Discrimination of Pesticide Residue Levels on the Hami Melon Surface Using Multiscale Convolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Spectral Data Acquisition
2.3. Pesticide Residue Content Measurement
2.4. 1D-CNN Model Implementation and Evaluation
2.4.1. Environment
2.4.2. Architecture
2.4.3. Hyperparameters
2.4.4. Evaluation
3. Results and Discussion
3.1. Data Statistics and Division
3.2. Interpretation of Vis/NIR Spectra
3.3. 1D-CNN Model
3.3.1. Pesticide Residue Discrimination
3.3.2. Two-Level Residue Discrimination
3.3.3. Three-Level Residue Discrimination
3.3.4. Four-Level Residue Discrimination
3.3.5. Comprehensive Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Ma, B.; Yu, G.; Chen, J.; Li, Y.; Li, C. Surface defect detection of Hami melon using deep learning and image processing. Trans. Chin. Soc. Agric. Eng. 2021, 37, 223–232. [Google Scholar] [CrossRef]
- Wei, K.; Zhou, X.; Yan, Q.; Tao, Y.; Wang, C. Risk assessment of pesticide residues in muskmelon in Xinjiang. Food Mach. 2019, 35, 90–95. [Google Scholar] [CrossRef]
- Chen, Y.; Lai, J.; Zhang, M.; Zhao, T.; Wang, S.; Li, J.; Liu, S. Status of Pyrethroid Pesticide Pollution in Agricultural Products and Technologies for Its Removal: A Review. Food Sci. 2022, 43, 285–292. [Google Scholar] [CrossRef]
- Lin, J.; Han, L.; Chen, H.; Yu, Q.; Li, W.; Zhu, Y.; Zhang, W.; Han, M. Extraction of polyphenols from melon peels and its effect on beef preservation. Food Ferment. Ind. 2021, 47, 168–175. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Huang, P.; Gong, H. Effect of Grain Size on Structure and Properties of Dietary Fiber from Netted Melon. Food Res. Dev. 2019, 40, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhu, H.; Li, C.; Qian, H.; Yao, W.; Guo, Y. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem. 2021, 354, 129552. [Google Scholar] [CrossRef]
- Narenderan, S.T.; Meyyanathan, S.N.; Babu, B. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res. Int. 2020, 133, 109141. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, W.; Xu, L.; Lu, L.; Zhou, H.; Chen, H. Review on rapid detection of pesticide residues in agricultural and food products. Trans. Chin. Soc. Agric. Eng. 2016, 32, 267–274. [Google Scholar] [CrossRef]
- Chandrasekaran, I.; Panigrahi, S.S.; Ravikanth, L.; Singh, C.B. Potential of Near-Infrared (NIR) Spectroscopy and Hyperspectral Imaging for Quality and Safety Assessment of Fruits: An Overview. Food Anal. Methods 2019, 12, 2438–2458. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, S.; Xue, J.; Zhao, X.; Liu, J. Application of Spectral and Imaging Technique to Detect Quality and Safety of Fruits and Vegetables: A Review. Spectrosc. Spectr. Anal. 2018, 38, 1779–1785. [Google Scholar] [CrossRef]
- Nazarloo, A.S.; Sharabiani, V.R.; Gilandeh, Y.A.; Taghinezhad, E.; Szymanek, M. Evaluation of Different Models for Non-Destructive Detection of Tomato Pesticide Residues Based on Near-Infrared Spectroscopy. Sensors 2021, 21, 3032. [Google Scholar] [CrossRef]
- Sun, J.; Ge, X.; Wu, X.; Dai, C.; Yang, N. Identification of pesticide residues in lettuce leaves based on near infrared transmission spectroscopy. J. Food Process Eng. 2018, 41, e12816. [Google Scholar] [CrossRef]
