Inhibiting Effects of Ginger and Rosemary on the Formation of Heterocyclic Amines, Polycyclic Aromatic Hydrocarbons, and Trans Fatty Acids in Fried Pork Balls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation and Cooking Process of Pork Balls
2.3. Moisture, pH, and Fat Content Analysis
2.4. Determination of Thiobarbituric Acid Reactive Substances (TBARS) Values
2.5. Determination of Total Phenolic Content (TPC) and Antioxidant Capacity of Spices
2.6. Determination of HCAs
2.7. Determination of PAH4
2.8. Determination of TFAs
2.9. Inhibitory Rates of HCAs, PAH4, and TFAs
2.10. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Capacity and TPC of Spices
3.2. Moisture, pH, Fat Content, and Cooking Loss of Deep-Fired Pork Balls
3.3. Effect of Spice Addition on the TBARS of Deep-Fried Pork Balls
3.4. Effect of Spices on the Formation of HCAs in Deep-Fried Pork Balls
3.5. Effect of Spices on the Formation of PAH4 in Deep-Fried Pork Balls
3.6. Effect of Spices on the Formation of TFAs in Deep-Fried Pork Balls
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, F.; Kuhnle, G.K.; Cheng, Q. The effect of common spices and meat type on the formation of heterocyclic amines and polycyclic aromatic hydrocarbons in deep-fried meatballs. Food Control 2018, 92, 399–411. [Google Scholar] [CrossRef]
- Xinyu, G.; Lan, Z.; Huazhen, Z.; Tianli, G.; Yang, J.; Yongfeng, L. The effects of various Chinese processing methods on the nutritional and safety properties of four kinds of meats. Innov. Food Sci. Emerg. Technol. 2021, 70, 102674. [Google Scholar] [CrossRef]
- Teng, H.; Chen, Y.; Lin, X.; Lv, Q.; Chai, T.T.; Wong, F.C.; Chen, L.; Xiao, J. Inhibitory effect of the extract from Sonchus olearleu on the formation of carcinogenic heterocyclic aromatic amines during the pork cooking. Food Chem. Toxicol. 2019, 129, 138–143. [Google Scholar] [CrossRef]
- International Agency Research for Cancer (IARC). Monographs on the evaluation of carcinogenic risk to humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC 2010, 92, 36–37. [Google Scholar]
- Onopiuk, A.; Kołodziejczak, K.; Szpicer, A.; Wojtasik-Kalinowska, I.; Wierzbicka, A.; Półtorak, A. Analysis of factors that influence the PAH profile and amount in meat products subjected to thermal processing. Trends Food Sci. Technol. 2021, 115, 366–379. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, M.; Zhao, L.; Mujumdar, A.S.; Wang, H. Schemes for enhanced antioxidant stability in frying meat: A review of frying process using single oil and blended oils. Crit. Rev. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef]
- Md. Ashraful, I.; Mohammad Nurul, A.; Shafayet Ahmed, S.; Md. Parvez, H.; Farhana, S.; Md. Ruhul, K. Trans fatty acids and lipid profile: A serious risk factor to cardiovascular disease, cancer and diabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1643–1647. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Y.; Huang, T.; Yu, Y.; Bassey, A.P.; Huang, M. The contamination, formation, determination and control of polycyclic aromatic hydrocarbons in meat products. Food Control 2022, 141, 109194. [Google Scholar] [CrossRef]
