Influence of Different Bacteria Inocula and Temperature Levels on the Chemical Composition and Antioxidant Activity of Prickly Pear Vinegar Produced by Surface Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit
2.2. Alcoholic Fermentation
2.3. Acetic Fermentation
2.3.1. Bacterial Preparation
2.3.2. Surface Culture Acetification
2.4. Analysis of Volatile Compounds
2.4.1. Sample Preparation
2.4.2. Instrumentation
2.5. Analysis of Phenolic Compounds
2.6. Analysis of the Antioxidant Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Vinegar Production
3.2. Volatile Compounds
3.3. Phenolic Compounds and Antioxidant Activity
3.3.1. Phenolic Composition
3.3.2. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sáenz, C.; Berger, H.; Rodríguez-Félix, A.; Galletti, L.; García, J.C.; Sepúlveda, E.; Teresa, M.; Víctor, V.; De Cortázar, G.; Cuevas García, R.; et al. Agro-Industrial Utilization of Cactus Pear; FAO: Rome, Italy, 2013; ISBN 978-92-5-107987-4 (PDF). [Google Scholar]
- Kumar, K.; Singh, D.; Singh, R.S. Cactus Pear: Cultivation and Uses; M/s Royal Offset Printers: New Delhi, India, 2018. [Google Scholar]
- Coria Cayupán, Y.S.; Ochoa, M.J.; Nazareno, M.A. Health-promoting substances and antioxidant properties of Opuntia sp. fruits. Changes in bioactive-compound contents during ripening process. Food Chem. 2011, 126, 514–519. [Google Scholar] [CrossRef]
- Kuti, J.O. Growth and compositional changes during the development of prickly pear fruit. J. Hortic. Sci. 1992, 67, 861–868. [Google Scholar] [CrossRef]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef]
- Prieto, C.; Silva, P.; Loyola, E. Balsamic Type Vinegar from Colored Ecotypes of Cactus Pear (Opuntia ficus-indica). Acta Hortic. 2009, 811, 123–126. [Google Scholar] [CrossRef]
- Cejudo-Bastante, C.; Durán-Guerrero, E.; García-Barroso, C.; Castro-Mejías, R. Comparative study of submerged and surface culture acetification process for orange vinegar. J. Sci. Food Agric. 2018, 98, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Ünal Turhan, E.; Canbaş, A. Chemical and Sensory Properties of Vinegar from Dimrit Grape by Submerged and Surface Method. Gida J. Food 2016, 41, 1–7. [Google Scholar] [CrossRef]
- Callejón, R.M.; Tesfaye, W.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Volatile compounds in red wine vinegars obtained by submerged and surface acetification in different woods. Food Chem. 2009, 113, 1252–1259. [Google Scholar] [CrossRef]
- Mas, A.; Torija, M.J.; García-Parrilla, M.C.; Troncoso, A.M. Acetic acid bacteria and the production and quality of wine vinegar. Sci. World J. 2014, 2014, 394671. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.L.; González, G.A.; Casas, J.A.; Troncoso, A.M. Multivariate analysis of commercial and laboratory produced Sherry wine vinegars: Influence of acetification and aging. Eur. Food Res. Technol. 2001, 212, 676–682. [Google Scholar] [CrossRef]
- Tesfaye, W.; Morales, M.L.; García-Parrilla, M.C.; Troncoso, A.M. Wine vinegar: Technology, authenticity and quality evaluation. Trends Food Sci. Technol. 2002, 13, 12–21. [Google Scholar] [CrossRef]
- Lu, S.; Cao, Y.; Yang, Y.; Jin, Z.; Luo, X. Effect of fermentation modes on nutritional and volatile compounds of Huyou vinegar. J. Food Sci. Technol. 2018, 55, 2631–2640. [Google Scholar] [CrossRef]
- Vegas, C.; Mateo, E.; González, Á.; Jara, C.; Guillamón, J.M.; Poblet, M.; Torija, M.J.; Mas, A. Population dynamics of acetic acid bacteria during traditional wine vinegar production. Int. J. Food Microbiol. 2010, 138, 130–136. [Google Scholar] [CrossRef]
- Luzón-Quintana, L.M.; Castro, R.; Durán-Guerrero, E. Biotechnological processes in fruit vinegar production. Foods 2021, 10, 945. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, C.; Mateo, E.; Mas, A.; Torija, M.J. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki). Food Microbiol. 2012, 30, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, C.; Torija, M.J.; Mas, A.; Mateo, E. Effect of inoculation on strawberry fermentation and acetification processes using native strains of yeast and acetic acid bacteria. Food Microbiol. 2013, 34, 88–94. [Google Scholar] [CrossRef]