- Xin, Z.; Jun, S.; Bing, L.; Wu, X.; Dai, C.; Ning, Y. Study on pesticide residues classification of lettuce leaves based on polarization spectroscopy. J. Food Process Eng. 2018, 41, e12903. [Google Scholar] [CrossRef]
- Ndung’u, C.N.; Kaniu, M.I.; Wanjohi, J.M. Optimization of diffuse reflectance spectroscopy measurements for direct and rapid screening of pesticides: A case study of spinach. Spectrochim. Acta Part A 2022, 280, 121556. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.-l.; Su, Q.; Zhao, R.; Song, H.-y. Qualitative Analysis of Chlorpyrifos Pesticide Residues in Cabbage Leaves Based on Visible Near Infrared Spectroscopy. Spectrosc. Spectr. Anal. 2022, 42, 80–85. [Google Scholar] [CrossRef]
- Nazarloo, A.S.; Sharabiani, V.R.; Gilandeh, Y.A.; Taghinezhad, E.; Szymanek, M.; Sprawka, M. Feasibility of Using VIS/NIR Spectroscopy and Multivariate Analysis for Pesticide Residue Detection in Tomatoes. Processes 2021, 9, 196. [Google Scholar] [CrossRef]
- Ma, B.; Yu, G.; Wang, W.; Luo, X.; Li, Y.; Li, X.; Lei, S. Recent Advances in Spectral Analysis Techniques for Non-Destructive Detection of Internal Quality in Watermelon and Muskmelon: A Review. Spectrosc. Spectral Anal. 2020, 40, 2035–2041. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.; Zhang, X.; Wu, C.; Lin, T.; Ying, Y. Deep learning for vibrational spectral analysis: Recent progress and a practical guide. Anal. Chim. Acta 2019, 1081, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, J.; Lin, T.; Ying, Y. Food and agro-product quality evaluation based on spectroscopy and deep learning: A review. Trends Food Sci. Technol. 2021, 112, 431–441. [Google Scholar] [CrossRef]
- Wu, M.; Sun, J.; Lu, B.; Ge, X.; Zhou, X.; Zou, M. Application of deep brief network in transmission spectroscopy detection of pesticide residues in lettuce leaves. J. Food Process Eng. 2019, 42, e13005. [Google Scholar] [CrossRef]
- Ye, W.; Yan, T.; Zhang, C.; Duan, L.; Chen, W.; Song, H.; Zhang, Y.; Xu, W.; Gao, P. Detection of Pesticide Residue Level in Grape Using Hyperspectral Imaging with Machine Learning. Foods 2022, 11, 1609. [Google Scholar] [CrossRef]
- He, W.; He, H.; Wang, F.; Wang, S.; Lyu, R. Non-destructive detection and recognition of pesticide residues on garlic chive (Allium tuberosum) leaves based on short wave infrared hyperspectral imaging and one-dimensional convolutional neural network. J. Food Meas. Charact. 2021, 15, 4497–4507. [Google Scholar] [CrossRef]
- Yu, G.; Ma, B.; Chen, J.; Li, X.; Li, Y.; Li, C. Nondestructive identification of pesticide residues on the Hami melon surface using deep feature fusion by Vis/NIR spectroscopy and 1D-CNN. J. Food Process Eng. 2021, 44, e13602. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Pesticide Multiresidue Screen Methods for Determination of Organophosphorus Pesticides, Organochlorine Pesticides, Pyrethroid Pesticides and Carbamate Pesticides in Vegetables and Fruits; China Agriculture Press: Beijing, China, 2008; Volume NY/T 761-2008. [Google Scholar]
- BS EN 15662:2008; Foods of Plant Origin Determination of Pesticide Residues Using GC-MS and/or LC-MS/MS Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE-QuEChERS-Method. British Standards Institution: London, UK, 2008.
