Factors Influencing Biofilm Formation by Salmonella enterica sv. Typhimurium, E. cloacae, E. hormaechei, Pantoea spp., and Bacillus spp. Isolated from Human Milk Determined by PCA Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Bacterial Isolates
2.3. Genus and Species Identification
2.4. Variants of Experiments
2.5. Surface Material and Preparation
2.6. Biofilm Formation on Hydrophobic Material (Polystyrene)
3. Results
3.1. Identification of Bacterial Isolates of Humane Milk
3.2. Evaluation of Biofilm Formation on a Hydrophobic Surface
3.3. Analysis of Factors Determining Biofilm Formation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gomez-Gallego, C.; Garcia-Mantrana, I.; Salminen, S.; Collado, M.C. The human milk microbiome and factors influencing its composition and activity. Semin. Fetal Neonatal Med. 2016, 21, 400–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, L.; Langa, S.; Martín, V.; Maldonado, A.; Jiménez, E.; Martín, R.; Rodríguez, J.M. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 2013, 69, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bowen, A.; Wiesenfeld, H.C.; Kloesz, J.L.; Pasculle, A.W.; Nowalk, A.J.; Brink, L.; Elliot, E.; Martin, H.; Tarr, C.L. Notes from the field: Cronobacter sakazakii infection associated with feeding extrinsically contaminated expressed human milk to a premature infant—Pennsylvania, 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 761–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundararajan, M.; Enane, L.A.; Kidwell, L.A.; Gentry, R.; Danao, S.; Bhumbra, S.; Lehmann, C.; Teachout, M.; Yeadon-Fagbohun, J.; Krombach, P.; et al. Notes from the field: Cronobacter sakazakii meningitis in a full-term neonate fed exclusively with breast milk—Indiana, 2018. Morb. Mortal. Wkly. Rep. 2018, 67, 12–48. [Google Scholar] [CrossRef] [Green Version]
- McMullan, R.; Menon, V.; Beukers, A.G.; Jensen, S.O.; van Hal, S.J.; Davis, R. Cronobacter sakazakii infection from expressed breast milk, Australia. Emerg. Inf. Dis. 2018, 24, 393–394. [Google Scholar] [CrossRef] [Green Version]
- Pawlik, D.; Chmielarczyk, A.; Lorenc, K.; Michalski, P.; Lauterbach, J.; Radziszewska, R.; Wójkowska-Mach, J. Klebsiella pneumoniae in breast milk-A cause of sepsis in neonate. Arch. Med. 2017, 9, 1–6. [Google Scholar] [CrossRef]
- Cormontagne, D.; Rigourd, V.; Vidic, J.; Rizzotto, F.; Bille, E.; Ramarao, N. Bacillus cereus Induces Severe Infections in Preterm Neonates: Implication at the Hospital and Human Milk Bank Level. Toxins 2021, 13, 123. [Google Scholar] [CrossRef]
- Decousser, J.W.; Ramarao, N.; Duport, C.; Dorval, M.; Bourgeois-Nicolaos, N.; Guinebretière, M.H.; Razafumahefa, H.; Doucet-Populaire, F. Bacillus cereus and severe intestinal infections in preterm neonates: Putative role of pooled breast milk. Am. J. Infect. Control 2013, 41, 918–921. [Google Scholar] [CrossRef]
- Weems, M.F.; Dereddy, N.R.; Arnold, S.R. Mother’s Milk as a Source of Enterobacter cloacae Sepsis in a Preterm. Infant. Breastfeed. Med. 2015, 10, 503–504. [Google Scholar] [CrossRef] [Green Version]
