Structure-Function Guided Extraction and Scale-Up of Pea Protein Isolate Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Benchtop Pea Protein Extractions
2.2.1. PPI Production Following pH Extraction
2.2.2. PPI Production Following a Salt Solubilization Coupled with Membrane Filtration Method
2.3. Scaled-Up Pea Protein Extractions in the Pilot Plant
2.3.1. Scaled-Up pH-Extraction
2.3.2. Scaled-Up Salt Extraction
2.4. Structural Characterization
2.4.1. Protein Profiling by SDS-PAGE and SE-HPLC
2.4.2. Protein Denaturation as Determined by Differential Scanning Calorimetry (DSC)
2.4.3. Measurement of Zeta Potential and Surface Hydrophobicity
2.5. Functional Properties
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of Different pH Extraction Conditions on the Efficiency of PPI Production
3.2. Effect of Membrane Filtration on the Production Efficiency of Salt Extracted PPI
3.3. Pilot Production of PPI Following the Selected Extraction/Purification Conditions
3.4. Effect of Extraction Conditions and Scaling up on Protein Profile
3.5. Protein Denaturation as Impacted by Extraction Method and Scale
3.6. Protein Surface Properties as Impacted by the Extraction Method and Scale
3.7. Protein Functionality as Impacted by the Extraction Method and Scale
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Tulbek, M.C.; Lam, R.S.H.; Wang, Y.; Asavajaru, P.; Lam, A. Chapter 9—Pea: A Sustainable Vegetable Protein Crop. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 145–164. [Google Scholar]
- Chang, C.; Tu, S.; Ghosh, S.; Nickerson, M. Effect of pH on the inter-relationships between the physicochemical, interfacial and emulsifying properties for pea, soy, lentil and canola protein isolates. Food Res. Int. 2015, 77, 360–367. [Google Scholar] [CrossRef]
- Zhao, H.; Shen, C.; Wu, Z.; Zhang, Z.; Xu, C. Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products. J. Food Biochem. 2020, 44, e13157. [Google Scholar] [CrossRef]
- Bu, F.; Nayak, G.; Bruggeman, P.; Annor, G.; Ismail, B.P. Impact of plasma reactive species on the structure and functionality of pea protein isolate. Food Chem. 2022, 371, 131135. [Google Scholar] [CrossRef]
- Adebiyi, A.P.; Aluko, R.E. Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chem. 2011, 128, 902–908. [Google Scholar] [CrossRef]
- Arntfield, S.D.; Maskus, H.D. 9-Peas and other legume proteins. In Handbook of Food Proteins; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Sawston, UK, 2011; pp. 233–266. [Google Scholar]
- Cui, L.; Bandillo, N.; Wang, Y.; Ohm, J.-B.; Chen, B.; Rao, J. Functionality and structure of yellow pea protein isolate as affected by cultivars and extraction pH. Food Hydrocolloid 2020, 108, 106008. [Google Scholar] [CrossRef]
- Pelgrom, P.J. Dry Fractionation for Sustainable Production of Plant Protein Concentrates; Wageningen University and Research: Wageningen, The Netherlands, 2015. [Google Scholar]
- Gao, Z.; Shen, P.; Lan, Y.; Cui, L.; Ohm, J.-B.; Chen, B.; Rao, J. Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate. Food Res. Int. 2020, 131, 109045. [Google Scholar] [CrossRef]
- Tanger, C.; Engel, J.; Kulozik, U. Influence of extraction conditions on the conformational alteration of pea protein extracted from pea flour. Food Hydrocolloid 2020, 107, 105949. [Google Scholar] [CrossRef]
- Karaca, A.C.; Low, N.; Nickerson, M. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res. Int. 2011, 44, 2742–2750. [Google Scholar] [CrossRef]
- Murray, E.; Myers, C.; Barker, L.; Maurice, T. Functional attributes of proteins—A noncovalent approach to processing and utilizing plant proteins. Util. Protein Resour. 1981. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201301965539 (accessed on 14 November 2022).
