Effects of Soaking on the Volatile Compounds, Textural Property, Phytochemical Contents, and Antioxidant Capacity of Brown Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Soaking Conditions during Cooking
2.3. Texture Analysis
2.4. Analysis of Volatile Compounds
2.5. Moisture Content
2.6. Analysis of Phenolic Compounds
2.7. Analysis of Nutritional Components
2.8. Analysis of Antioxidant Capacity
3. Results and Discussion
3.1. Effects of Soaking Conditions on Textural Properties of Cooked Brown Rice
3.2. Comparison of Volatile Profiles of Cooked Brown Rice
3.3. Comparison of Phenolic Profile of Cooked Brown Rice
3.4. Effect of Soaking on Main Nutritional Components in Cooked Brown Rice
3.5. Comparison of Antioxidant Capacity of Cooked Brown Rice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saleh, A.S.M.; Wang, P.; Wang, N.; Yang, L.; Xiao, Z.G. Brown rice versus white rice: Nutritional quality, potential health benefits, development of food products, and preservation technologies. Compr. Rev. Food Sci. F 2019, 18, 1070–1096. [Google Scholar] [CrossRef] [Green Version]
- Xia, Q.; Green, B.D.; Zhu, Z.Z.; Li, Y.F.; Gharibzahedi, S.M.T.; Roohinejad, S.; Barba, F.J. Innovative processing techniques for altering the physicochemical properties of wholegrain brown rice (Oryza sativa L.)—Opportunities for enhancing food quality and health attributes. Crit. Rev. Food Sci. 2019, 59, 3349–3370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syafutri, M.I.; Pratama, F.; Syaiful, F.; Faizal, A. Effects of varieties and cooking methods on physical and chemical characteristics of cooked rice. Rice Sci. 2016, 23, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Effect of high pressure steam on the eating quality of cooked rice. LWT-Food Sci. Technol. 2019, 104, 100–108. [Google Scholar] [CrossRef]
- Shinde, Y.H.; Vijayadwhaja, A.; Pandit, A.B.; Joshi, J.B. Kinetics of cooking of rice: A review. J. Food Eng. 2014, 123, 113–129. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhao, S.M.; Kong, J.M.; Li, N.N.; Qiao, D.L.; Zhang, B.J.; Xu, Y.; Jia, C.H. Changing cooking mode can slow the starch digestion of colored brown rice: A view of starch structural changes during cooking. Int. J. Biol. Macromol. 2020, 155, 226–232. [Google Scholar] [CrossRef]
- Zhu, L.; Bi, S.L.; Wu, G.C.; Zhang, H.; Wang, L.; Qian, H.F.; Qi, X.G.; Jiang, H.P. Comparative analysis of the texture and physicochemical properties of cooked rice based on adjustable rice cooker. LWT-Food Sci. Technol. 2020, 130, 109650. [Google Scholar] [CrossRef]
- Han, J.A.; Lim, S.T. Effect of presoaking on textural, thermal, and digestive properties of cooked brown rice. Cereal. Chem. 2009, 86, 100–105. [Google Scholar] [CrossRef]