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Wu, Z.; Chen, T.; Chen, Y.; Zhang, Z.; Liu, G. NIRExpNet: Three-Stream 3D Convolutional Neural Network for Near Infrared Facial Expression Recognition. Appl. Sci. 2017, 7, 1184. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chai, Q.; Lin, N.; Li, X.; Wang, W. 1D convolutional neural network for the discrimination of aristolochic acids and their analogues based on near-infrared spectroscopy. Anal. Methods 2019, 11, 5118–5125. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; McBratney, A. Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy. Sci. Total Environ. 2020, 702, 134723. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Kang, X.; Su, J.; Qiu, J.; Liu, X.; Xu, J.; Shi, J.; Mohamed, S.R. Rapid detection of fumonisin B-1 and B-2 in ground corn samples using smartphone-controlled portable near-infrared spectrometry and chemometrics. Food Chem. 2022, 384, 132487. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Y.; Xuan, G.; Gao, C.; Wang, K.; Gao, Z. Visual Detection of SSC and Firmness and Maturity Prediction for Feicheng Peach by Using Hyperspectral Imaging. Trans. Chin. Soc. Agric. Mach. 2020, 51, 344–350. [Google Scholar] [CrossRef]
- Zhou, X.; Jun, S.; Yan, T.; Bing, L.; Hang, Y.; Quansheng, C. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 2020, 321, 126503. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, L.; Yu, Z.; Zhai, Z.; Zhang, R. Optimization of soluble solids content prediction models in ‘Hami’ melons by means of Vis-NIR spectroscopy and chemometric tools. Infrared Phys. Technol. 2019, 102, 102999. [Google Scholar] [CrossRef]
- Sun, J.; Ma, B.; Dong, J.; Zhu, R.; Zhang, R.; Jiang, W. Detection of internal qualities of hami melons using hyperspectral imaging technology based on variable selection algorithms. J. Food Process Eng. 2017, 40, e12496. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, X.; Mao, H.; Wu, X.; Yang, N.; Zhang, X. Detection of pesticide residues on lettuce leaves based on piece-wise discrete wavelet transform and hyperspectral data. Trans. Chin. Soc. Agric. Mach. 2016, 47, 323–329. [Google Scholar] [CrossRef]
- Xie, D.; Li, J.; Liu, D.; Wan, X.; Ye, Y. An Improved Hodrick-Prescott Decomposition Based Near-Infrared Adaptive Denoising Method. Spectrosc. Spectral Anal. 2020, 40, 1650–1655. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, Q.; Dong, D. Application of Near Infrared Spectroscopy Combined with Comparative Principal Component Analysis for Pesticide Residue Detection in Fruit. Spectrosc. Spectral Anal. 2020, 40, 917–921. [Google Scholar] [CrossRef]
- Jamshidi, B.; Mohajerani, E.; Jamshidi, J.; Minaei, S.; Sharifi, A. Non-destructive detection of pesticide residues in cucumber using visible/near-infrared spectroscopy. Food Addit. Contam. Part A—Chem. Anal. Control. Expo. Risk Assess. 2015, 32, 857–863. [Google Scholar] [CrossRef]
- Jamshidi, B.; Mohajerani, E.; Jamshidi, J. Developing a Vis/NIR spectroscopic system for fast and non-destructive pesticide residue monitoring in agricultural product. Measurement 2016, 89, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Rao, Z.; Ji, H. Identification of Different Concentrations Pesticide Residues of Dimethoate on Spinach Leaves by Hyperspectral Image Technology. In Proceedings of the 6th International-Federation-of-Automatic-Control (IFAC) Conference on Bio-Robotics (BIOROBOTICS), Beijing, China, 13–15 July 2018; pp. 758–763. [Google Scholar]
- Zhang, X.; Lin, T.; Xu, J.; Luo, X.; Ying, Y. DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis. Anal. Chim. Acta 2019, 1058, 48–57. [Google Scholar] [CrossRef] [PubMed]