- Duong-Ly, K.C.; Gabelli, S.B. Salting out of proteins using ammonium sulfate precipitation. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 541, pp. 85–94. [Google Scholar]
- Xu, H.-N.; Liu, Y.; Zhang, L. Salting-out and salting-in: Competitive effects of salt on the aggregation behavior of soy protein particles and their emulsifying properties. Soft Matter 2015, 11, 5926–5932. [Google Scholar] [CrossRef] [PubMed]
- Deak, N.; Murphy, P.; Johnson, L. Effects of NaCl concentration on salting-in and dilution during salting-out on soy protein fractionation. J. Food Sci. 2006, 71, C247–C254. [Google Scholar] [CrossRef]
- Hayati Zeidanloo, M.; Ahmadzadeh Ghavidel, R.; Ghiafeh Davoodi, M.; Arianfar, A. Functional properties of Grass pea protein concentrates prepared using various precipitation methods. J. Food Sci. Technol. 2019, 56, 4799–4808. [Google Scholar] [CrossRef] [PubMed]
- Stone, A.K.; Karalash, A.; Tyler, R.T.; Warkentin, T.D.; Nickerson, M.T. Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Res. Int. 2015, 76, 31–38. [Google Scholar] [CrossRef]
- Gao, L.L.; Nguyen, K.D.; Utioh, A.C. Pilot scale recovery of proteins from a pea whey discharge by ultrafiltration. LWT-Food Sci. Technol. 2001, 34, 149–158. [Google Scholar] [CrossRef]
- Tian, S.; Kyle, W.S.; Small, D.M. Pilot scale isolation of proteins from field peas (Pisum sativum L.) for use as food ingredients. Int. J. Food Sci. Technol. 1999, 34, 33–39. [Google Scholar] [CrossRef]
- Taherian, A.R.; Mondor, M.; Labranche, J.; Drolet, H.; Ippersiel, D.; Lamarche, F. Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Res. Int. 2011, 44, 2505–2514. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Boyle, C.; Hansen, L.; Hinnenkamp, C.; Ismail, B.P. Emerging camelina protein: Extraction, modification, and structural/functional characterization. J. Am. Oil Chem. Soc. 2018, 95, 1049–1062. [Google Scholar] [CrossRef]
- Wang, Q.; Ismail, B. Effect of Maillard-induced glycosylation on the nutritional quality, solubility, thermal stability and molecular configuration of whey protein. Int. Dairy J. 2012, 25, 112–122. [Google Scholar] [CrossRef]
- Hinnenkamp, C.; Ismail, B.P. Enhancing emulsion stability: The synergistic effect of combining Procream and partially hydrolyzed whey protein. Int. Dairy J. 2021, 119, 105059. [Google Scholar] [CrossRef]
- Hoang, H.D. Evaluation of Pea Protein and Modified Pea Protein as Egg Replacers. Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, 2012. [Google Scholar]
- Feyzi, S.; Milani, E.; Golimovahhed, Q.A. Grass Pea (Lathyrus sativus L.) Protein Isolate: The Effect of Extraction Optimization and Drying Methods on the Structure and Functional Properties. Food Hydrocolloid 2018, 74, 187–196. [Google Scholar] [CrossRef]
- Reinkensmeier, A.; Bußler, S.; Schlüter, O.; Rohn, S.; Rawel, H.M. Characterization of individual proteins in pea protein isolates and air classified samples. Food Res. Int. 2015, 76, 160–167. [Google Scholar] [CrossRef]
- Lee, H.; Htoon, A.; Uthayakumaran, S.; Paterson, J. Chemical and functional quality of protein isolated from alkaline extraction of Australian lentil cultivars: Matilda and Digger. Food Chem. 2007, 102, 1199–1207. [Google Scholar] [CrossRef]