- Nishinari, K.; Fang, Y. Perception and measurement of food texture: Solid foods. J. Texture Stud. 2018, 49, 160–201. [Google Scholar] [CrossRef]
- Okadome, H. Review: Application of instrument-based multiple texture measurement of cooked milled-rice grains to rice quality evaluation. Jpn. Agric. Res. Q. 2015, 39, 261–268. [Google Scholar] [CrossRef]
- Yamuangmorn, S.; Dell, B.; Prom-U-Thai, S. Effects of cooking on anthocyanin concentration and bioactive antioxidant capacity in glutinous and non-glutinous purple rice. Rice Sci. 2018, 25, 270–278. [Google Scholar] [CrossRef]
- Yu, L.; Turner, M.S.; Fitzgerald, M.; Stokes, J.R.; Witt, T. Review of the effects of different processing technologies on cooked and convenience rice quality. Trends Food Sci. Tech. 2017, 59, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Genkawa, T.; Tanaka, F.; Hamanaka, D.; Uchino, T. Incidence of open crack formation in short-grain polished rice during soaking in water at different temperatures. J. Food Eng. 2011, 103, 457–463. [Google Scholar] [CrossRef]
- Thammapat, P.; Meeso, N.; Siriamornpun, S. Effects of NaCl and soaking temperature on the phenolic compounds, alpha-tocopherol, gamma-oryzanol and fatty acids of glutinous rice. Food Chem. 2015, 175, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.T.; Zhu, L.; Zhang, H.; Bi, S.L.; Wu, G.C.; Qi, X.G.; Wang, L.; Qian, H.F.; Zhou, L. Effect of cooking pressure on phenolic compounds, gamma-aminobutyric acid, antioxidant activity and volatile compounds of brown rice. J. Cereal. Sci. 2021, 97, 103127. [Google Scholar] [CrossRef]
- Xia, Q.; Mei, J.; Yu, W.J.; Li, Y.F. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods. Food Res. Int. 2017, 91, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Billiris, M.A.; Siebenmorgen, T.J.; Meullenet, J.F.; Mauromoustakos, A. Rice degree of milling effects on hydration, texture, sensory and energy characteristics. Part 1 Cooking using excess water. J. Food Eng. 2012, 113, 559–568. [Google Scholar] [CrossRef]
- Shen, S.Q.; Wang, Y.; Li, M.; Xu, F.F.; Chai, L.H.; Bao, J.S. The effect of anaerobic treatment on polyphenols, antioxidant properties, tocols and free amino acids in white, red, and black germinated rice (Oryza sativa L.). J. Funct. Foods 2015, 19, 641–648. [Google Scholar] [CrossRef]
- Zeng, Z.C.; Hu, X.T.; McClements, D.J.; Luo, S.J.; Liu, C.M.; Gong, E.S.; Huang, K.C. Hydrothermal stability of phenolic extracts of brown rice. Food Chem. 2019, 271, 114–121. [Google Scholar] [CrossRef]
