A Pumpkin-Based Emulsion Gel as a Texture Improvement of Mixed Horsemeat Semi-Smoked Sausages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pumpkin Flour Processing (PF)
2.3. Preparation of Pumpkin Based Emulsion Gel (PEG)
2.4. Analysis of the PEG
2.5. Preparation of Sausages with PEG
2.6. Analysis of Meat Batters Prior to Thermal Processing
2.6.1. Rheological Properties
2.6.2. Emulsion Stability (ES)
2.6.3. The Color and pH
2.7. Evaluation of “Narli” Semi-Smoked Sausage
2.7.1. Chemical Composition and Energy Value
2.7.2. The Color and pH Examination of “Narli” Semi-Smoked Sausage
2.7.3. Texture Profile Analysis (TPA)
2.7.4. The Fatty Acid Profile
2.7.5. Lipid Oxidation
2.7.6. Water-Holding Capacity (WHC) and Cooking Loss (CL)
2.7.7. Scanning Electron Microscopy (SEM)
2.8. Statistical Analyses
3. Results and Discussion
3.1. Property of Pumpkin-Based Emulsion Gel
3.2. Characteristics of Emulsion Gel-Made Sausage
3.2.1. Proximate Composition
3.2.2. Fatty Acid Profile (FAP)
3.2.3. The Color, pH, Emulsion Stability (ES), WHC, CL, and TBARS
3.2.4. Texture Analysis Profile
3.2.5. Rheological Characteristics of the Meat Emulsion before Thermal Processing
3.2.6. The Influence of Heat on the Rheological Characteristics of the PEG-Added Meat Emulsion
3.2.7. Microstructure (SEM Analyses)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diaconu, E.C.; Lazăr, R.; Găină (Diaconu), N.; Ciobanu, M.M.; Boişteanu, P.C. Research regarding nutritional characterization of horse meat. Sci. Pap. Anim. Sci. Ser. Lucr. Stiint. Ser. Zooteh. 2015, 63, 40–43. [Google Scholar]
- Smith, N.W.; Fletcher, A.J.; Hill, J.P.; McNabb, W.C. Modeling the Contribution of Meat to Global Nutrient Availability. Front. Nutr. 2022, 9, 766796. [Google Scholar] [CrossRef] [PubMed]
- Strashynskyi, I.; Fursik, O. Using of horsemeat as an additional source of raw materials for expanding the range of meat products. In Proceedings of the Specialized and Multidisciplinary Scientific Researches, Amsterdam, The Netherlands, 11 December 2020; Volume 2, pp. 38–40. [Google Scholar] [CrossRef]
- Seong, P.N.; Kang, G.H.; Cho, S.H.; Park, B.Y.; Park, N.G.; Kim, J.H.; Ba, H.V. Comparative Study of Nutritional Composition and Color Traits of Meats Obtained From the Horses and Korean Native Black Pigs Raised in Jeju Island. Asian-Australas. J. Anim. Sci. 2019, 32, 249–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanisławczyk, R.; Rudy, M.; Rudy, S. The Quality of Horsemeat and Selected Methods of Improving the Properties of This Raw Material. Processes 2021, 9, 1672. [Google Scholar] [CrossRef]
- Del Bó, C.; Simonetti, P.; Gardana, C.; Riso, P.; Lucchini, G.; Ciappellano, S. Horse meat consumption affects iron status, lipid profile, and fatty acid composition of red blood cells in healthy volunteers. Int. J. Food Sci. Nutr. 2013, 64, 147–154. [Google Scholar] [CrossRef]
- Abdullah, L.L.; Javed, H.U.; Xiao, J. Engineering Emulsion Gels as Functional Colloids Emphasizing Food Applications: A Review. Front. Nutr. 2022, 9, 890188. [Google Scholar] [CrossRef]
