Chemical Composition, Antimicrobial and Antioxidant Activity of Essential Oil from Allium tenuissimum L. Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Microbial Strain
2.2. Extraction of Essential Oil
2.3. Identification of the Components of Essential Oil
2.4. Evaluation of Antimicrobial Activities of Essential Oil
2.4.1. Preparation of the Microbial Strains
2.4.2. Agar Diffusion Method
2.4.3. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Minimum Fungicidal Concentration (MFC) Assay
2.5. Time Kill Assay
2.6. The Effect of pH Value and Ultraviolet Irradiation on the Antimicrobial Activity of Essential Oil
2.7. Antioxidant Activity of Volatile Oil In Vitro
2.7.1. Determination of DPPH Clearance Rate
2.7.2. Determination of ABTS+ • Clearance Rate
2.7.3. Determination of •OH Clearance Rate
3. Results and Discussion
3.1. Chemical Composition of Essential Oil
3.2. Antimicrobial Activity of Essential Oil
3.3. Time-Kill Assay
3.4. Stability of Essential Oil
3.5. Antioxidant Activity of Volatile Oil In Vitro
3.5.1. The Clearance Rate of DPPH
3.5.2. The clearance Rate of ABTS+•
3.5.3. The Clearance Rate of •OH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, Y.; Zhao, X.Y.; Wang, C.; Liu, X.L. Flavor Characteristic Analysis of Fried Allium tenuissimum L. Flowers by Electronic Nose and Headspace-Gas Chromatography-Ion Mobility Spectrometry. J. Food. Sci. 2022, 43, 267–273. [Google Scholar]
- Assia, E.K.; Rachid, L.; Said, E.; Nabil, R.; Lyousfi, N.; Houda, B.; Latifa, A.; Abdessalem, T.; Lahsen, E.G.; Saadia, B.; et al. Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. Trends Food Sci. Technol. 2022, 120, 402–417. [Google Scholar]
- Alizadeh, B.B.; Imani, F.A.A. Evaluation of phytochemical analysis and antimicrobial activities Allium essential oil against the growth of some microbial pathogens. Microb. Pathog. 2018, 114, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Tang, Y.Y.; Cai, M.; Liu, X. Chemical Composition, Antibacterial and Antioxidant Activities of the Essential Oil of Justicia procumbens. Chem. Nat. Compd. 2022, 58, 553–555. [Google Scholar] [CrossRef]
- Chac, L.D.; Thinh, B.B.; Doudkin, R.V.; Minh, H.N.T.; Chinh, H.V. Chemical Composition and Antifungal Activity of Essential Oil from the Roots of Tinomiscium petiolare. Chem. Nat. Compd. 2022, 58, 760–762. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wu, Y.; Li, Y.; Zhang, J.N.; Bi, S.F. Chemical Composition and Biological Activity of the Essential Oil from Rhododendron anwheiense Flowers. Chem. Nat. Compd. 2022, 58, 947–950. [Google Scholar] [CrossRef]
- Huong, L.T.; Linh, L.D.; Dai, D.N.; Ogunwande, I.A. Essential Oil Compositions and Antimicrobial Activity of the Leaves and Rhizomes of Alpinia calcicola from Vietnam. Chem. Nat. Compd. 2022, 58, 939–942. [Google Scholar] [CrossRef]
- Ragina, R.; Saeed, A.H.; Ugochukwu, A.; Bonita, I.H.; Valerie, L.G.; Salam, A.I.; Reza, T.; Hye, W.K. Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum × radens and Laurus nobilis L. Foods 2016, 5, 28. [Google Scholar]