- Pascual, C.; Massaretto, I.L.; Kawassaki, F.; Barros, R.M.C.; Noldin, J.A.; Marquez, U.M.A. Effects of parboiling, storage and cooking on the levels of tocopherols, tocotrienols and gamma-oryzanol in brown rice (Oryza sativa L.). Food Res. Int. 2013, 50, 676–681. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Li, H.Y.; Prakash, S.; Nicholson, T.M.; Fitzgerald, M.A.; Gilbert, R.G. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohyd. Polym. 2016, 146, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.R.; Godward, J.; Hills, B. The distribution of water in native starch granules—A multinuclear NMR study. Carbohyd. Polym. 2000, 43, 375–387. [Google Scholar] [CrossRef]
- Zhu, L.; Cheng, L.L.; Zhang, H.; Wang, L.; Qian, H.F.; Qi, X.G.; Wu, G.C. Research on migration path and structuring role of water in rice grain during soaking. Food Hydrocoll. 2019, 92, 41–50. [Google Scholar] [CrossRef]
- Zhang, N.; Wen, Y.Y.; Yan, S.; Mao, H.J.; Lei, N.Y.; Li, H.Y.; Wang, J.; Chen, H.T.; Sun, B.G. The increased stickiness of non-glutinous rice by alkali soaking and its molecular causes. Int. J. Biol. Macromol. 2019, 135, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wu, G.C.; Cheng, L.L.; Zhang, H.; Wang, L.; Qian, H.F.; Qi, X.G. Effect of soaking and cooking on structure formation of cooked rice through thermal properties, dynamic viscoelasticity, and enzyme activity. Food Chem. 2019, 289, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Q.; Lu, L.; Guo, Z.L.; Zhu, Z.W. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci. Tech. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Deng, Y.; Zhong, Y.; Yu, W.J.; Yue, J.; Liu, Z.M.; Zhengi, Y.R. Effect of hydrostatic high pressure pretreatment on flavor volatile profile of cooked rice. J. Cereal. Sci. 2013, 58, 478–487. [Google Scholar] [CrossRef]
- Buttery, R.G.; Orts, W.J.; Takeoka, G.R.; Nam, Y.L. Volatile flavor components of rice cakes. J. Agric. Food Chem. 1999, 47, 4353–4356. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Zhao, C.J.; Yan, M.; Huang, D.C.; McClements, D.J.; Huang, Z.G.; Cao, C.J. Influence of gene regulation on rice quality: Impact of storage temperature and humidity on flavor profile. Food Chem. 2019, 283, 141–147. [Google Scholar]
- Zeng, Z.; Zhang, H.; Zhang, T.; Tamogami, S.; Chen, J.Y. Analysis of flavor volatiles of glutinous rice during cooking by combined gas chromatography-mass spectrometry with modified headspace solid-phase microextraction method. J. Food Compos. Anal. 2009, 22, 347–353. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, X.B.; Liu, Y.; Zhang, M.W.; Zhang, R.F.; Abbasi, A.M.; You, Y.J.; Li, T.; Liu, R.H. Comparative assessment of phytochemical profile, antioxidant capacity and anti-proliferative activity in different varieties of brown rice (Oryza sativa L.). LWT-Food Sci. Technol. 2018, 96, 19–25. [Google Scholar] [CrossRef]