- Dutta, K.; Shityakov, S.; Zhu, W.; Khalifa, I. High-risk meat and fish cooking methods of polycyclic aromatic hydrocarbons formation and its avoidance strategies. Food Control 2022, 142, 109253. [Google Scholar] [CrossRef]
- Wang, C.; Xie, Y.T.; Wang, H.Y.; Bai, Y.; Dai, C.; Li, C.B.; Xu, X.L.; Zhou, G.H. The influence of natural antioxidants on polycyclic aromatic hydrocarbon formation in charcoal-grilled chicken wings. Food Control 2019, 98, 34–41. [Google Scholar] [CrossRef]
- Meurillon, M.; Angenieux, M.; Mercier, F.; Blinet, P.; Chaloin, L.; Chevolleau, S.; Debrauwer, L.; Engel, E. Mitigation of heterocyclic aromatic amines in cooked meat. Part I: Informed selection of antioxidants based on molecular modeling. Food Chem. 2020, 331, 127264. [Google Scholar] [CrossRef] [PubMed]
- Tanweer, S.; Mehmood, T.; Zainab, S.; Ahmad, Z.; Shehzad, A. Comparison and HPLC quantification of antioxidant profiling of ginger rhizome, leaves and flower extracts. Clin. Phytosci. 2020, 6, 12. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis L.): A Review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbančič, S.; Kolar, M.H.; Dimitrijević, D.; Demšar, L.; Vidrih, R. Stabilisation of sunflower oil and reduction of acrylamide formation of potato with rosemary extract during deep-fat frying. LWT Food Sci. Technol. 2014, 57, 671–678. [Google Scholar] [CrossRef]
- Jin, G.; Zhang, J.; Yu, X.; Zhang, Y.; Lei, Y.; Wang, J. Lipolysis and lipid oxidation in bacon during curing and drying-ripening. Food Chem. 2010, 123, 465–471. [Google Scholar] [CrossRef]
- Sethi, S.; Joshi, A.; Arora, B.; Bhowmik, A.; Sharma, R.R.; Kumar, P. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. Eur. Food Res. Technol. 2020, 246, 591–598. [Google Scholar] [CrossRef]
- Villano, D.; Fernandez-Pachon, M.S.; Troncoso, A.M.; Garcia-Parrilla, M.C. The antioxidant activity of wines determined by the ABTS(+) method: Influence of sample dilution and time. Talanta 2004, 64, 501–509. [Google Scholar] [CrossRef]
- Wang, W.; Dong, L.; Zhang, Y.; Yu, H.; Wang, S. Reduction of the Heterocyclic Amines in Grilled Beef Patties through the Combination of Thermal Food Processing Techniques without Destroying the Grilling Quality Characteristics. Foods 2021, 10, 1490. [Google Scholar] [CrossRef]
- Lee, J.S.; Han, J.W.; Jung, M.; Lee, K.W.; Chung, M.S. Effects of Thawing and Frying Methods on the Formation of Acrylamide and Polycyclic Aromatic Hydrocarbons in Chicken Meat. Foods 2020, 9, 573. [Google Scholar] [CrossRef]