- Miroslava, K.; Lucia, G.; Eva, I.; Nenad, L.V.; Jana, Š.; Veronika, V.; Petra, B.; Jana, Ž.; Margarita, T.; Soňa, F.; et al. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods 2020, 9, 282. [Google Scholar]
- Youssef, F.S.; Eid, S.Y.; Alshammari, E.; Ashour, M.L.; Wink, M.; ElReadi, M.Z. Chrysanthemum indicum and Chrysanthemum morifolium: Chemical Composition of Their Essential Oils and Their Potential Use as Natural Preservatives with Antimicrobial and Antioxidant Activities. Foods 2020, 9, 1460. [Google Scholar] [CrossRef]
- Luo, K.; Zhao, P.; He, Y.; Kang, S.; Shen, C.Y.; Wang, S.; Guo, M.X.; Wang, L.H.; Shi, C. Antibacterial Effect of Oregano Essential Oil against Vibrio vulnificus and Its Mechanism. Foods 2022, 11, 403. [Google Scholar] [CrossRef] [PubMed]
- Ramona, B.; Erika, C.; Anna, M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar]
- Lu, M.M.; Li, Y.R.; Zhou, S.L. Chemical Constituents and antibacterial activity of essential oil from Ginger. Microbiol. Bull. 2021, 48, 1121–1129. [Google Scholar]
- Yin, M.C.; Cheng, W.S. Antioxidant activity of several Allium members. J. Agr. Food Chem. 1998, 46, 4097–4101. [Google Scholar] [CrossRef]
- Yin, M.C.; Tsao, S.M. Inhibitory effect of seven Allium plants upon three Aspergillus species. J. Agr. Food Chem. 1999, 49, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. Studies on the Antibacterial, Antioxidant and α-Glucosidase Inhibition of Ethanol Extract from Allium leek; Shanxi University: Taiyuan, China, 2020. [Google Scholar]
- Li, M.P.; Liu, Y.; Zhang, S.W. Study on Chemical Constituents and Antibacterial Activity of Alcohol Extract from Allium leek. Chin. Condiment 2020, 45, 35–38. [Google Scholar]
- Xiong, P.P. Study on Antibacterial Activity of Garlic Extract; Nanchang University: Nanchang, China, 2019. [Google Scholar]
- Wang, Y.C.; Wei, K.; Han, X.B.; Zhao, D.L.; Zheng, Y.F.; Chao, J.M.; Gou, J.Y.; Kong, F.Y.; Zhang, C.S. The Antifungal Effect of Garlic Essential Oil on Phytophthora nicotianae and the Inhibitory Component Involved. Biomolecules 2019, 9, 632. [Google Scholar] [CrossRef]
- Satyal, P.; Craft, J.D.; Dosoky, N.S. The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale). Foods 2017, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Sun, X.N.; Zhang, R.Z.; Lv, J.Y.; Zhang, X.; Li, F.Z. Study on the volatile composition and antioxidant activity of cold scallion essential oil. Chin. Condiments 2021, 46, 59–64. [Google Scholar]
- Balaji, M.; Ramgopal, M.; MuraliKrishna, T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian. Pac. J. Trop. Med. 2012, 5, 391–395. [Google Scholar]
- Xu, M.J.; Zhang, J.; Li, M.P. Analysis of the Volatile Compounds in the Flowers of Allium tenuissimum by Headspace-Gas Chromatography-Olfactometry-Mass Spectrometry. J. Food Sci. China 2017, 38, 199–203. [Google Scholar]
