A New Technique for Determining Micronutrient Nutritional Quality in Fruits and Vegetables Based on the Entropy Weight Method and Fuzzy Recognition Method
Abstract
:1. Introduction
1.1. Hidden Hunger
1.2. Vitamin Function and Intake Status
1.3. Mineral Function and Intake
1.4. The Nutritional Value of Fruits and Vegetables
1.5. Methods for Evaluating the Nutritional Quality of Food
2. Materials and Methods
2.1. Data
2.2. Vitamins and Minerals Index
2.3. Vitamin A Index and Calcium Index
2.4. Vitamin Comprehensive Index and Mineral Comprehensive Index
2.5. Vitamin Matching Index and Mineral Matching Index
2.6. Nutrient-Rich Food Index (NRF9.3)
3. Results
3.1. The Vitamin Index and Mineral Index Results in the Fruits
3.2. The Vitamin Index and Mineral Index Results in the Vegetables
3.3. Comparison with NRF9.3 Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, D.Q.; Wang, X.; Yu, Y.B.; Guo, F.; Wang, L.; Zhang, Y.; Dong, Z.Z. Nutrient and Consumer Demand of Micronutrients Biofortification Crop Food. J. Chin. Cereals Oils Assoc. 2017, 32, 186–190. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2018. Building Climate Resilience for Food Security and Nutrition; FAO: Rome, Italy, 2018. [Google Scholar]
- Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients; World Health Organization; Food and Agricultural Organization: Geneva, Switzerland, 2006; pp. 1–376. [Google Scholar]
- Navarro, V. Assessment of the World Health Report 2000. Lancet 2000, 356, 1598–1601. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Aggarwal, P.; Kaur, A. Biofortification: A new approach to eradicate hidden hunger. Food Rev. Int. 2017, 33, 1–21. [Google Scholar] [CrossRef]
- Weng, Q.; Zhang, C.Y. Nutrition-oriented agriculture and molecular breeding for human health. Chin. Sci. Bull. 2015, 60, 3543–3548. [Google Scholar]
- Liang, L.; Xie, B.; Zhang, S.S.; Meng, W.T.; Wang, L.Y.; Guo, Y.B.; Zhao, G.S. Developing functional agriculture to solve “Hidden Hunger” problem. Sci. Technol. Rev. 2017, 35, 82–89. [Google Scholar]
- Cheng, S.H.; Zheng, M.C. Effect and Prevention of Micronutrient Deficiency in Perinatal Period on Pregnant Women and Infants. J. Appl. Clin. Pediatr. 2010, 25, 1514–1516. [Google Scholar]
- Yang, J.; He, X.S.; Qin, J. Meta-analysis of the association between vitamin D deficiency and sepsis. Prev. Med. 2018, 30, 1037–1039. [Google Scholar]
- Lu, W. 300 million people in China suffer from hidden hunger. Regimen 2017, 12, 10. [Google Scholar]
- Hou, W.Z.; Xu, W.X.; Wang, Q.; Li, X.; Lu, B.Y.; Yang, Y.S.; Sheng, W.; Zhang, F. Study of characteristic functional ingredients of common vegetables in Beijing. Qual. Saf. Agro-Prod. 2018, 3, 76–82. [Google Scholar]
- Deng, M.Y.; Zhu, L.; Wu, D.H.; Zhang, X.G.; Deng, H.Y. Mineral Content and Nutritional Value Evaluation and Risk Assessment in Vegetables. Food Res. Dev. 2018, 39, 97–102. [Google Scholar]
- Peng, G.; Zeng, Y.N.; Li, H.Y.; Xu, J.M.; Gong, X.H.; Qiao, F. Comparison of nutrient components and free radical scavenging activities of 7 vegetables sold in Shenzhen. Guangdong Agric. Sci. 2017, 44, 13–18. [Google Scholar]