- Ti, H.H.; Zhang, R.F.; Li, Q.; Wei, Z.C.; Zhang, M.W. Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity. Food Res. Int. 2015, 76, 813–820. [Google Scholar] [CrossRef]
- Zaupa, M.; Calani, L.; Del Rio, D.; Brighenti, F.; Pellegrini, N. Characterization of total antioxidant capacity and (poly) phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking. Food Chem. 2015, 187, 338–347. [Google Scholar] [CrossRef]
- Siah, S.; Wood, J.A.; Agboola, S.; Konczak, I.C. Blanchard, Effects of soaking, boiling and autoclaving on the phenolic contents and antioxidant activities of faba beans (Vicia faba L.) differing in seed coat colours. Food Chem. 2014, 142, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Giusti, F.; Capuano, E.; Sagratini, G.; Pellegrini, N. A comprehensive investigation of the behaviour of phenolic compounds in legumes during domestic cooking and in vitro digestion. Food Chem. 2019, 285, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Kebe, M.; Renard, C.; Maataoui, M.E.; Amani, G.N.G.; Maingonnat, J.F. Leaching of polyphenols from apple parenchyma tissue as influenced by thermal treatments. J. Food Eng. 2015, 166, 237–246. [Google Scholar] [CrossRef]
- Sirisoontaralak, P.; Nakornpanom, N.N.; Koakietdumrongkul, K.; Panumaswiwath, C. Development of quick cooking germinated brown rice with convenient preparation and containing health benefits. LWT-Food Sci. Technol. 2015, 61, 138–144. [Google Scholar] [CrossRef]
- Saikusa, T.; Horino, T.; Mori, Y. Distribution of free amino acids in the rice kernel and kernel fractions and the effect of water soaking on the distribution. J. Agric. Food Chem. 1994, 42, 1122–1125. [Google Scholar] [CrossRef]
- Goufo, P.; Trindade, H. Factors influencing antioxidant compounds in rice. Crit. Rev. Food Sci. 2017, 57, 893–922. [Google Scholar] [CrossRef]
- Techo, J.; Soponronnarit, S.; Devahastin, S.; Wattanasiritham, L.S.; Thuwapanichayanan, R.; Prachayawarakorn, S. Effects of heating method and temperature in combination with hypoxic treatment on gamma-aminobutyric acid, phenolics content and antioxidant activity of germinated rice. Int. J. Food Sci. Tech. 2019, 54, 1330–1341. [Google Scholar] [CrossRef]
Compound (ng/g) | Unsoaked | 40-30 | 40-60 | 50-30 | 50-60 | 60-30 | 60-60 | 70-30 | 70-60 | CRI | LRI |
---|---|---|---|---|---|---|---|---|---|---|---|
Hydrocarbons | |||||||||||