- De, G.D.; Barton, E.M.; Sandberg, E.N.; Croley, C.R.; Pumarol, J.; Wong, T.L.; Das, N.; Bishayee, A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin. Cancer Biol. 2020, 73, 219–264. [Google Scholar]
- Mondal, A.; Banerjee, S.; Bose, S.; Mazumder, S.; Haber, R.A.; Farzaei, M.H.; Bishayee, A. Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol. Res. 2021, 175, 105837. [Google Scholar] [CrossRef] [PubMed]
- Park, I.K.; Shin, S.C. Fumigant Activity of Plant Essential Oils and Components from Garlic (Allium sativum) and Clove Bud (Eugenia caryophyllata) Oils against the Japanese Termite (Reticulitermes speratus Kolbe). J. Agric. Food Chem. 2005, 53, 4388–4392. [Google Scholar] [CrossRef] [PubMed]
- Casiglia, S.; Bruno, M.; Senatore, F. Composition of the essential oil of Allium neapolitanum cirillo growing wild in sicily and its activity on microorganisms affecting historical art crafts. J. Oleo. Sci. 2015, 64, 1315–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djamel, D. Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus. Foods 2015, 4, 208–228. [Google Scholar]
- Irene, M.; Estrella, S.; Manuel, V.; Casilda, N.; Esther, S. Chemical Composition, Antioxidant and Antimicrobial Activity of Essential Oils from Organic Fennel, Parsley, and Lavender from Spain. Foods 2016, 5, 18. [Google Scholar]
- Ray, A.; Jena, S.; Sahoo, A.; Kamila, P.K.; Nayak, S.; Panda, P.C. Chemical Composition and Antioxidant Activity of the Leaf Essential Oil of Cryptocarya amygdalina. Chem. Nat. Compd. 2021, 57, 1150–1152. [Google Scholar] [CrossRef]
- Thinh, B.B.; Thanh, V.Q.; Hanh, D.H.; Thin, D.B.; Doudkin, R.V. Chemical Composition and Antioxidant Activity of Essential Oil from Fruit of Schisandra perulata. Chem. Nat. Compd. 2022, 58, 763–765. [Google Scholar] [CrossRef]
- Ray, A.; Jena, S.; Sahoo, A.; Das, P.K.; Nayak, S.; Panda, P.C. Chemical Composition and Antioxidant Property of Essential Oil of Callicarpa tomentosa. Chem. Nat. Compd. 2022, 58, 757–759. [Google Scholar] [CrossRef]
- Mollaei, S.; Ebadi, M. Chemical Composition and Antioxidant Activity of Alkanna bracteosa Essential Oil. Chem. Nat. Compd. 2022, 58, 560–561. [Google Scholar] [CrossRef]
- Farukh, S.; Markus, S.B.; Isomiddin, G.; Davlat, K.; Salomiddin, I.; Michael, W. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan. Foods 2015, 4, 645–653. [Google Scholar]
- Gyung-Rim, Y.; Yoseph, A.; Dae-Woon, K.; Da-Ham, K.; Hyun-Ah, H.; Young-Hoi, K.; Myung-Kon, K. Chemical Composition and Antioxidant Activity of Steam-Distilled Essential Oil and Glycosidically Bound Volatiles from Maclura tricuspidata Fruit. Foods 2019, 8, 659. [Google Scholar]
- Lee, J.; Lee, Y.; Lee, J.; Jang, Y.; Jang, H. Chemical Composition, Antioxidant, and Anti-Inflammatory Activity of Essential Oil from Omija (Schisandra chinensis (Turcz.) Baill.) Produced by Supercritical Fluid Extraction Using CO2. Foods 2021, 10, 1619. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Qiao, H.P.; Liu, D.; Li, B.; Wu, X.Y.; Li, X.J. Chemical components and its in vitro antioxidant capacity, antibacterial activities of Essential Oil from Cinnamon Bark. J. Chin. Cereals Oils Assoc. 2020, 35, 96–102. [Google Scholar]