- Domínguez, R.; Munekata, P.E.; Pateiro, M.; López-Fernández, O.; Lorenzo, J.M. Immobilization of oils using hydrogels as strategy to replace animal fats and improve the healthiness of meat products. Curr. Opin. Food Sci. 2021, 37, 135–144. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Lorenzo, J.M.; Gullón, B.; Campagnol, P.C.B.; Franco, D. Novel strategy for developing healthy meat products replacing saturated fat with oleogels. Curr. Opin. Food Sci. 2021, 40, 40–45. [Google Scholar] [CrossRef]
- Nacak, B.; Öztürk-Kerimoğlu, B.; Yıldız, D.; Çağındi, Ö.; Serdaroğlu, M. Peanut and linseed oil emulsion gels as potential fat replacer in emulsified sausages. Meat Sci. 2021, 176, 108464. [Google Scholar] [CrossRef]
- Cittadini, A.; Munekata, P.E.; Pateiro, M.; Sarriés, M.V.; Domínguez, R.; Lorenzo, J.M. Physicochemical composition and nutritional properties of foal burgers enhanced with healthy oil emulsion hydrogels. Int. J. Food Sci. Technol. 2021, 56, 6182–6191. [Google Scholar] [CrossRef]
- Carvalho Barros, J.; Munekata, P.E.S.; de Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Use of Tiger Nut (Cyperus esculentus L.) Oil Emulsion as Animal Fat Replacement in Beef Burgers. Foods 2020, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cittadini, A.; Domínguez, R.; Munekata, P.E.; Pateiro, M.; Sarriés, M.V.; Lorenzo, J.M. Use of oil mixture emulsion hydrogels as partial animal fat replacers in dry-fermented foal sausages. Food Res. Int. 2022, 161, 111881. [Google Scholar] [CrossRef] [PubMed]
- Choe, J.H.; Kim, H.Y. Quality characteristics of reduced-fat emulsion-type chicken sausages using chicken skin and wheat fiber mixture as fat replacer. Poult. Sci. 2019, 98, 2662–2669. [Google Scholar] [CrossRef] [PubMed]
- da Silva, S.L.; Amaral, J.T.; Ribeiro, M.; Sebastião, E.E.; Vargas, C.; Franzen, F.D.L.; Schneider, G.; Lorenzo, J.M.; Fries, L.L.M.; Cichoski, A.J.; et al. Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages. Meat Sci. 2019, 149, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Pintado, T.; Herrero, A.M.; Jiménez-Colmenero, F.; Pasqualin Cavalheiro, C.; Ruiz-Capillas, C. Chia and oat emulsion gels as new animal fat replacers and healthy bioactive sources in fresh sausage formulation. Meat Sci. 2018, 135, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F. Textural properties and quality of meat products containing fruit or vegetable products: A review. J. Food Nutr. Res. 2021, 60, 187–202. [Google Scholar]
- Bulambaeva, A.A.; Vlahova-Vangelova, D.B.; Dragoev, S.G.; Balev, D.K.; Uzakov, Y.M. Development of New Functional Cooked Sausages by Addition of Goji Berry and Pumpkin Powder. Am. J. Food Technol. 2014, 9, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Huang, W.; Liu, C.; Wang, M.; Ho, C.; Huang, W.; Hou, C.C.; Chuang, H.L.; Huang, C.C. Pumpkin (Cucurbita moschata) fruit extract improves physical fatigue and exercise performance in mice. Molecules 2012, 17, 11864–11876. [Google Scholar] [CrossRef]