1D-CNN Model | Layer | Hyperparameters | |||||
---|---|---|---|---|---|---|---|
Filter Number | Filter Size | Stride | Padding | Activation | |||
Single depth | Conv1 | 16 | 1 × 1 | 2 | same | ReLU | |
Conv2 | 3 × 1 | ||||||
Conv3 | 5 × 1 | ||||||
Pooling | — | 2 × 1 | — | ||||
Symmetric multiscale | Conv1 | C11 | 16 | 1 × 1 | 2 | same | ReLU |
C12 | 1 × 1 | ||||||
P13 | — | 2 × 1 | — | ||||
Conv2 | C21 | 16 | 3 × 1 | ReLU | |||
C22 | 5 × 1 | ||||||
C23 | 1 × 1 | ||||||
Asymmetric multiscale | Conv1 | C11 | 16 | 1 × 1 | 2 | same | ReLU |
C12 | 1 × 1 | ||||||
P13 | — | 2 × 1 | — | ||||
C14 | 16 | 1 × 1 | ReLU | ||||
Conv2 | C21 | 3 × 1 | |||||
C22 | 3 × 1 | ||||||
C23 | 1 × 1 | ||||||
Conv3 | P31 | — | 5 × 1 | — | |||
C32 | 16 | 5 × 1 | ReLU | ||||
Conv4 | 7 × 1 |
Normalized Confusion Matrix | Predicted Class | ||
---|---|---|---|
Positive | Negative | ||
Actual Class | Positive | TPR | FNR |
Negative | FPR | TNR |
Pesticide | Residue Level | Residue Content/(μg·mL−1) | Spectral Data | |||
---|---|---|---|---|---|---|
Range | Max | Min | Mean | |||
Lambda-Cyhalothrin | 1 | ≤8.50 | 8.38 | 0.96 | 3.79 | 191 |
2 | >8.50 | 32.36 | 8.60 | 17.26 | 189 | |
Beta-Cypermethrin | 1* | ≤2.20 | 2.04 | 0.37 | 1.18 | 191 |
2* | >2.20 | 12.74 | 2.34 | 6.19 | 189 |
Pesticide | Residue Level | Residue Content/(μg·mL−1) | Spectral Data | |||
---|---|---|---|---|---|---|
Range | Max | Min | Mean | |||
Lambda-Cyhalothrin | 1 | <5.00 | 4.96 | 0.96 | 2.32 | 121 |
2 | 5.00~12.50 | 12.50 | 5.02 | 8.24 | 130 | |
3 | >12.50 | 32.36 | 12.81 | 21.01 | 129 | |
Beta-Cypermethrin | 1* | < 1.56 | 1.55 | 0.37 | 0.84 | 128 |
2* | 1.56~3.75 | 3.72 | 1.56 | 2.40 | 127 | |
3* | >3.75 | 12.74 | 3.77 | 7.73 | 125 |
Pesticide | Residue Level | Residue Content/(μg·mL−1) | Spectral Data | |||
---|---|---|---|---|---|---|
Range | Max | Min | Mean | |||
Lambda-cyhalothrin | 1 | <3.00 | 2.73 | 0.96 | 0.51 | 93 |
2 | 3.00~8.50 | 8.38 | 3.36 | 1.37 | 98 | |
3 | >8.50~14.60 | 14.57 | 8.60 | 1.87 | 92 | |
4 | >14.60 | 32.36 | 14.63 | 5.62 | 97 | |
Beta-cypermethrin | 1* | <1.10 | 1.09 | 0.37 | 0.20 | 97 |
2* | 1.10~2.20 | 2.04 | 1.11 | 0.29 | 94 | |
3* | >2.20~5.00 | 4.91 | 2.34 | 0.77 | 99 | |
4* | >5.00 | 12.74 | 5.71 | 2.08 | 90 |
Pesticide | 1D-CNN Model | Discrimination Accuracy/% | Average Modeling time/s | |||
---|---|---|---|---|---|---|
Residues | Two-Level | Three-Level | Four-Level | |||
Lambda-cyhalothrin | Single depth | 99.25 | 92.63 | 81.05 | 81.05 | 6.0 |
Symmetric multiscale | 100.00 | 93.68 | 84.21 | 85.26 | 3.3 | |
Asymmetric multiscale | 100.00 | 93.68 | 86.32 | 87.37 | 4.0 | |
Beta-cypermethrin | Single depth | 99.25 | 92.63 | 84.21 | 89.47 | 5.8 |
Symmetric multiscale | 100.00 | 94.74 | 86.32 | 91.58 | 2.8 | |
Asymmetric multiscale | 100.00 | 95.79 | 89.47 | 93.68 | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, G.; Ma, B.; Li, H.; Hu, Y.; Li, Y. Discrimination of Pesticide Residue Levels on the Hami Melon Surface Using Multiscale Convolution. Foods 2022, 11, 3881. https://doi.org/10.3390/foods11233881
Yu G, Ma B, Li H, Hu Y, Li Y. Discrimination of Pesticide Residue Levels on the Hami Melon Surface Using Multiscale Convolution. Foods. 2022; 11(23):3881. https://doi.org/10.3390/foods11233881
Chicago/Turabian StyleYu, Guowei, Benxue Ma, Huihui Li, Yating Hu, and Yujie Li. 2022. "Discrimination of Pesticide Residue Levels on the Hami Melon Surface Using Multiscale Convolution" Foods 11, no. 23: 3881. https://doi.org/10.3390/foods11233881
APA StyleYu, G., Ma, B., Li, H., Hu, Y., & Li, Y. (2022). Discrimination of Pesticide Residue Levels on the Hami Melon Surface Using Multiscale Convolution. Foods, 11(23), 3881. https://doi.org/10.3390/foods11233881