishment of influence the nitrogen content in musts and volatile profile of white wines associated to chemometric tools. Microchem. J. 2015, 122, 20–28. [Google Scholar] [CrossRef]
- Stribny, J.; Gamero, A.; Pérez-Torrado, R.; Querol, A. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. Int. J. Food Microbiol. 2015, 205, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speranza, B.; Campaniello, D.; Petruzzi, L.; Sinigaglia, M.; Corbo, M.R.; Bevilacqua, A. Preliminary characterization of yeasts from Bombino Bianco, a grape variety of Apulian Region, and selection of an isolate as a potential starter. Fermentation 2019, 5, 102. [Google Scholar] [CrossRef] [Green Version]
- Lehtonen, P. Determination of amines and amino acids in wine—A review. Am. J. Enol. Vitic. 1996, 47, 127–133. [Google Scholar]
- Messenguy, F.; Dubois, E. Regulation of Arginine Metabolism in Saccharomyces cerevisiae: A Network of Specific and Pleiotropic Proteins in Response to Multiple Environmental Signals. Food Technol. Biotechnol. 2000, 38, 277–285. [Google Scholar]
- L-Serine (YMDB00112). Available online: http://www.ymdb.ca/compounds/YMDB00112 (accessed on 10 October 2022).
- Ter Schure, E.G.; Flikweert, M.T.; van Dijken, J.P.; Pronk, J.T.; Verrips, C.T. Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1998, 64, 1303–1307. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, N.; Schafferer, L.; Schrettl, M.; Binder, U.; Talasz, H.; Lindner, H.; Haas, H. Characterization of the Link between Ornithine, Arginine, Polyamine and Siderophore Metabolism in Aspergillus fumigatus. PLoS ONE 2013, 8, 67426. [Google Scholar] [CrossRef] [PubMed]
- Tristezza, M.; Vetrano, C.; Bleve, G.; Spano, G.; Capozzi, V.; Logrieco, A.; Mita, G.; Grieco, F. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 2013, 36, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Kemsawasd, V.; Viana, T.; Ardö, Y.; Arneborg, N. Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 10191–10207. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41, 95–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorello, F.; Valera, M.J.; Martin, V.; Parada, A.; Salzman, V.; Camesasca, L.; Fariña, L.; Boido, E.; Medina, K.; Dellacassa, E.; et al. Genomic and transcriptomic basis of Hanseniaspora vineae’s impact on flavor diversity and wine quality. Appl. Environ. Microbiol. 2019, 85, e01959-18. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mas, A.; Esteve-Zarzoso, B. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific. Front. Microbiol. 2016, 7, 502. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.A.; Greer-Phillips, S.E.; Borkovich, K.A. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol. Biol. Cell 2007, 18, 2123–2136. [Google Scholar] [CrossRef] [PubMed]
Species | Strain | Origin | Year | Grape Vine Variety | References |
---|---|---|---|---|---|
Saccharomyces cerevisiae | CA1sc3; RA1sc2; TD6-7sc2 | Sicily | 2004 | Nero d’Avola | [28] |
AA3-10; AA9-5; AA9-7; AB7-1; AB8-7; AC5-4; AC9-1; RA4-10; RA8-8; RA9-5; RB1-3; RB5-7; TA1-4; TA2-2; TA2-10; TA9-1; TA9-9; TA10-3; TC1-8 | Sicily | 2005 | Inzolia | [29] | |
MA-8; MA-15; MA-16; MA-17; MA-18; MA-19; MA-22; MA-26; MR-9; MR-11; MR-16; MR-18; MR-20; MR-21; MR-24; MR-25; MR-26; MR-28; MR-29; MR-30; MT-14; MT-15; MT-16; MT-25; MT-27; MT-31; MT-33; MT-34; MT-35; MT-36 | Sicily | 2005 | Inzolia | Unpublished data | |