- Food Agricultural Organization; World Health Organization. Enterobacter sakazakii and other microorganisms in powdered infant formula. In Meeting Report Microbiological Risk Assessment 6; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Doijad, S.P.; Barbuddhe, S.B.; Garg, S.; Poharkar, K.V.; Kalorey, D.R.; Kurkure, N.V.; Rawool, D.B.; Chakraborty, T. Biofilm-forming abilities of Listeria monocytogenes serotypes isolated from different sources. PLoS ONE 2015, 10, e0137046. [Google Scholar] [CrossRef]
- Allsopp, L.P.; Beloin, C.; Ulett, G.C.; Valle, J.; Totsika, M.; Sherlock, O.; Ghigo, J.M.; Schembri, M.A. Molecular Characterization of UpaB and UpaC, Two New Autotransporter Proteins of Uropathogenic Escherichia coli CFT073. Infect. Immun. 2012, 80, 321–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, J.; Sharma, M. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int. J. Food Microbiol. 2010, 139, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, E.; Kucerova, E.; Loughlin, M.; Caubilla-Barron, J.; Forsythe, S.J. Biofilm formation on enteral feeding tubes by Cronobacter sakazakii, Salmonella serovars and other Enterobacteriaceae. Int. J. Food Microbiol. 2009, 136, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Iversen, C.; Forsythe, S. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci. Technol. 2003, 14, 443–454. [Google Scholar] [CrossRef]
- Kim, U.; Kim, J.H.; Oh, S.W. Review of multi-species biofilm formation from foodborne pathogens: Multi-species biofilms and removal methodology. Crit. Rev. Food Sci. Nutr. 2022, 62, 5783–5793. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial Biofilms in the Food Industry—A Comprehensive Review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef]
- Lamas, A.; Regal, P.; Vázquez, B.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Salmonella and Campylobacter biofilm formation: A comparative assessment from farm to fork. J. Sci. Food Agric. 2018, 98, 4014–4032. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Ji, Y. Environmental factors modulate biofilm formation by Staphylococcus aureus. Sci. Prog. 2020, 103, 0036850419898659. [Google Scholar] [CrossRef] [Green Version]
- López-Gálvez, F.; Gil, M.I.; Truchado, P.; Selma, M.V.; Allende, A. Cross-contamination of fresh-cut lettuce after a short-term exposure during pre-washing cannot be controlled after subsequent washing with chlorine dioxide or sodium hypochlorite. Food Microbiol. 2010, 27, 199–204. [Google Scholar] [CrossRef]
- Bridier, A.; Sanchez-Vizuete, P.; Guilbaud, M.; Piard, J.C.; Naitali, M.; Briandet, R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol. 2015, 45, 167–178. [Google Scholar] [CrossRef]
- Gupta, T.B.; Mowat, E.; Brightwell, G.; Flint, S.H. Biofilm formation and genetic characterization of New Zealand Cronobacter isolates. J. Food Saf. 2018, 38, e12430. [Google Scholar] [CrossRef]
- Nguyen, D.; Joshi-Datar, A.; Lepine, F.; Bauerle, E.; Olakanmi, O.; Beer, K.; McKay, G.; Siehnel, R.; Schafhauser, J.; Wang, J.; et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 2011, 334, 982–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinal, P.; Marti, S.; Vila, J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J. Hosp. Infect. 2012, 80, 56–60. [Google Scholar] [CrossRef]