- Zribi, A.; Jabeur, H.; Aladedunye, F.; Rebai, A.; Matthaus, B.; Bouaziz, M. Monitoring of quality and stability characteristics and fatty acid compositions of refined olive and seed oils during repeated pan- and deep-frying using GC, FT-NIRS, and chemometrics. J. Agric. Food Chem. 2014, 62, 10357–10367. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Noreen, H.; Semmar, N.; Farman, M.; McCullagh, J.S.O. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med. 2017, 10, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Oz, E. Inhibitory effects of black cumin on the formation of heterocyclic aromatic amines in meatball. PLoS ONE 2019, 14, e0221680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, N.; Scheeder, M.; Wenk, C. The influence of cooking and fat trimming on the actual nutrient intake from meat. Meat Sci. 2009, 81, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Kilic, S.; Oz, E.; Oz, F. Effect of turmeric on the reduction of heterocyclic aromatic amines and quality of chicken meatballs. Food Control 2021, 128, 108189. [Google Scholar] [CrossRef]
- Huang, Y.; Li, H.; Huang, T.; Li, F.; Sun, J. Lipolysis and lipid oxidation during processing of Chinese traditional smoke-cured bacon. Food Chem. 2014, 149, 31–39. [Google Scholar] [CrossRef]
- Tengilimoglu-Metin, M.M.; Hamzalioglu, A.; Gokmen, V.; Kizil, M. Inhibitory effect of hawthorn extract on heterocyclic aromatic amine formation in beef and chicken breast meat. Food Res. Int. 2017, 99, 586–595. [Google Scholar] [CrossRef]
- Murkovic, M.; Steinberger, D.; Pfannhauser, W. Antioxidant spices reduce the formation of heterocyclic amines in fried meat. Z. Lebensm. Forsch. A 1998, 207, 477–480. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, J.; Zhang, M.; Chen, J.; He, Z.; Qin, F.; Xu, Z.; Cao, D.; Chen, J. Inhibitory effects of Sichuan pepper (Zanthoxylum bungeanum) and sanshoamide extract on heterocyclic amine formation in grilled ground beef patties. Food Chem. 2018, 239, 111–118. [Google Scholar] [CrossRef]
- Zeng, M.; Li, Y.; He, Z.; Qin, F.; Chen, J. Effect of phenolic compounds from spices consumed in China on heterocyclic amine profiles in roast beef patties by UPLC-MS/MS and multivariate analysis. Meat Sci. 2016, 116, 50–57. [Google Scholar] [CrossRef]
- Shin, H.S.; Rodgers, W.J.; Gomaa, E.A.; Strasburg, G.M.; Gray, J.I. Inhibition of heterocyclic aromatic amine formation in fried ground beef patties by garlic and selected garlic-related sulfur compounds. J. Food Prot. 2002, 65, 1766–1770. [Google Scholar] [CrossRef] [PubMed]
- Oz, F.; Kaya, M. The inhibitory effect of black pepper on formation of heterocyclic aromatic amines in high-fat meatball. Food Control 2011, 22, 596–600. [Google Scholar] [CrossRef]
- Puangsombat, K.; Jirapakkul, W.; Smith, J.S. Inhibitory activity of Asian spices on heterocyclic amines formation in cooked beef patties. J. Food Sci. 2011, 76, T174–T180. [Google Scholar] [CrossRef] [PubMed]
- Oz, F.; Kaya, M. The Inhibitory Effect of Red Pepper on Heterocyclic Aromatic Amines in Fried Beef Longissimus Dorsi Muscle. J. Food Process. Preserv. 2011, 35, 806–812. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, M.; He, Z.; Qin, F.; Tao, G.; Zhang, S.; Gao, Y.; Chen, J. Inhibitory profiles of chilli pepper and capsaicin on heterocyclic amine formation in roast beef patties. Food Chem. 2017, 221, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Damasius, J.; Venskutonis, P.R.; Ferracane, R.; Fogliano, V. Assessment of the influence of some spice extracts on the formation of heterocyclic amines in meat. Food Chem. 2011, 126, 149–156. [Google Scholar] [CrossRef]