- Santos, E.M.; Rodriguez, J.A.; Lorenzo, J.M.; Mondragón, A.C.; Pateiro, M.; Gutiérrez, E.; Ferreira, T.A. Antioxidant Effect of Pumpkin Flower (Cucurbita maxima) in Chicken Patties. Foods 2022, 11, 2258. [Google Scholar] [CrossRef]
- Nidhal, H.A.; Evanuarini, H.; Thohari, I. Characteristics of reduced fat mayonnaise using pumpkin flour (Cucurbita moschata) as fat replacer. E3S Web Conf. 2022, 335, 00017. [Google Scholar] [CrossRef]
- Kim, C.J.; Kim, H.W.; Hwang, K.E.; Song, D.H.; Ham, Y.K.; Choi, J.H.; Kim, Y.B.; Choi, Y.S. Effects of Dietary Fiber Extracted from Pumpkin (Cucurbita maxima Duch.) on the Physico-Chemical and Sensory Characteristics of Reduced-Fat Frankfurters. Korean J. Food Sci. An. Res. 2016, 36, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Hleap-Zapata, J.I.; Cruz-Rosero, J.D.; Durán-Rojas, L.T.; Hernández-Trujillo, D.; Reina-Aguirre, L.D.; Tilano-Pemberthy, N. Evaluation of pumpkin flour (Cucurbita moschata Duch.) added as a meat extender in Frankfurt-type sausages. Rev. FCA UNCuyo 2020, 52, 395–404. [Google Scholar]
- Unal, K.; Babaoğlu, A.S.; Erdem, N.; Dilek, N.M. The effect of pumpkin powder on the physicochemical, emulsification, and textural properties of beef. J. Food Process. Preserv. 2022, 46, e16728. [Google Scholar] [CrossRef]
- Jafarpour, A.; Gorczyca, E.M. Characteristics of sarcoplasmic proteins and their interaction with surimi and kamaboko gel. J. Food Sci. 2009, 74, N16–N22. [Google Scholar] [CrossRef]
- Colmenero, F.J.; Ayo, M.J.; Carballo, J. Physicochemical properties of low sodium frankfurter with added walnut: Effect of transglutaminase combined with caseinate, KCl, and dietary fiber as salt replacers. Meat Sci. 2005, 69, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Ansorena, D.; Astiasarán, I. The use of linseed oil improves nutritional quality of the lipid fraction of dry-fermented sausages. Food Chem. 2004, 87, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Bruna, J.M.; Ordóñez, J.A.; Fernández, M.; Herranz, B.; de la Hoz, L. Microbial and physico-chemical changes during the ripening of dry fermented sausages superficially inoculated with or having added an intracellular cell-free extract of Penicillium aurantiogriseum. Meat Sci. 2001, 59, 87–96. [Google Scholar] [CrossRef]
- Franco, D.; Rodríguez, E.; Purriños, L.; Crecente, S.; Bermúdez, R.; Lorenzo, J.M. Meat quality of “Galician Mountain” foals breed. Effect of sex, slaughter age and livestock production system. Meat Sci. 2011, 88, 292–298. [Google Scholar] [CrossRef]
- de Carvalho, L.M.J.; Ortiz, G.M.D.; de Carvalho, J.V.; Smirdele, L.; de Souza Neves Cardoso, F. Carotenoids in Yellow Sweet Potatoes, Pumpkins and Yellow Sweet Cassava. In Carotenoids; Cvetkovic, D.J., Nikolic, G.S., Eds.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- van der Linden, E.; Foegeding, E.A. Gelation: Principles, Models and Applications to Proteins. In Modern Biopolymer Science: Bridging the Divide between Fundamental Treatise and Industrial Applications; Kapasis, S., Norton, I.T., Ubbink, J.B., Eds.; Elsevier/Academic Press: London, UK, 2009; pp. 29–91. [Google Scholar]