- Barac, M.; Cabrilo, S.; Stanojevic, S.; Pesic, M.; Pavlicevic, M.; Zlatkovic, B.; Jankovic, M. Functional properties of protein hydrolysates from pea (Pisum sativum, L.) seeds. Int. J. Food Sci. Technol. 2012, 47, 1457–1467. [Google Scholar] [CrossRef]
- Boye, J.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- O'Kane, F.E.; Happe, R.P.; Vereijken, J.M.; Gruppen, H.; Van Boekel, M.A.J.S. Characterization of Pea Vicilin. 1. Denoting Convicilin as the α-Subunit of thePisumVicilin Family. J. Agric. Food Chem. 2004, 52, 3141–3148. [Google Scholar] [CrossRef]
- Shand, P.J.; Ya, H.; Pietrasik, Z.; Wanasundara, P.K.J.P.D. Physicochemical and textural properties of heat-induced pea protein isolate gels. Food Chem. 2007, 102, 1119–1130. [Google Scholar] [CrossRef]
- Sumner, A.; Nielsen, M.; Youngs, C. Production and evaluation of pea protein isolate. J. Food Sci. 1981, 46, 364–366. [Google Scholar] [CrossRef]
- Gueguen, J.; Cerletti, P. Proteins of some legume seeds: Soybean, pea, fababean and lupin. In New and Developing Sources of Food Proteins; Springer: Berlin, Germany, 1994; pp. 145–193. [Google Scholar]
- Taherian, A.R.; Mondor, M.; Lamarche, F. Enhancing nutritional values and functional properties of yellow pea protein via membrane processing. Peas Cultiv. Var. Nutr. Uses 2012, 1–48. [Google Scholar]
- Lu, Z.X.; He, J.F.; Zhang, Y.C.; Bing, D.J. Composition, physicochemical properties of pea protein and its application in functional foods. Crit. Rev. Food Sci. Nutr. 2019, 60, 1–13. [Google Scholar] [CrossRef]
- Owusu-Ansah, Y.J.; McCurdy, S.M. Pea proteins: A review of chemistry, technology of production, and utilization. Food Rev. Int. 1991, 7, 103–134. [Google Scholar] [CrossRef]
- Hensley, D.; LAWHON, J.T. Economic evaluation of soy isolate production by a membrane isolation process. Food Technol. 1979, 33, 46–50. [Google Scholar]
- Tzitzikas, E.N.; Vincken, J.-P.; De Groot, J.; Gruppen, H.; Visser, R.G.F. Genetic Variation in Pea Seed Globulin Composition. J. Agric. Food Chem. 2006, 54, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Mession, J.-L.; Chihi, M.L.; Sok, N.; Saurel, R. Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocolloid 2015, 46, 233–243. [Google Scholar] [CrossRef]
- Croy, R.R.; Hoque, M.S.; Gatehouse, J.A.; Boulter, D. The major albumin proteins from pea (Pisum sativum L.) Purification and some properties. Biochem. J. 1984, 218, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Swanson, B.G. Pea and lentil protein extraction and functionality. J. Am. Oil Chem. Soc. 1990, 67, 276–280. [Google Scholar] [CrossRef]
- Makri, E.; Papalamprou, E.; Doxastakis, G. Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocolloid 2005, 19, 583–594. [Google Scholar] [CrossRef]
- Mession, J.-L.; Sok, N.; Assifaoui, A.; Saurel, R.m. Thermal Denaturation of Pea Globulins (Pisum sativum L.) Molecular Interactions Leading to Heat-Induced Protein Aggregation. J. Agric. Food Chem. 2013, 61, 1196–1204. [Google Scholar] [CrossRef]
- Phillips, G.O.; Williams, P.A. Handbook of Food Proteins; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Damodaran, S.; Parkin, K.L. Amino acids, peptides, and proteins. In Fennema’s Food Chemistry; CRC Press: Boca Raton, FL, USA, 2017; pp. 235–356. [Google Scholar]
- Friedman, M. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J. Agric. Food Chem. 1999, 47, 1295–1319. [Google Scholar] [CrossRef]