- Hayrapetyan, H.; Abee, T.; Groot, M.N. Sporulation dynamics and spore heat resistance in wet and dry biofilms of Bacillus cereus. Food Control 2016, 60, 493–499. [Google Scholar] [CrossRef]
- Vuotto, C.; Longo, F.; Pascolini, C.; Donelli, G.; Balice, M.P.; Libori, M.F.; Tiracchia, V.; Salvia, A.; Varaldo, P.E. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J. App. Microbiol. 2017, 123, 1003–1018. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Bassler, B.L. Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host Microbe 2019, 26, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Yang, C.; Bao, X.; Chen, F.; Guo, X. Strategies for controlling biofilm formation in food industry. Grain Oil Sci. Technol. 2022, 1–14. [Google Scholar] [CrossRef]
- Bordi, C.; de Bentzmann, S. Hacking into bacterial biofilms: A new therapeutic challenge. Ann. Intensive Care 2011, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Kim, H.; Frank, J.F.; Beuchat, L.R. Attachment and biofilm formation on stainless steel by Escherichia coli O157: H7 as affected by curli production. Lett. Appl. Microbiol. 2004, 39, 359–362. [Google Scholar] [CrossRef]
- Dula, S.; Ajayeoba, T.A.; Ijabadeniyi, O.A. Bacterial biofilm formation on stainless steel in the food processing environment and its health implications. Folia Microbiol. 2021, 66, 293–302. [Google Scholar] [CrossRef]
- Toushik, S.H.; Park, J.-H.; Kim, K.; Ashrafudoulla; Ulrich, M.S.I.; Mizan, F.R.; Roy, P.K.; Shim, W.-B.; Kim, Y.-M.; Park, S.H.; et al. Antibiofilm efficacy of Leuconostoc mesent eroides J.27-derived postbiotic and food-grade essential oils against Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Escherichia coli alone and in combination, and their application as a green preservative in the seafood industry. Food Res. Int. 2022, 156, 111163. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Ćirković, I.; Mijač, V.; Švabić-Vlahović, M. Influence of the incubation temperature, atmosphere and dynamic conditions on biofilm formation by Salmonella spp. Food Microbiol. 2003, 20, 339–343. [Google Scholar] [CrossRef]
- De Oliveira, D.C.V.; Fernandes Junior, A.; Kaneno, R.; Silva, M.G.; Araujo Junior, J.P.; Silva, N.C.C.; Rall, V.L.M. Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material. Foodborne Pathog. Dis. 2014, 11, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Piras, F.; Fois, F.; Consolati, S.G.; Mazza, R.; Mazzette, R. Influence of temperature, source, and serotype on biofilm formation of Salmonella enterica isolates from pig slaughterhouses. J. Food Protect. 2015, 78, 1875–1878. [Google Scholar] [CrossRef] [PubMed]
- Borges, K.A.; Furian, T.Q.; Souza, S.N.; Menezes, R.; Tondo, E.C.; Salle, C.T.; Moraes, H.L.; Nascimento, V.P. Biofilm formation capacity of Salmonella serotypes at different temperature conditions. Pesqui. Vet. Bras. 2018, 38, 71–76. [Google Scholar] [CrossRef]