- Proietti, S.; Moscatello, S.; Villani, F.; Mecucci, F.; Walker, R.P.; Famiani, F.; Battistelli, A. Quality and nutritional compounds of Prunus cerasus L. var. austera fruit grown in central Italy. HortScience 2019, 54, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhao, C.Y.; Tian, G.F.; Zheng, J.K. Research progress of interactions between functional components of fruits/vegetables and gut microbiota. Biotechnol. Bus. 2017, 4, 53–61. [Google Scholar]
- Wang, Y.Q.; Zhu, K.X.; Zhang, Y.J.; Wu, G.; He, S.Z.; Zhang, W.; Tan, Y.H. Comparison of Chemical Constituents and Nutritional Evaluation of Different Lines of Jackfruit. Chin. J. Trop. Agric. 2017, 8, 46–53. [Google Scholar]
- He, Z. Analysis of Nutritional Components of Sea buckthorn Fruit Juice. J. Anhui Agric. Sci. 2008, 36, 15292–15293. [Google Scholar] [CrossRef]
- Zhang, A.X.; Liu, X.D.; Wang, G.R.; Li, S.S.; Wang, H.J. A New Nutritional Evaluation Method for Agricultural Products. Food Sci. 2013, 34, 356–359. [Google Scholar]
- Zhu, S.T.; Yu, S.Y. Evaluation of food nutrition quality index. Food Sci. 1987, 9, 1–4. [Google Scholar]
- Zhang, J.; Zhao, W.H.; Chen, J.S. Nutrient Profile method—A new food nutrition evaluation index. Acta Nutr. Sin. 2014, 31, 7–11. [Google Scholar]
- Fern, E.B.; Watzke, H.; Barclay, D.V.; Roulin, A.; Drewnowski, A. The nutrient balance concept: A new quality metric for composite meals and diets. PLoS ONE 2015, 10, e0130491. [Google Scholar] [CrossRef]
- WHO; FAO. General Standard for the Labelling of Prepackaged Foods; FAO: Rome, Italy, 2007. [Google Scholar]
- Lou, B.; Gao, L.J.; Mao, G.M.; Shi, H.L.; Luo, J.A. Analysis and Evaluation of the Nutritional Components in the Muscle of Paralichthys olivaceus. Acta Nutr. Sin. 2010, 32, 195–197. [Google Scholar]
- Xinlin, X.; Siyuan, G.; Lin, L.; Jianhua, C.; Maoyan, C. Preparation and Nutritional Evaluation of Egg-tofu and Milk-tofu. J. South China Univ. Technol. 2003, 31, 59–61. [Google Scholar]
- Jayarajan, S.; Sharma, R.; Sethi, S.; Saha, S.; Sharma, V.; Singh, S. Chemical and nutritional evaluation of major genotypes of nectarine (Prunus persica var nectarina) grown in North-Western Himalayas. J. Food Sci. Technol. 2019, 56, 4266–4273. [Google Scholar] [CrossRef] [PubMed]
- Wen-Ying, F.; Rui-Cheng, S.; Hai-De, Z.; Wei-Min, Z. Distribution and Nutritional Evaluation of Primary Functional Components in Morinda citrifolia. Food Sci. 2008, 29, 575–577. [Google Scholar]
- Liu, Z.; He, S.S.; Lu, B.Y.; Zhou, Z.Q. On Three Degree’ Method for the Evaluation of the Fruit Nutritive Values. Acta Hortic. Sin. 2018, 45, 795–804. [Google Scholar]
- Wu, P.; Jiang, L.X. Extension and Application of the Entropy. J. Beijing Union Univ. 2005, 19, 28–31. [Google Scholar]
- Li, L.Y. Research on the Application of Improved Entropy Weight Method in the Selection and Decision of Project Bid Evaluation Scheme. Master’s Thesis, Tianjing University of Finance and Economics, Tianjing, China, 2012. [Google Scholar]