- Xie, J.C. Separation and analysis of aroma components. In The Analysis Technology of Modern Fragrance and Application, 1st ed.; Standards Press of China: Beijing, China, 2008; pp. 17–18. [Google Scholar]
- Su, X.D. Study on Antibacterial Effect of Essential Oil from Pepper and Clove and Antiseptic Effect on Ham; Shanxi Normal University: Xi’an, China, 2019. [Google Scholar]
- Liu, M.; Liu, Y.X.; Cao, M.J. Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohyd Polym 2017, 172, 294–305. [Google Scholar] [CrossRef]
- Fu, C.; Lan, X.H.; Yuan, J.Q.; Li, C.H.; Li, L.M.; Yu, Z.L.; Tan, T.T.; Yuan, M.Q.; Du, F.G. Research on the optimization, key chemical constituents and antibacterial activity of the essential oil extraction process of Thuja koraiensis Nakai. J. Microbiol. Methods 2022, 194, 106435. [Google Scholar] [CrossRef]
- Said, Z.B.O.S.; Guemghar, H.H.; Makhlouf, L.B. Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits. Ind. Crops Prod. 2016, 89, 167–175. [Google Scholar] [CrossRef]
- Araújo, F.M.; Dantas, M.C.S.M.; Silva, L.S. Antibacterial activity and chemical composition of the essential oil of Croton heliotropiifolius Kunth from Amargosa, Bahia, Brazil. Ind. Crops Prod. 2017, 105, 203–206. [Google Scholar] [CrossRef]
- Sandra, M.O.; Ana, P.M.; Daniel, F. Comparison of methods to determine antibacterial activity of honeys against Staphylococcus aureus. Njas-Wagen J. Life Sci. 2016, 78, 29–33. [Google Scholar]
- Wang, F.; Wei, F.Y.; Song, C.X. Dodartia orientalis L. essential oil exerts antibacterial activity by mechanisms of disrupting cell structure and resisting biofilm. Ind. Crops Prod. 2017, 109, 358–366. [Google Scholar] [CrossRef]
- Boonyanugomol, W.; Kraisriwattanaa, K.; Rukseree, K. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J. Infect. Public Health 2017, 10, 586–592. [Google Scholar] [CrossRef]
- Rosas-Gallo, A.; Ramírez-Corona, N.; Palou, E. Modeling Penicillium expansum growth response to thyme essential oil at selected water activities and pH values using surface response methodology. Proc. Food Sci. 2016, 7, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Lv, D.; Liu, J.; Liu, H. Analysis and Antioxidant activity of Essential Oil from Houttuynia cordata. Preserv. Process. 2016, 16, 120–124. [Google Scholar]
- Ma, Q.Y.; Xu, Q.D.; Chen, N.; Gao HXZeng, W.C. Study on the antioxidant and antibacterial effect of the essential oil. Food Ind. Technol. 2022, 43, 173–181. [Google Scholar]
- Li, N.; Jia, L.X.; Fu, N.N.; Hao, L.Z.; Huang, X.M.; Zhang, F.L. Study on antioxidant and antibacterial activity of fruit. North. J. Agric. 2021, 49, 120–126. [Google Scholar]
- Santhosha, S.G.; Jamuna, P.; Prabhavathi, S.N. Bioactive components of garlic and their physiological role in health maintenance: A review. Food Biosci. 2013, 3, 59–74. [Google Scholar] [CrossRef]