- Moraes, J.O.; Cruz, E.A.; Souza, E.G.F.; Oliveira, T.C.M.; Alvarenga, V.O.; Peña, W.E.L.; Sant’Ana, A.S.; Magnani, M. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration. Int. J. Food Microbiol. 2018, 281, 90–100. [Google Scholar] [CrossRef]
- Berthold-Pluta, A.; Garbowska, M.; Stefańska, I.; Pluta, A. Microbiological quality of selected ready-to-eat leaf vegetables, sprouts and non-pasteurized fresh fruit-vegetable juices including the presence of Cronobacter spp. Food Microbiol. 2017, 65, 221–230. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Mashana, S.E.; Gerwing, L.; Minde, M.; Hain, T.; Domann, E.; Lyamuya, E.; Chakraborty, T.; Imirzalioglu, C. Outbreak of a novel Enterobacter sp. Carrying blaCTX-M-15 in neonatal unit of a tertiary care hospital in Tanzania. Int. J. Antimicrob. Agents 2011, 38, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Rigourd, V.; Barnier, J.P.; Ferroni, A.; Niclux, M.; Hachem, T.; Magny, J.F.; Lappillonne, A.; Frange, P.; Nassif, X.; Bille, E. Recent actuality about Bacillus cereus and human milk bank: A new sensitive method for microbiological analysis of pasteurized milk. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1297–1303. [Google Scholar] [CrossRef]
- Fakruddin, M.; Rahaman, M.; Ahmed, M.M.; Hoque, M.M. Stress tolerant virulent strains of Cronobacter sakazakii from food. Biol. Res. 2014, 47, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, J.N.; Lin, F.J.; Eitenmiller, R.R.; Barnhart, H.M.; Toledo, R.T. Thermal destruction of Escherichia coli and Klebsiella pneumoniae in human milk. J. Food Prot. 1988, 51, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Buzoleva, L.S.; Golozubova, Y.S.; Eskova, A.I.; Kim, A.V.; Bogatyrenko, E.A. Biofilm formation as a method of survival of Escherichia coli and Pantoea spp in the marine environment. IOP Conf. Ser. Earth Environ. Sci. 2018, 107, 012053. [Google Scholar] [CrossRef]
- Korres, A.M.N.; Aquije, G.M.D.F.V.; Buss, D.S.; Ventura, J.A.; Fernandes, P.M.B.; Fernandes, A.A.R. Comparison of biofilm and attachment mechanisms of a phytopathological and clinical isolate of Klebsiella pneumoniae subsp. pneumoniae. Sci. World J. 2013, 10, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoštacká, A.; Čižnár, I.; Štefkovičová, M. Temperature and pH affect the production of bacterial biofilm. Folia. Microbiol. 2010, 55, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Nyenje, M.E.; Green, E.; Ndip, R.N. Evaluation of the effect of different growth media and temperature on the suitability of biofilm formation by Enterobacter cloacae strains isolated from food samples in South Africa. Molecules 2013, 18, 9582–9593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iversen, C.; Lane, M.; Forsythe, S.J. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett. App. Microbiol. 2004, 38, 378–382. [Google Scholar] [CrossRef]
- Liu, S.; Chen, L.; Wang, L.; Zhou, B.; Ye, D.; Zheng, X.; Lin, Y.; Zheng, W.; Zhou, T.; Ye, J. Cluster Differences in Antibiotic Resistance, Biofilm Formation, Mobility, and Virulence of Clinical Enterobacter cloacae Complex. Front. Microbiol. 2022, 13, 814–831. [Google Scholar] [CrossRef]