- Gumus, D.; Kizil, M. Comparison of the reducing effects of blueberry and propolis extracts on heterocyclic aromatic amines formation in pan fried beef. Meat Sci. 2022, 186, 108746. [Google Scholar] [CrossRef]
- Sharma, R.K.; Chan, W.G.; Seeman, J.I.; Hajaligol, M.R. Formation of low molecular weight heterocycles and polycyclic aromatic compounds (PACs) in the pyrolysis of α-amino acids. J. Anal. Appl. Pyrolysis 2003, 66, 97–121. [Google Scholar] [CrossRef]
- Tsuzuki, W. cis-trans isomerization of carbon double bonds in monounsaturated triacylglycerols via generation of free radicals. Chem. Phys. Lipids 2010, 163, 741–745. [Google Scholar] [CrossRef]
Spice Name | Antioxidant Activity IC50 on DPPH Radicals (mg/mL) | Antioxidant Activity IC50 on ABTS Radicals (mg/mL) | Total Antioxidant Capacity (μmol/mL) | Total Phenolic (mg Gallic Acid Equivalents/g) |
---|---|---|---|---|
Ginger | 0.26 | 4.60 | 0.58 ± 0.01 | 9.90 ± 0.27 a |
Rosemary | 0.03 | 0.93 | 3.74 ± 0.04 | 61.34 ± 1.23 b |
Concentrations (%) | Cooking Loss (%) | Moisture (%) | pH | Fat (%) | |
---|---|---|---|---|---|
Control | 0 | 33.00 ± 1.00 a | 55.28 ± 0.01 a | 6.64 ± 0.04 abc | 6.39 ± 0.14 a |
Ginger | 0.25 | 30.17 ± 0.58 b | 58.14 ± 0.44 c | 6.72 ± 0.04 c | 6.27 ± 0.18 a |
0.75 | 28.67 ± 0.29 c | 58.16 ± 0.13 c | 6.69 ± 0.06 bc | 6.74 ± 0.24 ab | |
1.25 | 26.33 ± 0.29 de | 58.28 ± 0.11 c | 6.57 ± 0.03 abc | 7.57 ± 0.50 b | |
p (Concentrations) | ** | ns | ns | ** | |
Rosemary | 0.25 | 30.83 ± 0.29 b | 56.73 ± 0.05 b | 6.47 ± 0.13 a | 7.57 ± 0.95 b |
0.75 | 26.67 ± 0.76 d | 58.62 ± 0.14 d | 6.52 ± 0.11 ab | 7.41 ± 0.82 b | |
1.25 | 25.33 ± 1.04 e | 58.75 ± 0.08 d | 6.61 ± 0.06 abc | 7.41 ± 0.14 b | |
p (Concentrations) | ** | ** | ns | ns | |
p (Spice) | * | ns | * | * |
Concentrations (%) | Norharman | Harman | IQ | IQx | Other HCAs | Total HCAs | |
---|---|---|---|---|---|---|---|
Control | 0 | 1.44 ± 0.21 a | 2.02 ± 0.18 a | 4.16 ± 0.16 a | 0.62 ± 0.04 a | 0.59 ± 0.11 a | 8.84 ± 0.43 a |
Ginger p (Concentrations) | 0.25 | 1.65 ± 0.09 b | 0.69 ± 0.14 c (66%) | 0.43 ± 0.12 b (90%) | Nq (100%) | 0.53 ± 0.02 ab (10%) | 3.29 ± 0.35 c (63%) |
0.75 | 2.65 ± 0.05 d | 0.74 ± 0.18 cd (63%) | 0.66 ± 0.10 b (84%) | Nq (100%) | 0.52 ± 0.04 ab (13%) | 4.57 ± 0.36 bc (48%) | |
1.25 | 4.04 ± 0.09 f | 1.16 ± 0.42 bd (43%) | 1.77 ± 1.45 b (58%) | 0.32 ± 0.16 b (48%) | 0.54 ± 0.01 ab (9%) | 7.83 ± 2.08 a (11%) | |
** | ns | ns | ** | ns | ** | ||
0.25 | 2.01 ± 0.07 c | 0.39 ± 0.07 d (81%) | 0.69 ± 0.91 b (84%) | Nq (100%) | 0.50 ± 0.02 ab (15%) | 3.59 ± 0.88 c (59%) | |
Rosemary | 0.75 | 3.72 ± 0.09 e | 0.99 ± 0.13 bc (51%) | 0.85 ± 0.46 b (80%) | Nq (100%) | 0.46 ± 0.09 b (22%) | 6.03 ± 0.54 b (32%) |