- Clark, A.H.; Kavanagh, G.M.; Ross-Murphy, S.B. Globular Protein Gelation—Theory and Experiment. Food Hydrocoll. 2001, 15, 383–400. [Google Scholar] [CrossRef]
- Weijers, M.; Sagis, L.M.C.; Veerman, C.; Sperber, B.L.H.M.; van der Linden, E. Rheology and structure of ovalbumin gels at low pH and low ionic strength. Food Hydrocoll. 2002, 16, 269–276. [Google Scholar] [CrossRef]
- dos Santos Alves, L.A.A.; Cichoski, A.J.; dos Santos, B.A.; Gonçalves, C.A.A.; Lorenzo, J.M.; Campagnol, P.C.B.; Heck, R.T. Production of healthier bologna type sausages using pork skin and green banana flour as a fat replacers. Meat Sci. 2016, 121, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, Y.J.; Shin, D.M.; Lee, J.H.; Han, S.G. Drying Characteristics and Physicochemical Properties of Semi-Dried Restructured Sausage Depend on Initial Moisture Content. Food Sci. Anim. Resour. 2022, 42, 411–425. [Google Scholar] [CrossRef]
- Ali, M.S.; Kim, G.D.; Seo, H.W.; Jung, E.Y.; Kim, B.W.; Yang, H.S.; Joo, S.T. Possibility of Making Low-fat Sausages from Duck Meat with Addition of Rice Flour. Asian-Austral. J. Anim. Sci. 2011, 24, 421–428. [Google Scholar] [CrossRef]
- Öztürk-Kerimoğlu, B.; Kavuşan, H.S.; Tabak, D.; Serdaroğlu, M. Formulating Reduced-fat Sausages with Quinoa or Teff Flours: Effects on Emulsion Characteristics and Product Quality. Food Sci. Anim. Resour. 2020, 40, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Turhan, S.; Sagir, I.; Sule Ustun, N. Utilization of hazelnut pellicle in low-fat beef burgers. Meat Sci. 2005, 71, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Bozhko, N.; Tischenko, V.; Pasichnyi, V.; Moroz, O. Research of the nutritional and biological value of semi-smoked meat-containing sausage. Food Sci. Technol. 2019, 13, 96–103. [Google Scholar] [CrossRef]
- Lee, C.E.; Seong, P.N.; Oh, W.Y.; Ko, M.S.; Kim, K.I.; Jeong, J.H. Nutritional characteristics of horsemeat in comparison with those of beef and pork. Nutr. Res. Pract. 2007, 1, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Mukhametov, A.; Yerbulekova, M.; Aitkhozhayeva, G.; Tuyakova, G.; Dautkanova, D. Effects of ω-3 fatty acids and ratio of ω-3/ω-6 for health promotion and disease prevention. Food Sci. Technol. 2022, 42, e58321. [Google Scholar] [CrossRef]
- Garbowska, B.; Pietrzak-Fiećko, R.; Radzymińska, M. Fatty acid composition of local, traditional and conventional pork meat products. In Current Trends in Commodity Science: New Trends in Food Quality, Packaging, and Consumer Behavior; Juś, K., Jasnowska-Małecka, J., Bińczak, O., Eds.; Poznań University of Economics and Business: Poznań, Poland, 2015; pp. 35–46. [Google Scholar]
- Pietrzak-Fiećko, R.; Modzelewska-Kapituła, M. Fatty acid profile of Polish meat products. Ital. J. Food Sci. 2014, 26, 363–369. [Google Scholar]
- Amaral, J.; Soares, S.; Mafra, I.; Oliveira, M.B.P.P. Assessing the variability of the fatty acid profile and cholesterol content of meat sausages. Riv. Ital. Sostanze Grasse 2014, 91, 261–272. [Google Scholar]