- Lee, K.; Ryu, H.; Rhee, K. Protein solubility characteristics of commercial soy protein products. J. Am. Oil Chem. Soc. 2003, 80, 85–90. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Davis, J.P. Food protein functionality: A comprehensive approach. Food Hydrocolloid 2011, 25, 1853–1864. [Google Scholar] [CrossRef]
- Rickert, D.; Johnson, L.; Murphy, P. Functional Properties of Improved Glycinin and β-nglycinin Fractions. J. Food Sci. 2004, 69, FCT303–FCT311. [Google Scholar] [CrossRef]
- Lampart-Szczapa, E. Legume and oilseed proteins. Chem. Funct. Prop. Food Proteins 2001, 2, 407–436. [Google Scholar]
- Zhou, H.X. Interactions of macromolecules with salt ions: An electrostatic theory for the Hofmeister effect. Proteins Struct. Funct. Bioinform. 2005, 61, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.D.; Arntfield, S.D. Gelation properties of salt-extracted pea protein isolate induced by heat treatment: Effect of heating and cooling rate. Food Chem. 2011, 124, 1011–1016. [Google Scholar] [CrossRef]
- Wolf, W.J. Soybean proteins. Their functional, chemical, and physical properties. J. Agric. Food Chem. 1970, 18, 969–976. [Google Scholar] [CrossRef]
- Sun, X.D.; Arntfield, S.D. Gelation properties of salt-extracted pea protein induced by heat treatment. Food Res. Int. 2010, 43, 509–515. [Google Scholar] [CrossRef]
- Tombs, M. Gelation of globular proteins. Faraday Discuss. Chem. Soc. 1974, 57, 158–164. [Google Scholar] [CrossRef]
- Hermansson, A.-M. Aggregation and denaturation involved in gel formation. In Functionality and Protein Structure; ACS Publications: Washington, DC, USA, 1979. [Google Scholar]
- Nakai, S. Structure-function relationships of food proteins: With an emphasis on the importance of protein hydrophobicity. J. Agric. Food Chem. 1983, 31, 676–683. [Google Scholar] [CrossRef]
- Barac, M.; Cabrilo, S.; Pesic, M.; Stanojevic, S.; Zilic, S.; Macej, O.; Ristic, N. Profile and Functional Properties of Seed Proteins from Six Pea (Pisum sativum) Genotypes. Int. J. Mol. Sci. 2010, 11, 4973–4990. [Google Scholar] [CrossRef]
- Nour, A.H. Emulsion types, stability mechanisms and rheology: A review. Int. J. Innov. Res. Sci. Stud. (IJIRSS) 2018, 1, 14–21. [Google Scholar]
pH Extractions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Extraction Treatment | pH-PPI | Discarded Pellet 1 | Discarded Supernatant 2 | ||||||||
Solubilization pH | Precipitation pH | Solubilization Duration (h) | Number of Solubilizations | Dialysis of PPI | Protein Purity (%) | Protein Yield 3 (%) | Ash (%) | Protein Purity (%) | Protein Residue 4 (%) | Protein Purity (%) | Protein Lost 5 (%) |
7 | 4.5 | 1 | 1 | No | 89.7 a6 | 56.3 eB7 | 5.11 a | 8.08 aA | 22.1 aA | 29.5 b | 18.7 d |
8 | 4.5 | 1 | 1 | No | 86.5 ab | 60.9 cA | 5.02 a | 6.76 abB | 18.9 aB | 29.5 b | 19.7 cd |
7.5 | 4.5 | 1 | 1 | No | 88.3 ab | 58.1 cdeB | 5.03 a | 6.31 abcB | 18.2 aB | 28.7 bc | 19.3 cd |
7.5 | 5 | 1 | 1 | No | 89.4 a | 57.5 de | 4.24 b^8 | 5.82 bc | 17.1 a | 31.5 a^ | 23.4 a^ |
7.5 | 4.5 | 2 | 1 | No | 85.0 ab | 60.5 cd | 5.07 a | 5.66 bc | 16.6 ab | 27.7 bc | 20.1 c |
7.5 | 4.5 | 1 | 2 | No | 84.5 b | 69.9 a☨9 | 5.19 a | 3.00 d☨ | 8.11 c☨ | 27.4 c☨ | 21.8 b☨ |
7.5 | 4.5 | 1 | 2 | Yes | 87.6 ab | 64.7 b*10 | 4.96 a | 4.30 cd | 11.2 bc | 28.0 bc | 21.6 b |