Octane | 2.27 ± 0.27 | 2.18 ± 0.11 | 2.45 ± 0.22 | 2.31 ± 0.18 | 2.39 ± 0.30 | 2.38 ± 0.23 | 2.29 ± 0.28 | 2.31 ± 0.10 | 2.16 ± 0.25 | 798 | 800 |
α-Pinene | 0.61 ± 0.09 | 0.53 ± 0.13 | 0.43 ± 0.05 | 0.46 ± 0.02 | 0.55 ± 0.09 | 0.49 ± 0.07 | 0.58 ± 0.11 | 0.65 ± 0.05 | 0.52 ± 0.07 | 1032 | 1029 |
4-Methylene-1-(1-methylethyl)- bicyclo[3.1.0]hexane | 3.45 ± 0.19 | 3.26 ± 0.25 | 3.31 ± 0.33 | 3.35 ± 0.15 | 3.21 ± 0.07 | 3.29 ± 0.20 | 3.47 ± 0.23 | 3.38 ± 0.36 | 3.27 ± 0.28 | 1109 | 1116 |
Pentylcyclopropane | 0.15 ± 0.03 | 0.16 ± 0.01 | 0.15 ± 0.02 | 0.14 ± 0.03 | 0.17 ± 0.02 | 0.17 ± 0.03 | 0.13 ± 0.01 | 0.14 ± 0.02 | 0.18 ± 0.01 | 1538 | NF |
Aldehydes | |||||||||||
Hexanal | 12.24 ± 1.39 | 10.88 ± 0.98 | 11.34 ± 0.33 | 11.60 ± 1.24 | 11.94 ± 0.89 | 13.18 ± 0.85 | 12.02 ± 0.92 | 11.27 ± 0.98 | 12.44 ± 1.34 | 1077 | 1080 |
Octanal | 3.70 ± 0.24 | 3.64 ± 0.14 | 3.74 ± 0.34 | 3.54 ± 0.35 | 3.42 ± 0.38 | 3.48 ± 0.30 | 3.31 ± 0.07 | 3.58 ± 0.10 | 3.25 ± 0.22 | 1280 | 1284 |
Nonanal | 9.44 ± 0.52 a | 7.51 ± 0.86 b | 8.32 ± 0.55 ab | 7.24 ± 0.76 b | 7.69 ± 0.46 b | 6.96 ± 0.28 b | 8.25 ± 0.65 ab | 7.77 ± 0.20 b | 8.38 ± 0.42 ab | 1372 | 1390 |
(E)-2-Octenal | 0.37 ± 0.06 b | 0.45 ± 0.07 ab | 0.32 ± 0.03 b | 0.40 ± 0.06 b | 0.41 ± 0.05 b | 0.49 ± 0.08 ab | 0.58 ± 0.09 a | 0.48 ± 0.03 ab | 0.38 ± 0.02 b | 1410 | 1416 |
Decanal | 0.27 ± 0.06 | 0.32 ± 0.07 | 0.23 ± 0.03 | 0.28 ± 0.02 | 0.24 ± 0.04 | 0.22 ± 0.03 | 0.33 ± 0.06 | 0.29 ± 0.08 | 0.24 ± 0.06 | 1477 | 1484 |
Benzaldehyde | 1.15 ± 0.19 | 1.21 ± 0.20 | 1.27 ± 0.17 | 1.39 ± 0.07 | 1.07 ± 0.07 | 1.21 ± 0.06 | 1.38 ± 0.04 | 1.23 ± 0.11 | 1.12 ± 0.09 | 1500 | 1508 |
(E)-2-Nonenal | 0.31 ± 0.04 ab | 0.40 ± 0.05 a | 0.34 ± 0.04 ab | 0.30 ± 0.08 ab | 0.27 ± 0.03 ab | 0.26 ± 0.05 b | 0.34 ± 0.06 ab | 0.23 ± 0.02 b | 0.26 ± 0.04 ab | 1508 | 1502 |
Furans | |||||||||||
2-Ethylfuran | 0.89 ± 0.09 | 0.83 ± 0.07 | 0.90 ± 0.02 | 0.85 ± 0.05 | 0.84 ± 0.06 | 0.83 ± 0.02 | 0.89 ± 0.05 | 0.81 ± 0.03 | 0.92 ± 0.06 | 944 | 945 |
2-n-Butylfuran | 0.96 ± 0.11 | 0.85 ± 0.08 | 0.82 ± 0.06 | 0.78 ± 0.04 | 0.90 ± 0.05 | 0.97 ± 0.09 | 0.86 ± 0.06 | 0.85 ± 0.07 | 0.92 ± 0.08 | 1134 | 1126 |
2-Pentylfuran | 26.78 ± 1.25 | 25.19 ± 1.65 | 27.40 ± 2.48 | 27.17 ± 1.05 | 27.10 ± 1.59 | 25.80 ± 0.87 | 26.40 ± 2.09 | 25.57 ± 0.84 | 26.74 ± 2.14 | 1220 | 1226 |
2,3-Dihydrobenzofuran | 1.00 ± 0.04 abc | 0.94 ± 0.03 abc | 0.86 ± 0.10 bc | 1.02 ± 0.08 ab | 0.98 ± 0.05 abc | 0.95 ± 0.07 abc | 1.05 ± 0.06 a | 0.99 ± 0.05 abc | 0.85 ± 0.04 c | 2292 | NF |
Alcohols | |||||||||||
2,3-Dimethylcyclohexanol | 0.24 ± 0.05 | 0.22 ± 0.03 | 0.24 ± 0.04 | 0.21 ± 0.02 | 0.27 ± 0.01 | 0.23 ± 0.04 | 0.26 ± 0.03 | 0.25 ± 0.03 | 0.20 ± 0.02 | 1058 | NF |