- Ran, M.L.; Huang, H.; Zhong, Y. Construction of evaluation model based on entropy weight method. Technology Wind 2018, 14. [Google Scholar]
- Zhang, X.; Chen, A.J.; Jiang, C.; Lu, X. Optimization of basic formula of different proportions of potato powder noodles based on entropy-right method. Food Mach. 2019, 6, 205–211. [Google Scholar]
- Zhou, Z.H.; Chen, L.L.; Lu, Y.Q.; Ding, L.L. Fuzzy Synthetic Evaluation of the Sense of Happiness Based on the Entropy Weight Method. Electron. Sci. Technol. 2012, 25, 18–20. [Google Scholar]
- Ma, Y.Q.; Wang, X.L.; Sun, J.M.; Guo, Y.Z. Evaluation Study on the Nutrition of Potato Varieties Based on the Entropy Weight Rank Sum Ratio. J. Agric. Sci. Technol. 2016, 18, 175. [Google Scholar]
- Song, H.Y.; Zhang, T.; He, P.; Xiao, H.Y.; Tan, Q.J.; Tang, X.H.; Zheng, S.F.; Wang, W.L.; Tan, Z.S. Amino acid analysis on different cultivars of Macadamia integrifolia nuts on different dates. Non-Wood For. Res. 2019, 37, 82–88. [Google Scholar]
- Santos, M.; Rito, A.I.; Matias, F.N.; Assunção, R.; Castanheira, I.; Loureiro, I. Nutrient profile models a useful tool to facilitate healthier food choices: A comprehensive review. Trends Food Sci. Technol. 2021, 110, 120–131. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.X.; Zhang, L.S. Application of nutrient profiling in children’s food marketing. Nutr. Newsl. 2014, 1, 20–23. [Google Scholar]
- Drewnowski, A.; McKeown, N.; Kissock, K.; Beck, E.; Mejborn, H.; Vieux, F.; Smith, J.; Masset, G.; Seal, C.J. Perspective: Why Whole Grains Should Be Incorporated into Nutrient-Profile Models to Better Capture Nutrient Density. Adv. Nutr. 2021, 12, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.Y.; Li, R.B.; Peng, Z.M.; Zhu, L.; Zhang, X.G. Evaluation of nutritional value of edible fungus by nutrient profiling. Food Sci. Technol. 2019, 44, 349–353. [Google Scholar]
- Drewnowski, A.; Amanquah, D.; Gavin-Smith, B. Perspective: How to develop nutrient profiling models intended for global use: A manual. Adv. Nutr. 2021, 12, 609–620. [Google Scholar] [CrossRef]
- Zhao, Z.D.; Zhang, Y.; Yang, C.X.; Yang, J.; Wang, F.; Wang, X.J. Research Progress of Jujube’s Nutritional Components and Functional Characteristics. Ningxia J. Agric. For. Sci. Technol. 2019, 60, 81–84. [Google Scholar]
- Fu, J.X.; Shao, J.W.; Wang, R.H.; Zhang, B.W.; Zhang, G.X. Resource Distribution and Health Function of Jujube in China. China Fruit VegeTable 2019, 7, 22–28. [Google Scholar]
- Hu, X.Z.; Xu, X.Y. Nutritional value and product development of blackcurrant. Light Ind. Sci. Technol. 2013, 5, 8–9. [Google Scholar]
- Hunt, J.E.; Coelho, M.O.; Buxton, S.; Butcher, R.; Foran, D.; Rowland, D.; Gurton, W.; Macrae, H.; Jones, L.; Gapper, K.S. Consumption of New Zealand Blackcurrant Extract Improves Recovery from Exercise-Induced Muscle Damage in Non-Resistance Trained Men and Women: A Double-Blind Randomised Trial. Nutrients 2021, 13, 2875. [Google Scholar] [CrossRef]