- Kwon, M.; Hussain, M.S.; Oh, D.H. Biofilm formation of Bacillus cereus under food-processing-related conditions. Food Sci. Biotechnol. 2017, 26, 1103–1111. [Google Scholar] [CrossRef]
- Hayrapetyan, H.; Muller, L.; Tempelaars, M.; Abee, T.; Groot, M.N. Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron. Int. J. Food Microbiol. 2015, 200, 72–79. [Google Scholar] [CrossRef]
- Ye, Y.; Ling, N.; Jiao, R.; Wu, Q.; Han, Y.; Gao, J. Effects of culture conditions on the biofilm formation of Cronobacter sakazakii strains and distribution of genes involved in biofilm formation. LWT-Food Sci. Technol. 2015, 62, 1–6. [Google Scholar] [CrossRef]
Isolate | Inoculum Count [CFU/mL] | Temperature 25.0 °C | Temperature 37.0 °C | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Growth 48 h | Time of Biofilm Formation [h] | Growth 48 h | Time of Biofilm Formation [h] | ||||||||
8 h | 12 h | 24 h | 48 h | 8 h | 12 h | 24 h | 48 h | ||||
Cronobacter sakazakii ATCC 25944 | S | + | - | - | + | + | + | - | ++ | - | - |
M | + | - | + | ++ | + | + | - | ++ | - | + | |
L | + | - | + | ++ | - | + | - | ++ | + | + | |
Klebsiella spp. 1 | S | + | - | +++ | ++ | ++ | + | +++ | +++ | +++ | +++ |
M | + | - | +++ | ++ | - | + | - | +++ | +++ | ++ | |
L | + | - | + | ++ | - | + | - | +++ | +++ | ++ | |
Klebsiella spp. 2 | S | + | - | - | + | ++ | + | - | - | - | + |
M | + | - | - | - | - | + | + | - | + | - | |
L | + | - | - | - | - | + | - | ++ | +++ | + | |
Klebsiella spp 3 | S | + | - | - | - | - | + | - | +++ | ++ | ++ |
M | + | - | + | +++ | - | + | + | +++ | +++ | ++ | |
L | + | - | - | ++ | - | + | - | + | ++ | ++ | |
Klebsiella spp. 4 | S | + | - | - | - | - | + | - | +++ | + | + |
M | + | - | - | ++ | + | + | - | +++ | ++ | + | |
L | + | - | - | + | - | + | +++ | ++ | + | + | |
Klebsiella spp. 5 | S | + | - | - | + | ++ | + | - | ++ | ++ | +++ |
M | + | - | +++ | ++ | - | + | ++ | +++ | +++ | +++ | |
L | + | - | + | ++ | - | + | - | +++ | +++ | ++ | |
Bacillus spp. | S | + | - | +++ | - | - | + | +++ | +++ | +++ | +++ |
M | + | - | +++ | - | - | + | +++ | +++ | +++ | +++ | |
L | + | - | +++ | + | + | + | +++ | +++ | +++ | +++ | |
Pantoea spp. | S | + | - | - | - | - | + | - | - | - | + |
M | + | - | - | - | - | + | ++ | ++ | - | - | |
L | + | - | - | - | - | + | - | - | - | + | |
Salmonella enterica subsp. Enterica sv. Typhimurium | S | + | - | - | - | - | + | +++ | +++ | + | + |
M | + | - | - | - | - | + | + | +++ | + | + | |
L | + | - | - | - | - | + | + | + | + | + | |
Enterobacter hormaechei 1 | S | + | - | + | + | + | + | + | ++ | + | ++ |
M | + | - | ++ | ++ | ++ | + | + | +++ | + | ++ | |
L | + | - | ++ | + | - | + | ++ | ++ | + | ++ | |
Enterobacter hormaechei 2 | S | + | - | + | - | - | + | + | + | + | ++ |
M | + | - | + | + | - | + | ++ | ++ | ++ | ++ | |
L | + | - | + | + | - | + | ++ | + | + | +++ | |
Enterobacter cloacae 1 | S | + | - | - | - | - | + | - | - | - | - |
M | + | - | - | - | - | + | + | - | ++ | - | |
L | + | - | - | - | - | + | - | - | - | - | |