1.25 | 5.55 ± 0.10 g | 0.92 ± 0.11 bc (54%) | 1.50 ± 0.63 b (64%) | 0.26 ± 0.08 bc (57%) | 0.53 ± 0.03 ab (11%) | 8.41 ± 0.19 a (5%) | |
p (Concentrations) | ** | ** | ns | ** | ns | ** | |
p (Spice) | ** | ns | ns | ns | ns | ns |
Concentrations (%) | BaA | Chr | BaP | Total PAH4 | |
---|---|---|---|---|---|
Control | 0 | 0.85 ± 0.20 b | 3.90 ± 0.23 ab | 4.59 ± 0.18 bc | 9.34 ± 0.27 b |
Ginger p (Concentrations) | 0.25 | 0.62 ± 0.07 a (27%) | 3.55 ± 0.32 b (9%) | 5.33 ± 0.48 ab | 9.50 ± 0.77 b |
0.75 | 0.92 ± 0.08 bc | 3.98 ± 0.07 ab | 4.18 ± 0.41 c (9%) | 9.08 ± 0.52 b (3%) | |
1.25 | 0.81 ± 0.07 ab (5%) | 3.84 ± 0.39 ab (2%) | 4.62 ± 0.67 bc | 9.26 ± 1.12 b (1%) | |
** | ns | ns | ns | ||
0.25 | 0.87 ± 0.18 b | 2.52 ± 0.36 c (35%) | 3.18 ± 0.70 d (31%) | 6.57 ± 0.95 a (30%) | |
Rosemary | 0.75 | 1.13 ± 0.13 c | 2.30 ± 0.14 c (41%) | 2.64 ± 0.16 d (42%) | 6.07 ± 0.36 a (35%) |
1.25 | 1.13 ± 0.04 c | 4.28 ± 0.27 a | 5.52 ± 0.30 a | 10.93 ± 0.24 d | |
p (Concentrations) | ns | ** | ** | ** | |
p (Spice) | ** | ** | ** | ** |
Concentrations (%) | C20:1 11t | C18:2 9t 12t | Total TFAs | |
---|---|---|---|---|
Control | 0 | 3.30 ± 0.26 a | 3.89 ± 0.42 a | 7.20 ± 0.68 bc |
Ginger p (Concentrations) | 0.25 | 2.76 ± 0.12 ab (16%) | 5.51 ± 1.04 c | 8.61 ± 0.50 d |
0.75 | 2.31 ± 0.69 bc (30%) | 5.13 ± 0.69 bc | 7.44 ± 1.31 cd | |
1.25 | 1.99 ± 0.23 c (40%) | 3.95 ± 0.45 ab | 5.94 ± 0.67 ab (17%) | |
ns | * | * | ||
0.25 | 2.43 ± 0.24 bc (27%) | 4.14 ± 0.29 ab | 6.56 ± 0.53 abc (9%) | |
Rosemary | 0.75 | 2.30 ± 0.12 bc (30%) | 3.86 ± 0.08 a (1%) | 6.16 ± 0.17 abc (14%) |
1.25 | 2.01 ± 0.08 c (39%) | 4.25 ± 0.85 ab | 5.84 ± 0.42 a (19%) | |
p (Concentrations) | ns | ns | ns | |
p (Spice) | ns | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Li, B.; Yu, X.; Zhuang, Y.; Li, C.; Dong, L.; Zhang, Y.; Wang, S. Inhibiting Effects of Ginger and Rosemary on the Formation of Heterocyclic Amines, Polycyclic Aromatic Hydrocarbons, and Trans Fatty Acids in Fried Pork Balls. Foods 2022, 11, 3767. https://doi.org/10.3390/foods11233767
He X, Li B, Yu X, Zhuang Y, Li C, Dong L, Zhang Y, Wang S. Inhibiting Effects of Ginger and Rosemary on the Formation of Heterocyclic Amines, Polycyclic Aromatic Hydrocarbons, and Trans Fatty Acids in Fried Pork Balls. Foods. 2022; 11(23):3767. https://doi.org/10.3390/foods11233767
Chicago/Turabian StyleHe, Xiaomei, Baichenyang Li, Xiaoyan Yu, Yuan Zhuang, Changmo Li, Lu Dong, Yan Zhang, and Shuo Wang. 2022. "Inhibiting Effects of Ginger and Rosemary on the Formation of Heterocyclic Amines, Polycyclic Aromatic Hydrocarbons, and Trans Fatty Acids in Fried Pork Balls" Foods 11, no. 23: 3767. https://doi.org/10.3390/foods11233767
APA StyleHe, X., Li, B., Yu, X., Zhuang, Y., Li, C., Dong, L., Zhang, Y., & Wang, S. (2022). Inhibiting Effects of Ginger and Rosemary on the Formation of Heterocyclic Amines, Polycyclic Aromatic Hydrocarbons, and Trans Fatty Acids in Fried Pork Balls. Foods, 11(23), 3767. https://doi.org/10.3390/foods11233767