- María, M.C.; Feliciano, P.C.; María, D.L.C. Headspace GC-MS volatile profile of black garlic vs fresh garlic: Evolution along fermentation and behavior under heating. LWT—Food Sci. Technol. 2017, 80, 98–105. [Google Scholar]
- Ivanova, A.; Mikhova, B.; Najdenski, H. Chemical composition and antimicrobial activity of wild garlic Allium ursinum of Bulgarian origin. Nat. Prod. Commun. 2009, 4, 1059–1062. [Google Scholar]
- Niu, D.L.; Liu, X.C.; Li, Y. In vitro antibacterial activity of essential oil in vivo. Mod. Food Technol. 2018, 34, 63–68. [Google Scholar]
- Chen, X.J.; Huang, W.J.; Du, L.Q. Composition analysis and antioxidant activity of lemon peel essential oil. Guangdong Chem. Ind. 2021, 48, 89–92+74. [Google Scholar]
- Du, J.M.; Zhang, P.; Gao, D. The bacterial activity and antioxidant activity of clove essential oil and tea polyphenols compound antibacterial liquid. Mod. Food Technol. 2021, 37, 87–95. [Google Scholar]
- Xiao, M.Y. Process optimization and antioxidant activity of PT. China Pharm. 2021, 30, 41–45. [Google Scholar]
- Benkeblia, N. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT—Food Sci. Technol. 2004, 37, 263–268. [Google Scholar] [CrossRef]
- Kyung, K.H. Antimicrobial properties of allium species. Curr. Opin. Biotechnol. 2012, 23, 142–147. [Google Scholar] [CrossRef]
NO | Compounds | Relative Content/% | RI | |
---|---|---|---|---|
Calculated Value | Literature Value | |||
1 | Methyl thiirane | 0.13% | 605 | 619 |
2 | Allyl sulfhydrate | 0.36% | 665 | 583 |
3 | Isovaleraldehyde | 0.24% | 679 | 632 |
4 | Methyl ethyl disulfide | 0.43% | 684 | 838 |
5 | Pentanal | 0.09% | 740 | 715 |
6 | Isopentanol | 0.07% | 760 | 744 |
7 | Dimethyl disulfide | 4.47% | 761 | 747 |
8 | Hexanal | 0.30% | 819 | 804 |
9 | 2-Ethyl-trans-2-butenal | 0.08% | 844 | 791 |
10 | 2,4-Dimethyl thiophene | 0.09% | 877 | 878 |
11 | 3,4-Dimethyl thiophene | 1.95% | 903 | 867 |
12 | Allyl methyl disulphide | 0.82% | 914 | - |
13 | 1,3-Dithiane | 4.52% | 927 | 1002 |
14 | Methyl propyl disulfide | 0.78% | 929 | 920 |
15 | Isomer of 1,3-Dithiane | 7.42% | 936 | 1002 |
16 | Camphene | 0.33% | 944 | 935 |
17 | Dimethyl trisulfide | 21.16% | 963 | 954 |
18 | Sabinen | 0.19% | 971 | 971 |
19 | 2-Pentylfuran | 0.40% | 991 | 991 |
20 | p-Cymene | 0.55% | 1018 | 1022 |
21 | 1,8-cineole | 6.32% | 1023 | 1022 |
22 | γ-Terpinene | 0.65% | 1054 | 1282 |
23 | Terpinolene | 0.17% | 1084 | 1084 |
24 | Diallyl Disulfide | 0.19% | 1096 | 1079 |
25 | Linalool | 1.24% | 1099 | 1099 |
26 | Tanacetone | 1.13% | 1101 | 1124 |
27 | Nonanal | 1.42% | 1104 | 1096 |
28 | Thujone | 0.82% | 1106 | 1097 |
29 | 2,4,5-Trithiahexane | 1.10% | 1115 | 1110 |
30 | 3,5-Dimethyl-1,2,4-trithiolane | 0.58% | 1120 | 1127 |
31 | 1-propenyl trisulfide, (Z)- | 1.09% | 1127 | 1136 |
32 | 2-Camphanone | 4.91% | 1134 | 1136 |
33 | 3.22% | 1141 | ||
34 | 1-propenyl trisulfide, (E)- | 4.73% | 1151 | 1145 |