- Wang, C. Nutrition and health care of cabbage vegetables. Food Res. Dev. 2002, 23, 66–67. [Google Scholar]
- Tao, X.Q.; Chen, P.; Li, Y.Z.; Mo, T.J.; Xiao, D. The Research Progress on Nutritional Value and Processing of Kale; Guangdong Food Association: Beijing, China, 2018. [Google Scholar]
- Fan, Q.Y. Study on Quality Safety Evaluation of Fruit and Vegetable Agricultural Products. Master’s Thesis, Harbin University of Commerce, Harbin, China, 2015. [Google Scholar]
- Guo, C.J.; Gu, J.F. Phytochemicals and their biological functions. Acta Nutr. Sinica 2010, 32, 521–523. [Google Scholar]
- Zhang, L.; Huang, Z.; Huang, W.Q.; Jiang, R.F.; Long, Z.X. Study on Loss of Nutrient Elements during Rice Processing. J. Anhui Agric. Sci. 2012, 40, 16793–16794. [Google Scholar]
Vitamin A μg/RAE/d | Vitamin B1 mg/d | Vitamin B2 mg/d | Niacin mgNE/d | Vitamin C mg/d | Vitamin E mgα-TE/d | |||||
---|---|---|---|---|---|---|---|---|---|---|
Average | 291.5 | 0.9 | 0.8 | 14.3 | 80.1 | 8.5③ | ||||
City | 334.9 | 0.9 | 0.8 | 14.9 | 84.9 | 9.5 | ||||
Rural | 249.8 | 1.0 | 0.7 | 13.6 | 75.4 | 7.6 | ||||
Reference Intake | male | female | male | female | male | female | male | female | 100 | 14 |
800 | 700 | 1.4 | 1.2 | 1.4 | 1.2 | 15 | 12 |
Calcium | Magnesium | Potassium | Phosphorus | Iron | Zinc | Selenium | |||
---|---|---|---|---|---|---|---|---|---|
Average | 364.3 | 283.4 | 1610.4 | 950.6 | 21.4 | 10.7 | 44.4 | ||
City | 410.3 | 279.6 | 1654.3 | 964.3 | 21.8 | 10.6 | 46.9 | ||
Rural | 320.1 | 290.6 | 1567.9 | 937.1 | 21.1 | 10.7 | 42.1 | ||
RNI | 800 | 330 | 2000 | 720 | male | female | male | female | 60 |
12 | 20 | 12.5 | 7.5 |
Sorting | ||||
---|---|---|---|---|
Vitamin Index | Mineral Index | |||
Apples | 2.62 | Chinese Dates | 2.63 | Chinese Dates |
Pears | 2.08 | Blackcurrants | 2.61 | Lemons |
Peaches | 1.99 | Mangoes | 2.58 | Blackcurrants |
Chinese Dates | 1.94 | Cantaloupes | 2.15 | Kumquats |
Apricots | 1.88 | Kumquats | 1.87 | Cherries |
Cherries | 1.76 | Apricots | 1.80 | Apricots |
Grapes | 1.67 | Kiwis | 1.79 | Bananas |
Pomegranates | 1.55 | Oranges | 1.71 | Oranges |
Blackcurrants | 1.52 | Cherries | 1.65 | Strawberries |
Kiwis | 1.40 | Watermelons | 1.58 | Pineapples |
Strawberries | 1.22 | Pomegranates | 1.40 | Pomegranates |
Oranges | 1.18 | Bananas | 1.39 | Mangoes |
Kumquats | 1.08 | Apples | 1.24 | Watermelons |
Lemons | 1.05 | Strawberries | 1.24 | Cantaloupes |
Pineapples | 1.05 | Lychees | 1.23 | Grapes |
Bananas | 1.03 | Lemons | 1.20 | Pears |
Lychees | 0.93 | Pineapples | 1.13 | Lychees |
Mangoes | 0.90 | Peaches | 1.09 | Kiwis |
Watermelons | 0.86 | Grapes | 1.05 | Peaches |
Cantaloupes | 0.85 | Pears | 0.90 | Apples |
Sorting | ||||
---|---|---|---|---|
Vitamin Index | Mineral Index | |||
White Radish | 2.74 | Collard Greens | 2.75 | Red Amaranth |
Carrots | 2.59 | Carrots | 2.53 | Chinese Celery |
Chinese Celery | 2.41 | Spinach | 2.51 | Wuta-Tasi |
Peas | 2.13 | Mustard Greens | 2.47 | Collard Greens |
Lentils | 2.08 | Red Amaranth | 2.46 | Spinach |
Kidney Beans | 2.06 | Rape | 2.40 | Rape |