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Guerrero, E.D.; Marín, R.N.; Mejías, R.C.; Barroso, C.G. Optimisation of stir bar sorptive extraction applied to the determination of volatile compounds in vinegars. J. Chromatogr. A 2006, 1104, 47–53. [Google Scholar] [CrossRef]
- Arena, E.; Campisi, S.; Fallico, B.; Lanza, M.C.; Maccarone, E. Aroma value of volatile compounds of prickly pear (Opuntia ficus indica (L.) mill. Cactaceae). Ital. J. Food Sci. 2001, 13, 311–319. [Google Scholar]
- Farag, M.A.; Maamoun, A.A.; Ehrlich, A.; Fahmy, S.; Wesjohann, L.A. Assessment of sensory metabolites distribution in 3 cactus Opuntia ficus-indica fruit cultivars using UV fingerprinting and GC/MS profiling techniques. LWT Food Sci. Technol. 2017, 80, 145–154. [Google Scholar] [CrossRef]
- Andlauer, W.; Stumpf, C.; Fürst, P. Influence of the Acetification Process on Phenolic Compounds. J. Agric. Food Chem 2000, 48, 3533–3536. [Google Scholar] [CrossRef]
- Butera, D.; Tesoriere, L.; Di Gaudio, F.; Bongiorno, A.; Allegra, M.; Pintaudi, A.M.; Rohen, K.; Livrea, M.A. Antioxidant Activities of Sicilian Prickly Pear (Opuntia ficus indica) Fruit Extracts and Reducing Properties of Its Betalains: Betanin and Indicaxanthin. J. Agric. Food Chem. 2002, 50, 6895–6901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuti, J.O. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem. 2004, 85, 527–533. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Almela, L.; Obón, J.M.; Castellar, R. Determination of Antioxidant Constituents in Cactus Pear Fruits. Plant. Foods Hum. Nutr. 2010, 65, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Mata, A.; Ferreira, J.P.; Semedo, C.; Serra, T.; Duarte, C.M.M.; Bronze, M.R. Contribution to the characterization of Opuntia spp. juices by LC-DAD-ESI-MS/MS. Food Chem. 2016, 210, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Khatabi, O.; Hanine, H.; Elothmani, D.; Hasib, A. Extraction and determination of polyphenols and betalain pigments in the Moroccan Prickly pear fruits (Opuntia ficus indica). Arab. J. Chem. 2011, 9, S278–S281. [Google Scholar] [CrossRef] [Green Version]
- Galati, E.M.; Mondello, M.R.; Giuffrida, D.; Dugo, G.; Miceli, N.; Pergolizzi, S.; Taviano, M.F. Chemical characterization and biological effects of sicilian Opuntia ficus indica (L.) Mill. fruit juice: Antioxidant and antiulcerogenic activity. J. Agric. Food Chem. 2003, 51, 4903–4908. [Google Scholar] [CrossRef]
- Mena, P.; Tassotti, M.; Andreu, L.; Nuncio-Jáuregui, N.; Legua, P.; Del Rio, D.; Hernández, F. Phytochemical characterization of different prickly pear (Opuntia ficus-indica (L.) Mill.) cultivars and botanical parts: UHPLC-ESI-MSn metabolomics profiles and their chemometric analysis. Food Res. Int. 2018, 108, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hameed, E.-S.S.; Nagaty, M.A.; Salman, M.S.; Bazaid, S.A. Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus indica Mill.) growing in Taif, KSA. Food Chem. 2014, 160, 31–38. [Google Scholar] [CrossRef]
- Slatnar, A.; Jakopic, J.; Stampar, F.; Veberic, R.; Jamnik, P. The Effect of Bioactive Compounds on In Vitro and In Vivo Antioxidant Activity of Different Berry Juices. PLoS ONE 2012, 7, e47880. [Google Scholar] [CrossRef] [Green Version]
- Es-sbata, I.; Lakhlifi, T.; Yatim, M.; El-abid, H.; Belhaj, A.; Hafidi, M.; Zouhair, R. Screening and molecular characterization of new thermo- and ethanol-tolerant Acetobacter malorum strains isolated from two biomes Moroccan cactus fruits. Biotechnol. Appl. Biochem. 2020, 68, 476–485. [Google Scholar] [CrossRef]
- Leonés, A.; Durán-Guerrero, E.; Carbú, M.; Cantoral, J.M.; Barroso, C.G.; Castro, R. Development of vinegar obtained from lemon juice: Optimization and chemical characterization of the process. LWT Food Sci. Technol. 2019, 100, 314–321. [Google Scholar] [CrossRef]