35 | Borneol | 1.82% | 1158 | 1155 |
36 | - | 1.74% | 1161 | |
37 | Nerol | 1.09% | 1165 | 1204 |
38 | Terpinen-4-ol | 1.82% | 1171 | 1182 |
39 | α-Terpineol | 0.51% | 1187 | 1187 |
40 | Methyl, tetrasulfide | 4.14% | 1201 | 1202 |
41 | Cyclobutaneethanol, 1-methyl-2-(1-methylethenyl)-, cis- | 0.52% | 1208 | 1183 |
42 | Propionic acid, 3-(isobutylthio)- | 2.28% | 1247 | 1260 |
43 | bornyl acetate | 1.05% | 1282 | 1284 |
44 | Lavandulyl acetate | 0.85% | 1291 | 1270 |
45 | 1.3,5-Diethyl-1,2,4-trithiolane | 2.35% | 1313 | 1307 |
46 | Copaene | 0.17% | 1369 | 1368 |
47 | - | 1.17% | 1383 | |
48 | Caryophyllene | 0.25% | 1408 | 1408 |
49 | - | 1.95% | 1462 | |
50 | Varidiflorene | 0.05% | 1470 | 1471 |
51 | ɑ-Selinene | 0.59% | 1478 | 1476 |
52 | β-lonone | 0.15% | 1482 | 1486 |
53 | Pentadecane | 0.09% | 1499 | 1512 |
54 | Neryl propionate | 0.14% | 1510 | 1451 |
55 | Spathulenol | 1.15% | 1564 | 1570 |
56 | Caryophyllene oxide | 0.56% | 1569 | 1566 |
57 | Hexadecane | 0.13% | 1598 | 1600 |
58 | Cedrol | 0.21% | 1605 | 1589 |
59 | β-Eudesmol | 0.15% | 1651 | 1628 |
60 | Heptadecane | 0.19% | 1699 | 1700 |
61 | Octadecane | 0.19% | 1799 | 1800 |
62 | Fitone | 0.58% | 1837 | 1845 |
63 | Nonadecane | 0.07% | 1899 | 1900 |
64 | Methyl hexadecanoate | 0.25% | 1917 | 1925 |
65 | Isophytol | 0.20% | 1942 | 1943 |
66 | n-Hexadecanoic acid | 0.42% | 1957 | 1962 |
67 | Ethyl hexadecanoate | 0.09% | 1994 | 1995 |
68 | Linoleic acid, methyl ester | 0.03% | 2097 | 2092 |
69 | Heneicosane | 0.06% | 2099 | 2100 |
70 | Tricosane | 0.65% | 2295 | 2300 |
71 | Tetracosane | 0.04% | 2395 | 2400 |
72 | pentacosane | 0.35% | 2500 | 2500 |
Essential Oil Concentration v/v (mL/mL) | Zones of Inhibition (mm) on Tested Microbial Strains | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Bacillus subtilis | Staphylococcus aureus | Escherichia coli | Aspergillus flavus | Saccharomyces cerevisiae | ||||||
20 h | 40 h | 20 h | 40 h | 20 h | 40 h | 40 h | 60 h | 40 h | 60 h | |
100% | 21.0 ± 0.57 | 16.2 ± 0.44 | 13.5 ± 0.40 | 12.3 ± 0.40 | 13.0 ± 0.35 | 11.3 ± 0.53 | 20.0 ± 0.15 | 14.2 ± 0.66 | 》 | 》 |
50% | 17.3 ± 0.5 | 15.7 ± 0.35 | 12.3 ± 0.38 | 10.5 ± 0.38 | 10.8 ± 0.21 | 9.7 ± 0.38 | 16.5 ± 0.40 | 11.5 ± 0.31 | 》 | 》 |
25% | 13.5 ± 0.36 | 10.5 ± 0.36 | 9.3 ± 0.45 | 8.2 ± 0.20 | 10.5 ± 0.36 | 9.5 ± 0.35 | 13.3 ± 0.31 | 10.0 ± 0.43 | 》 | 》 |
12.5% | 10.8 ± 0.50 | 8.7 ± 0.49 | 8.7 ± 0.26 | 6.0 ± 0.06 | 9.8 ± 0.46 | 9.2 ± 0.25 | 11.0 ± 0.20 | 8.5 ± 0.21 | 》 | 》 |
6.25% | 8.5 ± 0.36 | 8.3 ± 0.3 | 6.0 ± 0.06 | 6.0 ± 0.12 | 6.0 ± 0.00 | 6.0 ± 0.06 | 10.8 ± 0.21 | 8.0 ± 0.46 | 19.8 ± 0.51 | 19.0 ± 0.26 |
3.13% | 9.3 ± 0.31 | 6.0 ± 0.12 | 18.2 ± 0.35 | 16.5 ± 0.2 | ||||||
1.57% | 6.0 ± 0.00 | 6.0 ± 0.00 | 15.0 ± 0.51 | 14.8 ± 0.55 | ||||||
0% | 6.0 ± 0.00 | 6.0 ± 0.00 | 6.0 ± 0.00 | 6.0 ± 0.00 | 6.0 ± 0.00 | 6.0 ± 0.00 | 6.0 ± 0.00 | 6.0 ± 0.00 | 6.0 ± 0.00 | 6.0 ± 0.00 |
Bacillus subtilis | Staphylococcus aureus | Escherichia coli | Aspergillus flavus | Saccharomyces cerevisiae | |