Eggplant | 1.91 | Peppers | 1.81 | Broccoli |
Tomatoes | 1.72 | Wuta-Tasi | 1.80 | Kidney Beans |
Peppers | 1.58 | Pumpkins | 1.80 | Peas |
Cucumbers | 1.54 | Peas | 1.80 | Lentils |
Pumpkins | 1.54 | Broccoli | 1.72 | Chinese Cabbage |
Chinese Cabbage | 1.49 | Tomatoes | 1.69 | White Radish |
Wuta-Tasi | 1.23 | Chinese Cabbage | 1.54 | Mustard Greens |
Rape | 1.15 | Eggplant | 1.46 | Carrots |
Collard Greens | 1.14 | Kidney Beans | 1.45 | Celery |
Broccoli | 1.12 | Cucumbers | 1.44 | Tomatoes |
Spinach | 1.10 | Yam | 1.36 | Eggplant |
Celery | 1.08 | Lentils | 1.36 | Potatoes |
Lettuce | 0.93 | Potatoes | 1.30 | Cucumbers |
Red Amaranth | 0.87 | White Radish | 1.24 | Peppers |
Mustard Greens | 0.86 | Lettuce | 1.23 | Yam |
Yam | 0.83 | Chinese Celery | 1.04 | Pumpkins |
Taro | 0.81 | Celery | 0.95 | Lettuce |
Potatoes | 0.80 | Taro | 0.92 | Taro |
Fruits | Score | Vegetables | Score |
---|---|---|---|
Chinese Dates | 272.36 | Peppers | 192.75 |
Blackcurrants | 231.79 | Collard Greens | 185.21 |
Kiwis | 101.46 | Spinach | 139.89 |
Strawberries | 76.85 | Red Amaranth | 131.92 |
Kumquats | 70.49 | Mustard Greens | 125.70 |
Lemons | 69.45 | Wuta-Tasi | 122.73 |
Pomegranates | 60.39 | Rape | 106.85 |
Oranges | 53.88 | Broccoli | 91.90 |
Mangoes | 50.35 | Carrots | 78.59 |
Lychees | 45.34 | Peas | 75.89 |
Cherries | 41.55 | Chinese Cabbage | 63.91 |
Apricots | 35.09 | Chinese Celery | 57.85 |
Cantaloupes | 31.86 | Kidney Beans | 47.81 |
Pineapples | 29.63 | Lentils | 45.64 |
Bananas | 29.44 | Tomatoes | 39.28 |
Peaches | 23.42 | Potatoes | 38.72 |
Apples | 20.53 | White Radish | 37.76 |
Grapes | 18.48 | Pumpkins | 34.15 |
Watermelons | 16.60 | Eggplant | 33.77 |
Pears | 15.86 | Cucumbers | 30.27 |
Yam | 23.18 | ||
Lettuce | 17.07 | ||
Taro | 7.56 | ||
Celery | 7.23 | ||
Average | 64.74 | Average | 72.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zhu, M.; Ren, X.; An, Q.; Sun, J.; Zhu, D. A New Technique for Determining Micronutrient Nutritional Quality in Fruits and Vegetables Based on the Entropy Weight Method and Fuzzy Recognition Method. Foods 2022, 11, 3844. https://doi.org/10.3390/foods11233844
Zhao X, Zhu M, Ren X, An Q, Sun J, Zhu D. A New Technique for Determining Micronutrient Nutritional Quality in Fruits and Vegetables Based on the Entropy Weight Method and Fuzzy Recognition Method. Foods. 2022; 11(23):3844. https://doi.org/10.3390/foods11233844
Chicago/Turabian StyleZhao, Xuemei, Mengdong Zhu, Xiao Ren, Qi An, Junmao Sun, and Dazhou Zhu. 2022. "A New Technique for Determining Micronutrient Nutritional Quality in Fruits and Vegetables Based on the Entropy Weight Method and Fuzzy Recognition Method" Foods 11, no. 23: 3844. https://doi.org/10.3390/foods11233844
APA StyleZhao, X., Zhu, M., Ren, X., An, Q., Sun, J., & Zhu, D. (2022). A New Technique for Determining Micronutrient Nutritional Quality in Fruits and Vegetables Based on the Entropy Weight Method and Fuzzy Recognition Method. Foods, 11(23), 3844. https://doi.org/10.3390/foods11233844