1-Hexanol | 0.87 ± 0.07 bc | 0.93 ± 0.09 ab | 0.78 ± 0.05 bc | 0.83 ± 0.04 bc | 0.81 ± 0.06 bc | 0.86 ± 0.03 bc | 0.73 ± 0.05 c | 1.04 ± 0.06 a | 0.85 ± 0.02 bc | 1355 | 1354 |
Ketones | |||||||||||
2-Heptanone | 0.33 ± 0.05 bcd | 0.30 ± 0.03 d | 0.45 ± 0.05 ab | 0.34 ± 0.03 bcd | 0.44 ± 0.05 abc | 0.38 ± 0.02 abcd | 0.32 ± 0.04 cd | 0.39 ± 0.08 abcd | 0.49 ± 0.05 a | 1185 | 1183 |
2,2,6-Trimethylcyclohexanone | 0.20 ± 0.04 ab | 0.15 ± 0.03 b | 0.23 ± 0.04 a | 0.15 ± 0.02 ab | 0.22 ± 0.04 ab | 0.17 ± 0.03 ab | 0.18 ± 0.01 ab | 0.17 ± 0.02 ab | 0.18 ± 0.03 ab | 1288 | 1282 |
2,3-Octanedione | 1.46 ± 0.16 | 1.29 ± 0.12 | 1.34 ± 0.05 | 1.40 ± 0.08 | 1.26 ± 0.07 | 1.29 ± 0.11 | 1.29 ± 0.03 | 1.50 ± 0.07 | 1.44 ± 0.03 a | 1316 | 1325 |
6-Methyl-5-hepten-2-one | 0.48 ± 0.07 abc | 0.31 ± 0.03 d | 0.37 ± 0.04 bcd | 0.39 ± 0.11 bcd | 0.52 ± 0.05 ab | 0.36 ± 0.03 cd | 0.55 ± 0.04 a | 0.49 ± 0.04 abc | 0.33 ± 0.03 d | 1330 | 1341 |
5-Ethyl-6-methyl-3E-hepten-2-one | 1.96 ± 0.10 | 1.86 ± 0.09 | 2.10 ± 0.14 | 1.85 ± 0.05 | 2.02 ± 0.17 | 1.99 ± 0.16 | 1.90 ± 0.07 | 2.01 ± 0.10 | 1.88 ± 0.06 | 1443 | NF |
6,10-Dimethyl-5,9-Undecadien-2-one | 0.80 ± 0.07 | 0.91 ± 0.11 | 0.77 ± 0.03 | 0.89 ± 0.06 | 0.79 ± 0.06 | 0.86 ± 0.02 | 0.93 ± 0.04 | 0.89 ± 0.09 | 0.90 ± 0.07 | 1838 | 1865 |
Others | |||||||||||
2-Acetylthiazole | 0.12 ± 0.02 ab | 0.09 ± 0.01 b | 0.13 ± 0.02 ab | 0.14 ± 0.01 ab | 0.12 ± 0.02 ab | 0.15 ± 0.03 a | 0.11 ± 0.02 ab | 0.13 ± 0.02 ab | 0.16 ± 0.02 a | 1621 | 1643 |
Cyclopentyl 4-ethylbenzoate | 0.31 ± 0.02 ab | 0.42 ± 0.03 a | 0.28 ± 0.06 b | 0.29 ± 0.07 ab | 0.22 ± 0.03 b | 0.34 ± 0.04 ab | 0.31 ± 0.07 ab | 0.24 ± 0.05 b | 0.25 ± 0.02 ab | 1798 | 1835 |
Phenol | 0.06 ± 0.02 b | 0.07 ± 0.01 ab | 0.10 ± 0.01 a | 0.05 ± 0.01 b | 0.08 ± 0.02 ab | 0.07 ± 0.01 ab | 0.08 ± 0.01 ab | 0.06 ± 0.02 b | 0.09 ± 0.01 ab | 1964 | 2002 |
2-Methoxy-4-vinylphenol | 0.89 ± 0.08 | 0.86 ± 0.03 | 0.91 ± 0.06 | 1.06 ± 0.10 | 0.93 ± 0.05 | 0.94 ± 0.11 | 1.02 ± 0.08 | 0.90 ± 0.12 | 0.87 ± 0.06 | 2146 | 2212 |
Indole | 0.41 ± 0.05 | 0.43 ± 0.08 | 0.38 ± 0.02 | 0.45 ± 0.04 | 0.42 ± 0.07 | 0.40 ± 0.04 | 0.49 ± 0.07 | 0.51 ± 0.04 | 0.52 ± 0.14 | 2438 | 2450 |
Phenolic Compound | Form | UC | Cooked Brown Rice under Different Soaking Conditions during Cooking | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
US | 40-30 | 40-60 | 50-30 | 50-60 | 60-30 | 60-60 | 70-30 | 70-60 | |||
Ferulic acid (ng/g DW) | Bound | 55.26 ± 1.22 a | 40.08 ± 0.75 b | 40.54 ± 0.88 b | 40.96 ± 0.27 b | 40.88 ± 0.66 b | 41.54 ± 1.08 b | 40.87 ± 0.54 b | 41.98 ± 0.74 b | 40.58 ± 0.97 b | 40.57 ± 0.75 b |