- Serdaroğlu, M.; Kavuşan, H.; İpek, G.; Öztürk, B. Evaluation of the quality of beef patties formulated with dried pumpkin pulp and seed. Korean J. Food Sci. Anim. Resour. 2018, 38, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.M.M.; Alsiddig, S.A.; Abdelgadir, M.O.; Ismail, A.E.; Basheer, E.O.; Elhassan, I.H. Quality Evaluation of Beef Sausage Formulated with Different Levels of Dried Pumpkin Powder. IJMCR 2020, 8, 150–154. [Google Scholar] [CrossRef]
- Santhi, D.; Kalaikannan, A.; Sureshkumar, S. Factors influencing meat emulsion properties and product texture: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2021–2027. [Google Scholar] [CrossRef] [PubMed]
- Corlett, M.T.; Pethick, D.W.; Kelman, K.R.; Jacob, R.H.; Gardner, G.E. Consumer Perceptions of Meat Redness Were Strongly Influenced by Storage and Display Times. Foods 2021, 10, 540. [Google Scholar] [CrossRef] [PubMed]
- Selani, M.M.; Margiotta, G.B.; Piedade, S.M.D.S.; Contreras-Castillo, C.J.; Canniatti-Brazaca, S.G. Physicochemical, Sensory and Cooking Properties of Low Fat Beef Burgers with Addition of Fruit Byproducts and Canola Oil. In Proceedings of the 5th International Conference on Biomedical Engineering and Technology, Seoul, Republic of Korea, 10–11 March 2015; Volume 81, pp. 58–65. [Google Scholar]
- Schmiele, M.; Mascarenhas, M.C.C.N.; Barretto, A.C.D.S.; Pollonio, M.A.R. Dietary fiber as fat substitute in emulsified and cooked meat model system. LWT—Food Sci. Technol. 2015, 61, 105–111. [Google Scholar] [CrossRef]
- Öztürk-Kerimoğlu, B. A promising strategy for designing reduced-fat model meat emulsions by utilization of pea protein-agar agar gel complex. Food Struct. 2021, 29, 100205. [Google Scholar] [CrossRef]
- Zhang, Y.; Holman, B.W.B.; Ponnampalam, E.N.; Kerr, M.G.; Bailes, K.L.; Kilgannon, A.K.; Collins, D.; Hopkins, D.L. Understanding beef flavour and overall liking traits using two different methods for determination of thiobarbituric acid reactive substance (TBARS). Meat Sci. 2019, 149, 114–119. [Google Scholar] [CrossRef]
- Wahyono, A.; Dewi, A.C.; Oktavia, S.; Jamilah, S.; Kang, W.W. Antioxidant activity and Total Phenolic Contents of Bread Enriched with Pumpkin Flour. In Proceedings of the Second International Conference on Food and Agriculture, Bali, Indonesia, 2–3 November 2019. [Google Scholar]
- Ammar, A.; El-Hady, E.; El-Razik, M. Quality characteristics of low-fat meatballs as affected by date seed powder, wheat germ, and pumpkin flour addition. Pak. J. Food Sci. 2014, 24, 175–185. [Google Scholar] [CrossRef]
- Tril, U.; Salejda, A.; Krasnowska, G. Effect of egg-yolk protein addition on the characteristics of model meat products. Chall. Mod. Technol. 2013, 4, 28–32. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-6e089837-a29d-41fe-8d26-5526b101beb5/c/Tril.pdf (accessed on 21 March 2021).