---|---|---|---|---|---|
MIC (% v/v) | 1.25 | 0.63 | 2.5 | 0.63 | 0.32 |
MBC/MFC (% v/v) | >5 | 1.25 | 5 | 2.5 | 0.63 |
Strains | Zone of Inhibition (mm) on Tested Microbial Strains | ||||||
---|---|---|---|---|---|---|---|
pH Value | |||||||
4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | ||
Bacillus subtilis | contrast | regular growth | regular growth | regular growth | regular growth | regular growth | regular growth |
essential oil | 25.6 ± 0.35 | 24.6 ± 0.20 | 22.9 ± 0.32 | 21.5 ± 0.40 | 19.2 ± 0.10 | 17.3 ± 0.25 | |
Staphylococcus aureus | contrast | regular growth | regular growth | regular growth | regular growth | regular growth | regular growth |
essential oil | 18.8 ± 0.35 | 16.3 ± 0.20 | 15.4 ± 0.47 | 13.6 ± 0.10 | 12.5 ± 0.35 | 10.6 ± 0.37 | |
Escherichia coli | contrast | regular growth | regular growth | regular growth | regular growth | regular growth | regular growth |
essential oil | 18.7 ± 0.26 | 16.3 ± 0.40 | 14.5 ± 0.26 | 13.0 ± 0.25 | 12.3 ± 0.21 | 10.6 ± 0.21 | |
Aspergillus flavus | contrast | regular growth | regular growth | regular growth | regular growth | regular growth | regular growth |
essential oil | 25.0 ± 0.26 | 22.7 ± 0.46 | 20.3 ± 0.47 | 18.2 ± 0.35 | 17.7 ± 0.46 | 16.0 ± 0.30 | |
Saccharomyces cerevisiae | contrast | regular growth | regular growth | regular growth | regular growth | regular growth | regular growth |
essential oil | 》 | 》 | 》 | 》 | 79.8 ± 0.42 | 70.5 ± 0.32 |
Strains | Zone of Inhibition (mm) on Tested Microbial Strains | ||||
---|---|---|---|---|---|
Ultraviolet Radiation Time (min) | |||||
20 | 40 | 60 | 80 | Contrast | |
Bacillus subtilis | 21.0 ± 0.38 | 21.3 ± 0.38 | 21.5 ± 0.21 | 21.6 ± 0.35 | 21.6 ± 0.20 |
Staphylococcus aureu | 13.5 ± 0.10 | 13.5 ± 0.17 | 13.7 ± 0.30 | 12.8 ± 0.21 | 13.3 ± 0.10 |
Escherichia coli | 13.4 ± 0.17 | 13.0 ± 0.43 | 13.6 ± 0.20 | 13.0 ± 0.43 | 13.2 ± 0.17 |
Aspergillus niger | 20.1 ± 0.40 | 20.8 ± 0.53 | 19.9 ± 0.30 | 20.6 ± 0.10 | 20.5 ± 0.50 |
Saccharomyces cerevisiae | 》 | 》 | 》 | 》 | 》 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhao, X.; Xu, M. Chemical Composition, Antimicrobial and Antioxidant Activity of Essential Oil from Allium tenuissimum L. Flowers. Foods 2022, 11, 3876. https://doi.org/10.3390/foods11233876
Li M, Zhao X, Xu M. Chemical Composition, Antimicrobial and Antioxidant Activity of Essential Oil from Allium tenuissimum L. Flowers. Foods. 2022; 11(23):3876. https://doi.org/10.3390/foods11233876
Chicago/Turabian StyleLi, Meiping, Xiying Zhao, and Manjun Xu. 2022. "Chemical Composition, Antimicrobial and Antioxidant Activity of Essential Oil from Allium tenuissimum L. Flowers" Foods 11, no. 23: 3876. https://doi.org/10.3390/foods11233876
APA StyleLi, M., Zhao, X., & Xu, M. (2022). Chemical Composition, Antimicrobial and Antioxidant Activity of Essential Oil from Allium tenuissimum L. Flowers. Foods, 11(23), 3876. https://doi.org/10.3390/foods11233876