Enterobacter cloacae 2 | S | + | - | +++ | +++ | +++ | + | +++ | +++ | +++ | +++ |
M | + | - | +++ | +++ | +++ | + | +++ | +++ | +++ | +++ | |
L | + | - | +++ | +++ | +++ | + | +++ | +++ | +++ | +++ |
Temperature [°C] | Inoculum Count [CFU/mL] | Biofilm Classification | Time [h] | |||
---|---|---|---|---|---|---|
8 | 12 | 24 | 48 | |||
25.0 | S | no | 100% | 58% | 58% | 58% |
25.0 | weak | 0 | 17% | 25% | 8% | |
25.0 | moderate | 0 | 0% | 8% | 25% | |
25.0 | strong | 0 | 25% | 8% | 8% | |
25.0 | M | no | 100% | 42% | 42% | 75% |
25.0 | weak | 0 | 17% | 8% | 8% | |
25.0 | moderate | 0 | 8% | 33% | 8% | |
25.0 | strong | 0 | 33% | 17% | 8% | |
25.0 | L | no | 100% | 50% | 33% | 83% |
25.0 | weak | 0 | 25% | 33% | 8% | |
25.0 | moderate | 0 | 8% | 25% | 0 | |
25.0 | strong | 0 | 17% | 8% | 8% | |
Chi2 | 0.000000 p = 1.0000 | 2.285714 p = 0.89164 | 4.875000 p = 0.55994 | 4.038462 p = 0.67147 | ||
R rank Spearman | - | 0.0248283 p = 0.88571 | 0.1805556 p = 0.29198 | −0.224370 p = 0.18832 | ||
37.0 | S | no | 50% | 27% | 25% | 8% |
37.0 | weak | 17% | 9% | 33% | 33% | |
37.0 | moderate | 0 | 18% | 17% | 25% | |
37.0 | strong | 33% | 45% | 25% | 33% | |
37.0 | M | no | 17% | 17% | 8% | 25% |
37.0 | weak | 42% | 0% | 25% | 17% | |
37.0 | moderate | 25% | 17% | 25% | 33% | |
37.0 | strong | 17% | 67% | 42% | 25% | |
37.0 | L | no | 50% | 17% | 17% | 8% |
37.0 | weak | 8% | 25% | 33% | 33% | |
37.0 | moderate | 17% | 25% | 8% | 33% | |
37.0 | strong | 25% | 33% | 42% | 25% | |
Chi2 | 9.002381 P = 0.17344 | 5.421680 p = 0.049097 | 2.797203 p = 0.83384 | 2.781818 p = 0.83569 | ||
R rank Spearman | −0.001714 P = 0.99208 | −0.059207 p = 0.73548 | 0.1231952 p = 0.47410 | −0.035722 P = 0.83614 |
Chi2 and p-Value; p ≤ 0.05 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Temperature [°C] | Time [h] | ||||||||
8 | 12 | 24 | 48 | ||||||
25.0 | 37.0 | 0.000000 p = 1.0000 | 218.36368 p = 0.03118 | 217.57780 p = 0.04040 | 211.80490 p = 0.22453 | ||||
Isolates | Temperature [°C] | ||||||||
25.0 | 37.0 | 25.0 | 37.0 | 25.0 | 37.0 | 25.0 | 37.0 | ||
0.000000 p = 1.0000 | 50.80000 p = 0.02460 | 74.2857 p = 0.00005 | 53.97059 p = 0.01207 | 64.50000 p = 0.00084 | 67.91608 p = 0.00033 | 54.46154 p = 0.01076 | 79.85455 p = 0.00001 |
Variables | C. sakazakii | Bacillus spp. | Klebsiella spp. 3 | E. hormaechei 2 | E. cloacae 2 | Salmonella ent. Typh. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | |
S_8h_25 | 0.98 | 0.02 | 0.98 | 0.02 | 0.37 | 0.63 | 0.97 | 0.03 | 0.48 | 0.52 | n.d. | n.d. |
S_12h_25 | 0.99 | 0.01 | 0.99 | 0.01 | 1.00 | 0.00 | 0.47 | 0.53 | 0.97 | 0.03 | n.d. | n.d. |
S_24h_25 | 0.98 | 0.02 | 0.98 | 0.02 | 0.99 | 0.01 | 0.85 | 0.15 | 0.18 | 0.82 | n.d. | n.d. |
S_48h_25 | 0.08 | 0.92 | 0.08 | 0.92 | 0.04 | 0.96 | 0.00 | 1.00 | 0.01 | 0.99 | n.d. | n.d. |
M_8h_25 | 0.52 | 0.48 | 0.52 | 0.48 | 0.52 | 0.48 | 0.45 | 0.55 | 0.80 | 0.20 | n.d. | n.d. |
M_12h_25 | 0.99 | 0.01 | 0.99 | 0.01 | 0.96 | 0.04 | 0.97 | 0.03 | 0.98 | 0.02 | n.d. | n.d. |
M_24h_25 | 0.90 | 0.10 | 0.90 | 0.10 | 0.44 | 0.56 | 0.99 | 0.01 | 1.00 | 0.00 | n.d. | n.d. |