- Kumar, Y.; Tyagi, S.K.; Vishwakarma, R.K.; Kalia, A. Textural, microstructural, and dynamic rheological properties of low-fat meat emulsion containing aloe gel as potential fat replacer. Int. J. Food Prop. 2017, 20, S1132–S1144. [Google Scholar] [CrossRef] [Green Version]
- Öztürk-Kerimoğlu, B.; Kara, A.; Urgu-Öztürk, M.; Serdaroğlu, M. A new inverse olive oil emulsion plus carrot powder to replace animal fat in model meat batters. LWT 2021, 135, 110044. [Google Scholar] [CrossRef]
- Eim, V.S.; Simal, S.; Rosselló, C.; Femenia, A. Effects of addition of carrot dietary fibre on the ripening process of a dry fermented sausage (sobrassada). Meat Sci. 2008, 80, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.Y.; Park, J.W.; Yoon, W.B. Rheology and texture properties of surimi gels. In Surimi and Surimi Seafood, 2nd ed.; Park, J.W., Ed.; CRC Press, Inc.: Boca Raton, FL, USA, 2005; pp. 491–582. [Google Scholar]
- Marchetti, L.; Andrés, S.C.; Califano, A.N. Textural and thermal properties of low-lipid meat emulsions formulated with fish oil and different binders. LWT—Food Sci. Technol. 2013, 51, 514–523. [Google Scholar] [CrossRef]
- Keenan, D.F.; Auty, M.A.; Doran, L.; Kerry, J.P.; Hamill, R.M. Investigating the influence of inulin as a fat substitute in comminuted products using rheology, calorimetric and microscopy techniques. Food Struct. 2014, 2, 1–13. [Google Scholar] [CrossRef]
- Glorieux, S.; Steen, L.; De Brabanter, J.; Foubert, I.; Fraeye, I. Effect of Meat Type, Animal Fatty Acid Composition, and Isothermal Temperature on the Viscoelastic Properties of Meat Batters. J. Food Sci. 2018, 83, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Colmenero, F.; Cofrades, S.; Herrero, A.M.; Solas, M.T.; Ruiz-Capillas, C. Konjac gel for use as potential fat analogue for healthier meat product development: Effect of chilled and frozen storage. Food Hydrocoll. 2013, 30, 351–357. [Google Scholar] [CrossRef]
Ingredients | Control | PEG5 | PEG10 | PEG15 | PEG20 | PEG25 |
---|---|---|---|---|---|---|
Horsemeat (high grade and grade I) | 55 | 25 + 25 | 22.5 + 22.5 | 20 + 20 | 17.5 + 17.5 | 15 + 15 |
Poultry meat | 30 | 30 | 30 | 30 | 30 | 30 |
Starch | 5 | 5 | 5 | 5 | 5 | 5 |
Water (ice) | 10 | 10 | 10 | 10 | 10 | 10 |
PEG | - | 5 | 10 | 15 | 20 | 25 |
Total | 100 | 100 | 100 | 100 | 100 | 100 |
Spices (per 100 kg of raw materials) | ||||||
Nitrite-salt mixture | 1.7 kg | 1.7 kg | 1.7 kg | 1.7 kg | 1.7 kg | 1.7 kg |
Garlic | 1 kg | 1 kg | 1 kg | 1 kg | 1 kg | 1 kg |
Nutmeg | 100 g | 100 g | 100 g | 100 g | 100 g | 100 g |
Black pepper | 300 g | 300 g | 300 g | 300 g | 300 g | 300 g |
Sugar | 100 g | 100 g | 100 g | 100 g | 100 g | 100 g |
Parameter | Control | PEG5 | PEG10 | PEG15 | PEG20 | PEG25 | p-Value |
---|---|---|---|---|---|---|---|
Moisture (%) | 66.37 ± 0.90 a | 68.18 ± 0.18 a | 71.08 ± 0.12 c | 71.83 ± 0.14 b | 71.08 ± 0.12 b | 72.12 ± 0.27 b | * |
Lipid (% u.b) | 22.28 ± 0.67 a | 10.55 ± 0.81 c | 7.35 ± 1.00 a | 7.96 ± 0.30 bc | 8.52 ± 0.81 a | 9.97 ± 0.57 b | * |
Protein (% u.b) | 22.14 ± 0.50 ab | 20.03 ± 0.36 ab | 21.50 ± 0.30 a | 19.72 ± 0.44 bc | 19.45 ± 0.01 a | 18.78 ± 0.01 c | ** |