Total | 58.21 ± 0.97 a | 41.62 ± 0.94 b | 42.13 ± 0.58 b | 42.51 ± 0.35 b | 42.36 ± 0.74 b | 43.07 ± 1.04 b | 42.43 ± 0.47 b | 43.57 ± 0.64 b | 42.21 ± 0.78 b | 42.13 ± 0.89 b | |
Isoferulic acid (ng/g DW) | Bound | 14.28 ± 0.33 a | 12.56 ± 0.24 b | 12.94 ± 0.12 b | 11.78 ± 0.15 b | 12.65 ± 0.28 b | 12.84 ± 0.39 b | 12.51 ± 0.18 b | 13.14 ± 0.08 b | 12.95 ± 0.20 b | 12.43 ± 0.42 b |
Total | 14.28 ± 0.33 a | 12.56 ± 0.24 b | 12.94 ± 0.12 b | 11.78 ± 0.15 b | 12.65 ± 0.28 b | 12.84 ± 0.39 b | 12.51 ± 0.18 b | 13.14 ± 0.08 b | 12.95 ± 0.20 b | 12.43 ± 0.42 b | |
p-Coumaric acid (ng/g DW) | Bound | 10.60 ± 0.40 a | 9.10 ± 0.12 b | 8.92 ± 0.05 b | 9.17 ± 0.10 b | 9.12 ± 0.05 b | 9.05 ± 0.04 b | 9.00 ± 0.11 b | 9.13 ± 0.13 b | 9.14 ± 0.04 b | 9.04 ± 0.10 b |
Total | 14.08 ± 0.65 a | 10.22 ± 0.24 b | 10.11 ± 0.10 b | 10.39 ± 0.09 b | 10.29 ± 0.14 b | 10.20 ± 0.15 b | 10.24 ± 0.07 b | 10.20 ± 0.19 b | 10.28 ± 0.04 b | 10.21 ± 0.16 b | |
Salicylic acid (ng/g DW) | Bound | 1.59 ± 0.07 a | 1.39 ± 0.06 b | 1.42 ± 0.03 b | 1.40 ± 0.01 b | 1.39 ± 0.04 b | 1.37 ± 0.05 b | 1.38 ± 0.02 b | 1.39 ± 0.02 b | 1.38 ± 0.04 b | 1.40 ± 0.03 b |
Total | 1.59 ± 0.07 a | 1.39 ± 0.06 b | 1.42 ± 0.03 b | 1.40 ± 0.01 b | 1.39 ± 0.04 b | 1.37 ± 0.05 b | 1.38 ± 0.02 b | 1.39 ± 0.02 b | 1.38 ± 0.04 b | 1.40 ± 0.03 b | |
Sum (ng/g DW) | Bound | 81.73 ± 1.56 a | 63.13 ± 0.94 b | 63.82 ± 1.14 b | 63.31 ± 0.87 b | 64.04 ± 1.05 b | 64.80 ± 1.54 b | 63.76 ± 1.36 b | 65.64 ± 0.85 b | 66.05 ± 1.02 b | 63.44 ± 0.98 b |
Total | 88.16 ± 1.78 a | 65.79 ± 1.07 b | 66.60 ± 1.28 b | 66.08 ± 0.97 b | 66.69 ± 1.34 b | 67.48 ± 1.97 b | 66.56 ± 1.49 b | 68.30 ± 1.89 b | 68.82 ± 1.12 b | 66.16 ± 1.16 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Yu, C.; Yin, X.; Wu, G.; Zhang, H. Effects of Soaking on the Volatile Compounds, Textural Property, Phytochemical Contents, and Antioxidant Capacity of Brown Rice. Foods 2022, 11, 3699. https://doi.org/10.3390/foods11223699
Zhu L, Yu C, Yin X, Wu G, Zhang H. Effects of Soaking on the Volatile Compounds, Textural Property, Phytochemical Contents, and Antioxidant Capacity of Brown Rice. Foods. 2022; 11(22):3699. https://doi.org/10.3390/foods11223699
Chicago/Turabian StyleZhu, Ling, Chengtao Yu, Xianting Yin, Gangcheng Wu, and Hui Zhang. 2022. "Effects of Soaking on the Volatile Compounds, Textural Property, Phytochemical Contents, and Antioxidant Capacity of Brown Rice" Foods 11, no. 22: 3699. https://doi.org/10.3390/foods11223699
APA StyleZhu, L., Yu, C., Yin, X., Wu, G., & Zhang, H. (2022). Effects of Soaking on the Volatile Compounds, Textural Property, Phytochemical Contents, and Antioxidant Capacity of Brown Rice. Foods, 11(22), 3699. https://doi.org/10.3390/foods11223699