S1; S3; S4; S5; S6; S7; S8; S9 | Tuscany | 2005 | Sangiovese | Unpublished data | |
BR3-11; BR3-14 | Apulia | 2007 | Primitivo | Unpublished data | |
BA-85 | Emilia-Romagna | 2000 | Sangiovese | Unpublished data | |
E1-4; E1-6; 4LBI-3; AGMA 1I; FIME 5; FIMA 3; SMMA 10; VEME 2; VEME 7; BNMA 10; AGME 3I | Basilicata | 2008 | Aglianico del Vulture | [30,31] | |
GD1-35; GD4-25 | Basilicata | 2004 | Greco di Basilicata | Unpublished data | |
SB8-8; SC4-48; SC7-12; SC9-30; SC10-17 | Tuscany | 2007 | Sangiovese | [32] | |
Zygosaccharomyces bailii | Z3; Z5 | Basilicata | 2004 | Aglianico del Vulture | Unpublished data |
AB8-3; AC10-3; AB4-5; TD8-5; RA2-3; RA10-6; TA3-9; AB4-6; RA10-1; RA3-7; AC6-5; AD2-4 | Sicily | 2005 | Inzolia | Unpublished data | |
F3; F5; F7; F9; F12; F14; F17 | Liguria | 2008 | Bosco | Unpublished data | |
Hanseniaspora spp. | MA9; MR-1; MT-1; MT-9; MT-10; MT-12; MT-19; MT-20; MT-29; RA7-4 | Sicily | 2005 | Inzolia | Unpublished data |
H1; H2; H4; H5; H6; H7; H8; H9; H10; H11 | Basilicata | 2004 | Aglianico del Vulture | [7] |
Source | Sum of Squares | Degree of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
Yeast | 6.240 | 2 | 3.120 | 9.056 | 0.0001 |
Amino acid | 0.728 | 3 | 0.704 | 0.704 | 0.372 |
Interaction | −53.315 | 6 | −8.886 | −25.789 | 0.0431 |
Residual | 168.150 | 498 | 0.345 | ||
Total | 121.80 | 499 |
Arginine | Proline | Serine | Tyrosine | |
---|---|---|---|---|
S. cerevisiae | 67.07 a,A | 54.88 a,A | 65.85 a,A | 68.29 a,A |
Z. bailii | 54.55 a,A | 54.55 a,A | 54.55 a,AB | 64.64 a,A |
Hanseniaspora spp. | 0 a,B | 54.55 b,A | 40.91 b,B | 40.91 b,B |
(A) | ||||
Arginine | Proline | Serine | Tyrosine | |
Arginine | - | 0.316 | 0.303 | |
Proline | ns | 0.484 | 0.435 | |
Serine | 0.316 | 0.484 | 0.780 | |
Tyrosine | 0.303 | 0.435 | 0.780 | |
(B) | ||||
Arginine | Proline | Serine | Tyrosine | |
Arginine | 0.611 | - | 0.612 | |
Proline | 0.611 | 0.806 | 0.816 | |
Serine | - | 0.806 | 0.816 | |
Tyrosine | 0.612 | 0.816 | 0.816 | |
(C) | ||||
Arginine | Proline | Serine | Tyrosine | |
Arginine | na | na | na | |
Proline | na | - | - | |
Serine | na | - | 0.812 | |
Tyrosine | na | na | 0.812 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siesto, G.; Corbo, M.R.; Pietrafesa, R.; Sinigaglia, M.; Romano, P.; Bevilacqua, A. Screening of Saccharomyces and Non-Saccharomyces Wine Yeasts for Their Decarboxylase Activity of Amino Acids. Foods 2022, 11, 3587. https://doi.org/10.3390/foods11223587
Siesto G, Corbo MR, Pietrafesa R, Sinigaglia M, Romano P, Bevilacqua A. Screening of Saccharomyces and Non-Saccharomyces Wine Yeasts for Their Decarboxylase Activity of Amino Acids. Foods. 2022; 11(22):3587. https://doi.org/10.3390/foods11223587
Chicago/Turabian StyleSiesto, Gabriella, Maria Rosaria Corbo, Rocchina Pietrafesa, Milena Sinigaglia, Patrizia Romano, and Antonio Bevilacqua. 2022. "Screening of Saccharomyces and Non-Saccharomyces Wine Yeasts for Their Decarboxylase Activity of Amino Acids" Foods 11, no. 22: 3587. https://doi.org/10.3390/foods11223587
APA StyleSiesto, G., Corbo, M. R., Pietrafesa, R., Sinigaglia, M., Romano, P., & Bevilacqua, A. (2022). Screening of Saccharomyces and Non-Saccharomyces Wine Yeasts for Their Decarboxylase Activity of Amino Acids. Foods, 11(22), 3587. https://doi.org/10.3390/foods11223587