Ash (% u.b) | 1.59 ± 0.10 a | 1.93 ± 0.04 a | 2.37 ± 0.05 a | 2.64 ± 0.07 a | 2.59 ± 0.06 a | 2.32 ± 0.09 a | ns |
Energy Value (Kcal/100 g) | 226.17 ± 5.12 a | 212.52 ± 5.24 bc | 185.15 ± 4.21 c | 165.21 ± 4.39 a | 237.45 ± 4.84 c | 178.52 ± 5.21 a | * |
Fatty Acid (%) | Control | PEG5 | PEG10 | PEG15 | PEG20 | PEG25 |
---|---|---|---|---|---|---|
Saturated fatty acids (SFA) | ||||||
C12:0 lauric | 0.256 | 0.249 | 0.189 | 0.200 | 0.158 | 0.24 |
C14:0 myristic | 4.54 | 4.54 | 3.52 | 4.35 | 4.20 | 4.15 |
C15:0 pentadecanoic | 0.425 | 0.420 | 0.425 | 0.412 | 0.415 | 0.418 |
C16:0 palmitic | 31.2 | 30.6 | 30.2 | 29.8 | 30.6 | 31.0 |
C17:0 margaric | 0.485 | 0.479 | 0.385 | 0.363 | 0.411 | 0.423 |
C18:0 stearic | 4.45 | 4.40 | 3.54 | 3.38 | 3.89 | 4.11 |
C20:0 arachidic | 0.071 | 0.071 | 0.068 | 0.071 | 0.068 | 0.062 |
C22:0 behenic | 0.108 | 0.091 | 0.105 | 0.108 | 0.085 | 0.095 |
Total SFA | 41.535 | 40.85 | 38.432 | 35.842 | 39.827 | 40.498 |
Monounsaturated fatty acids (MUFA) | ||||||
C16:1, ω-7 palmitoleic | 0.272 | 0.251 | 0.214 | 0.278 | 0.188 | 0.254 |
C17:1 heptadecene | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 |
C18:1, ω-9, cis oleic | 34.21 | 34.11 | 33.85 | 34.28 | 34.11 | 34.15 |
C18:1, ω-9, trans oleic | 0.117 | 0.108 | 0.113 | 0.116 | 0.114 | 0.114 |
Total MUFA | 34.729 | 34.599 | 34.307 | 34.694 | 34.542 | 34.638 |
Polyunsaturated fatty acids (PUFA) | ||||||
C18:2 trans linoleic | 0.12 | 0.11 | 0.12 | 0.12 | 0.105 | 0.10 |
C18:2, ω-6 cis linoleic | 16.6 | 16.5 | 16.2 | 16.5 | 16.3 | 15.8 |
C18:3, ω-3 linolenic | 4.10 | 4.13 | 4.10 | 4.18 | 3.52 | 3.64 |
C20:4, ω-6 arachidonic | 1.68 | 1.65 | 1.58 | 1.68 | 1.25 | 1.53 |
Total PUFA | 22.5 | 22.39 | 22.0 | 22.48 | 21.175 | 21.07 |
PUFA/SFA | 0.542 | 0.547 | 0.570 | 0.625 | 0.532 | 0.520 |
ω-6/ω-3 | 4.46 | 4.43 | 4.44 | 4.23 | 4.98 | 4.76 |
Parameters | Control | PEG5 | PEG10 | PEG15 | PEG20 | PEG25 | p Value |
---|---|---|---|---|---|---|---|
Meat batter | |||||||
pH | 6.44 ± 0.07 b | 6.48 ± 0.12 ab | 6.45 ± 0.10 a | 6.46 ± 0.11 a | 6.57 ± 0.07 a | 6.56 ± 0.11 a | * |
L* | 65.16 ± 0.13 a | 64.87 ± 0.91 a | 64.17 ± 0.88 a | 63.27 ± 0.56 a | 63.48 ± 0.16 a | 62.44 ± 0.78 a | ns |
a* | 16.22 ± 2.51 a | 15.21 ± 1.15 a | 12.58 ± 1.43 c | 11.60 ± 0.69 b | 10.76 ± 0.59 b | 10.42 ± 0.87 b | * |
b* | 11.45 ± 0.43 a | 11.61 ± 0.53 a | 11.89 ± 0.21 a | 11.77 ± 0.76 a | 11.69 ± 0.56 a | 10.97 ± 0.55 a | ns |
Chroma | 19.85 ± 0.25 b | 19.13 ± 0.21 a | 17.31 ± 0.45 c | 16.53 ± 0.23 c | 15.89 ± 0.15 a | 15.13 ± 0.15 a | ** |
Hue | 0.61 ± 0.05 b | 0.65 ± 0.08 a | 0.75 ± 0.01 a | 0.79 ± 0.02 a | 0.83 ± 0.03 a | 0.81 ± 0.01 a | * |
Semi-smoked sausage | |||||||
pH | 6.56 ± 0.13 b | 6.58 ± 0.09 ab | 6.61 ± 0.06 a | 6.67 ± 0.11 b | 6.73 ± 0.08 b | 6.76 ± 0.06 a | * |
L* | 62.06 ± 0.67 a | 61.87 ± 0.91 a | 61.34 ± 0.81 a | 61.17 ± 0.91 a | 60.13 ± 0.61 a | 58.54 ± 0.78 a | ns |
a* | 14.12 ± 2.51 a | 14.01 ± 1.11 a | 10.52 ± 1.31 b | 9.70 ± 0.97 c | 8.86 ± 0.86 c | 8.52 ± 0.92 b | * |