Salt Extractions | |||||||||||
Purification Treatment | Salt-PPI | Discarded Pellet | |||||||||
Ultrafiltration | Dialysis of PPI | Protein Purity (%) | Protein Yield (%) | Ash (%) | Protein Purity (%) | Protein Residue (%) | |||||
Yes | No | 67.9 c | 76.1 a | 11.4 a | 7.97 a | 25.2 a | |||||
No | Yes | 86.9 b | 69.7 b | 7.19 b | 7.98 a | 25.3 a | |||||
Yes | Yes | 92.8 a^* | 72.0 ab* | 1.56 c^* | 7.70 a | 24.2 a |
Protein Fractions 1 | Relative Abundance (%) 2 | ||||
---|---|---|---|---|---|
cPPI | pH-PPI | Salt-PPI | SU-pH PPI | SU-Salt PPI | |
Soluble aggregates (Association of legumin, vicilin and other protein fractions) | 13.06 b3 | 2.07 d | 2.55 d | 18.06 a | 9.91 c |
Legumin | *4 | 28.23 a | 25.41 a | 19.47 b | 19.67 b |
Convicilin | * | 7.30 a | 7.23 a | 5.57 b | 5.18 b |
Vicilin | 3.42 e | 10.44 b | 11.38 a | 6.84 c | 5.63 d |
Plant Protein Isolate | Denaturation Temperature and Enthalpy | Surface Hydrophobicity | Surface Charge | |||
---|---|---|---|---|---|---|
Denaturation Temperature (Td, °C) | Enthalpy of Denaturation (ΔH, J g−1) | Denaturation Temperature (Td, °C) | Enthalpy of Denaturation (ΔH, J g−1) | RFI | mV | |
Vicilin | Legumin | |||||
cPPI | *1 | * | * | * | 12,718 ab | −31.1 cd |
pH-PPI | 83.3 b2 | 6.21 a | 91.6 ab | 0.81 b | 9667 cd | −40.2 a |
salt-PPI | 88.5 a | 6.82 a | 93.5 a | 1.54 a | 7161 d | −30.4 d |
SU-pH PPI | 81.9 c | 3.69 b | 90.0 b | 0.52 b | 15,131 a | −34.5 b |
SU-salt PPI | 82.4 c | 4.15 b | 90.2 b | 0.47 b | 13,114 ab | −32.7 bc |
β-conglycinin | Glycinin | |||||
cSPI | * | * | * | * | 11,662 bc | −41.1 a |
Protein Isolate | % Protein Solubility (5% Protein) | Gel Strength (15 or 20% Protein) 1 | Emulsification Capacity (1 or 2% Protein) 2 | EAI | ES | |||
---|---|---|---|---|---|---|---|---|
pH 7 | pH 3.4 | N | mL Oil/g of Protein | m2/g Oil | Min | |||
Not-Heated | Heated at 80 °C | Not-Heated | Heated at 80 °C | |||||
cWPI | 99.7 a3 | 99.7 a | 99.4 a | 100.0 a | N/A 4 | N/A | N/A | N/A |
cSPI | 79.7 d | 86.9 b*5 | 23.7 f | 25.9 d | 17.3 a | 1085 a | 131.8 b | 32.5 bc |
cPPI | 22.2 f | 39.0 d* | 8.9 g | 20.4 d* | N/A | 260 d | 88.7 c | 45.4 a |
pH-PPI | 87.4 b | 85.7 b | 43.6 e | 65.4 c* | 6.1 c | 441 b | 149.1 b | 36.9 b |
salt-PPI | 84.1 c | 72.0 c* | 88.7 b | 90.1 b | 14.6 b | 452 b | 197.4 a | 26.0 d |
SU-pH PPI | 88.4 b | 86.8 b | 68.4 c | 61.6 c | 7.5 c | 359 c | 95.1 c | 36.7 bc |
SU-salt PPI | 70.4 e | 71.5 c | 64.0 d | 68.6 c | 5.7 c | 403 bc | 72.4 c | 30.8 cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, L.; Bu, F.; Ismail, B.P. Structure-Function Guided Extraction and Scale-Up of Pea Protein Isolate Production. Foods 2022, 11, 3773. https://doi.org/10.3390/foods11233773
Hansen L, Bu F, Ismail BP. Structure-Function Guided Extraction and Scale-Up of Pea Protein Isolate Production. Foods. 2022; 11(23):3773. https://doi.org/10.3390/foods11233773
Chicago/Turabian StyleHansen, Lucy, Fan Bu, and Baraem P. Ismail. 2022. "Structure-Function Guided Extraction and Scale-Up of Pea Protein Isolate Production" Foods 11, no. 23: 3773. https://doi.org/10.3390/foods11233773
APA StyleHansen, L., Bu, F., & Ismail, B. P. (2022). Structure-Function Guided Extraction and Scale-Up of Pea Protein Isolate Production. Foods, 11(23), 3773. https://doi.org/10.3390/foods11233773