M_48h_25 | 0.96 | 0.04 | 0.96 | 0.04 | 0.10 | 0.90 | 0.19 | 0.81 | 0.13 | 0.87 | n.d. | n.d. |
L_8h_25 | 0.98 | 0.02 | 0.98 | 0.02 | 1.00 | 0.00 | 0.84 | 0.16 | 0.68 | 0.32 | n.d. | n.d. |
L_12h_25 | 0.98 | 0.02 | 0.98 | 0.02 | 0.99 | 0.01 | 1.00 | 0.00 | 0.98 | 0.02 | n.d. | n.d. |
L_24h_25 | 0.98 | 0.02 | 0.98 | 0.02 | 0.99 | 0.01 | 0.97 | 0.03 | 0.98 | 0.02 | n.d. | n.d. |
L_48h_25 | 0.91 | 0.09 | 0.91 | 0.09 | 0.02 | 0.98 | 0.26 | 0.74 | 1.00 | 0.00 | n.d. | n.d. |
S_8h_37 | 1.00 | 0.00 | 1.00 | 0.00 | 0.63 | 0.37 | 0.95 | 0.05 | 0.87 | 0.13 | 0.81 | 0.82 |
S_12h_37 | 0.42 | 0.58 | 0.42 | 0.58 | 0.90 | 0.10 | 0.98 | 0.02 | 0.95 | 0.05 | 0.91 | 1.00 |
S_24h_37 | 0.30 | 0.70 | 0.30 | 0.70 | 0.83 | 0.17 | 0.12 | 0.88 | 0.84 | 0.16 | 0.68 | 0.78 |
S_48h_37 | 0.34 | 0.66 | 0.34 | 0.66 | 0.15 | 0.85 | 0.25 | 0.75 | 0.91 | 0.09 | 0.99 | 1.00 |
M_8h_37 | 0.56 | 0.44 | 0.56 | 0.44 | 0.99 | 0.01 | 0.09 | 0.91 | 0.97 | 0.03 | 0.41 | 0.95 |
M_12h_37 | 0.68 | 0.32 | 0.68 | 0.32 | 0.98 | 0.02 | 0.08 | 0.92 | 0.68 | 0.32 | 0.98 | 0.98 |
M_24h_37 | 0.48 | 0.52 | 0.48 | 0.52 | 0.01 | 0.99 | 0.25 | 0.75 | 0.00 | 1.00 | 0.91 | 0.98 |
M_48h_37 | 0.00 | 1.00 | 0.00 | 1.00 | 0.07 | 0.93 | 0.56 | 0.44 | 0.39 | 0.61 | 0.98 | 1.00 |
L_8h_37 | 0.14 | 0.86 | 0.14 | 0.86 | 0.42 | 0.58 | 0.89 | 0.11 | 1.00 | 0.00 | 0.72 | 0.99 |
L_12h_37 | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.53 | 0.47 | 0.76 | 0.24 | 0.83 | 1.00 |
L_24h_37 | 0.71 | 0.29 | 0.71 | 0.29 | 0.98 | 0.02 | 0.40 | 0.60 | 0.98 | 0.02 | 0.55 | 0.80 |
L_48h_37 | 0.64 | 0.36 | 0.64 | 0.36 | 0.45 | 0.55 | 0.99 | 0.01 | 0.19 | 0.81 | 0.60 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gemba, M.; Rosiak, E.; Nowak-Życzyńska, Z.; Kałęcka, P.; Łodykowska, E.; Kołożyn-Krajewska, D. Factors Influencing Biofilm Formation by Salmonella enterica sv. Typhimurium, E. cloacae, E. hormaechei, Pantoea spp., and Bacillus spp. Isolated from Human Milk Determined by PCA Analysis. Foods 2022, 11, 3862. https://doi.org/10.3390/foods11233862
Gemba M, Rosiak E, Nowak-Życzyńska Z, Kałęcka P, Łodykowska E, Kołożyn-Krajewska D. Factors Influencing Biofilm Formation by Salmonella enterica sv. Typhimurium, E. cloacae, E. hormaechei, Pantoea spp., and Bacillus spp. Isolated from Human Milk Determined by PCA Analysis. Foods. 2022; 11(23):3862. https://doi.org/10.3390/foods11233862
Chicago/Turabian StyleGemba, Mateusz, Elżbieta Rosiak, Zuzanna Nowak-Życzyńska, Paulina Kałęcka, Elżbieta Łodykowska, and Danuta Kołożyn-Krajewska. 2022. "Factors Influencing Biofilm Formation by Salmonella enterica sv. Typhimurium, E. cloacae, E. hormaechei, Pantoea spp., and Bacillus spp. Isolated from Human Milk Determined by PCA Analysis" Foods 11, no. 23: 3862. https://doi.org/10.3390/foods11233862
APA StyleGemba, M., Rosiak, E., Nowak-Życzyńska, Z., Kałęcka, P., Łodykowska, E., & Kołożyn-Krajewska, D. (2022). Factors Influencing Biofilm Formation by Salmonella enterica sv. Typhimurium, E. cloacae, E. hormaechei, Pantoea spp., and Bacillus spp. Isolated from Human Milk Determined by PCA Analysis. Foods, 11(23), 3862. https://doi.org/10.3390/foods11233862