b* | 12.36 ± 0.51 a | 12.41 ± 0.61 a | 12.76 ± 0.31 a | 12.57 ± 0.41 a | 12.69 ± 0.46 a | 12.67 ± 0.52 a | ns |
Chroma | 18.77 ± 0.35 a | 18.72 ± 0.55 a | 16.54 ± 0.27 c | 15.88 ± 0.43 a | 15.48 ± 0.17 b | 15.26 ± 0.25 a | * |
Hue | 0.72 ± 0.01 ab | 0.72 ± 0.05 a | 0.88 ± 0.02 ac | 0.91 ± 0.02 a | 0.96 ± 0.02 c | 0.97 ± 0.01 a | ** |
TBARS, mg MDA/kg | 0.15 ± 0.03 a | 0.06 ± 0.02 c | 0.08 ± 0.02 a | 0.06 ± 0.03 a | 0.08 ± 0.01 a | 0.09 ± 0.02 a | * |
Parameters | Control | PEG5 | PEG10 | PEG15 | PEG20 | PEG25 | p Value |
---|---|---|---|---|---|---|---|
WHC (%) | 75.03 ± 0.71 a | 73.87 ± 0.33 b | 74.52 ± 0.34 a | 76.68 ± 0.24 c | 75.41 ± 0.21 a | 74.47 ± 0.74 a | ** |
Emulsion Stability | |||||||
Fat exudation (%) | 6.45 ± 0.74 c | 3.56 ± 0.98 a | 2.62 ± 0.77 b | 1.22 ± 0.12 a | 1.20 ± 1.11 a | 1.14 ± 1.01 a | ** |
Water exudation (%) | 20.45 ± 0.37 c | 15.31 ± 0.63 a | 9.33 ± 0.74 b | 6.40 ± 0.44 d | 7.22 ± 0.14 d | 7.25 ± 0.66 d | ** |
CL (%) | 11.12 ± 1.34 a | 9.45 ± 1.13 b | 6.53 ± 1.11 a | 4.96 ± 0.75 a | 5.73 ± 0.54 a | 5.45 ± 1.45 b | * |
Parameters | Control | PEG5 | PEG10 | PEG15 | PEG20 | PEG25 | p Value |
---|---|---|---|---|---|---|---|
Hardness (N) | 66.23 ± 1.65 b | 65.78 ± 1.47 b | 63.89 ± 1.05 a | 62.77 ± 1.08 a | 60.19 ± 1.38 c | 60.51 ± 1.05 b | * |
Springiness (mm) | 0.90 ± 0.01 ab | 0.89 ± 0.05 b | 0.90 ± 0.02 b | 0.93 ± 0.03 a | 0.90 ± 0.01 b | 0.89 ± 0.01 a | *** |
Cohesiveness | 0.77 ± 0.01 b | 0.78 ± 0.00 b | 0.78 ± 0.01 ac | 0.83 ± 0.05 a | 0.81 ± 0.00 a | 0.82 ± 0.02 ac | ** |
Gumminess (N) | 22.45 ± 1.85 a | 23.72 ± 0.08 ac | 22.12 ± 0.07 c | 17.83 ± 0.14 c | 17.24 ± 0.12 a | 16.05 ± 0.02 c | * |
Chewiness (N × mm) | 19.21 ± 2.59 a | 16.54 ± 0.15 a | 15.68 ± 0.16 a | 13.65 ± 0.21 ac | 13.20 ± 0.53 a | 12.98 ± 0.08 c | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashakayeva, R.; Assenova, B.; Tumenova, G.; Nurgazezova, A.; Zhumanova, G.; Atambayeva, Z.; Baikadamova, A.; Il, D.; Dautova, A. A Pumpkin-Based Emulsion Gel as a Texture Improvement of Mixed Horsemeat Semi-Smoked Sausages. Foods 2022, 11, 3886. https://doi.org/10.3390/foods11233886
Ashakayeva R, Assenova B, Tumenova G, Nurgazezova A, Zhumanova G, Atambayeva Z, Baikadamova A, Il D, Dautova A. A Pumpkin-Based Emulsion Gel as a Texture Improvement of Mixed Horsemeat Semi-Smoked Sausages. Foods. 2022; 11(23):3886. https://doi.org/10.3390/foods11233886
Chicago/Turabian StyleAshakayeva, Rysgul, Bakhytkul Assenova, Galiya Tumenova, Almagul Nurgazezova, Gulnara Zhumanova, Zhibek Atambayeva, Assemgul Baikadamova, Dmitrii Il, and Assel Dautova. 2022. "A Pumpkin-Based Emulsion Gel as a Texture Improvement of Mixed Horsemeat Semi-Smoked Sausages" Foods 11, no. 23: 3886. https://doi.org/10.3390/foods11233886
APA StyleAshakayeva, R., Assenova, B., Tumenova, G., Nurgazezova, A., Zhumanova, G., Atambayeva, Z., Baikadamova, A., Il, D., & Dautova, A. (2022). A Pumpkin-Based Emulsion Gel as a Texture Improvement of Mixed Horsemeat Semi-Smoked Sausages. Foods, 11(23), 3886. https://doi.org/10.3390/foods11233886