- Chanivet, M.; Durán-Guerrero, E.; Rodríguez-Dodero, M.C.; Barroso, C.G.; Castro, R. Application of accelerating energies to the maceration of sherry vinegar with citrus fruits. J. Sci. Food Agric. 2020, 101, 2235–2246. [Google Scholar] [CrossRef]
- Bruna-Maynou, F.J.; Castro, R.; Rodríguez-Dodero, M.C.; Barroso, C.G.; Durán-Guerrero, E. Flavored Sherry vinegar with citric notes: Characterization and effect of ultrasound in the maceration of orange peels. Food Res. Int. 2020, 133, 11. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez, M.C.; Guillén, D.A.; Barroso, C.G. Development and validation of UPLC for the determination of phenolic compounds and furanic derivatives in Brandy de Jerez. J. Sep. Sci. 2009, 32, 1782–1790. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Jiménez, Y.; García-Moreno, M.V.; Igartuburu, J.M.; Barroso, C.G. Simplification of the DPPH assay for estimating the antioxidant activity of wine and wine by-products. Food Chem. 2014, 165, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Saeki, A.; Theeragool, G.; Matsushika, A.; Toyama, H.; Lotong, N.; Adachi, O. Development of Thermotolerant Acetic Acid Bacteria Useful for Vinger Fermentation at Higher Temperature. Biosci. Biotechnol. Biochem. 1997, 61, 138–145. [Google Scholar] [CrossRef]
- Perumpuli, P.A.B.N.; Watanabe, T.; Toyama, H. Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka. Biosci. Biotechnol. Biochem. 2014, 78, 533–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cejudo-Bastante, C.; Castro-Mejías, R.; Natera-Marín, R.; García-Barroso, C.; Durán-Guerrero, E. Chemical and sensory characteristics of orange based vinegar. J. Food Sci. Technol. 2016, 53, 3147–3156. [Google Scholar] [CrossRef] [Green Version]
- Cejudo-Bastante, C.; Durán-Guerrero, E.; García-Barroso, C.; Castro-Mejías, R. Volatile Compounds, Polyphenols and Sensory Quality in the Production of Tomato Vinegar. J. Food Nutr. Res. 2017, 5, 391–398. [Google Scholar] [CrossRef]
- Ubeda, C.; Callejón, R.M.; Hidalgo, C.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Determination of major volatile compounds during the production of fruit vinegars by static headspace gas chromatography-mass spectrometry method. Food Res. Int. 2011, 44, 259–268. [Google Scholar] [CrossRef]
- Duarte, W.F.; Dias, D.R.; De Melo Pereira, G.V.; Gervásio, I.M.; Schwan, R.F. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production. J. Ind. Microbiol. Biotechnol. 2009, 36, 557–569. [Google Scholar] [CrossRef]
- Saeki, A. Application of gluconobacter oxydans subsp. sphaericus IFO 12467 to vinegar production. J. Ferment. Bioeng. 1993, 75, 232–234. [Google Scholar] [CrossRef]
- Kim, E.J.; Cho, K.M.; Kwon, S.J.; Seo, S.H.; Park, S.E.; Son, H.S. Factors affecting vinegar metabolites during two-stage fermentation through metabolomics study. LWT Food Sci. Technol. 2021, 135, 110081. [Google Scholar] [CrossRef]
- Liu, M.; Yang, K.; Qi, Y.; Zhang, J.; Fan, M.; Wei, X. Fermentation temperature and the phenolic and aroma profile of persimmon wine. J. Inst. Brew. 2018, 124, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Kharchoufi, S.; Gomez, J.; Lasanta, C.; Castro, R.; Sainz, F.; Hamdi, M. Benchmarking laboratory-scale pomegranate vinegar against commercial wine vinegars: Antioxidant activity and chemical composition. J. Sci. Food Agric. 2018, 98, 4749–4758. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Mantzouridou, F.; Daftsiou, E.; Malo, C.; Hatzidimitriou, E.; Nenadis, N.; Tsimidou, M.Z. Pomegranate juice functional constituents after alcoholic and acetic acid fermentation. J. Funct. Foods 2014, 8, 161–168. [Google Scholar] [CrossRef]
- Zenteno-Ramírez, G.; Juárez-Flores, B.I.; Aguirre-Rivera, J.R.; Monreal-Montes, M.; García, J.M.; Serratosa, M.P.; Santos, M.Á.V.; Pérez, M.D.O.; Rendón-Huerta, J.A. Juices of prickly pear fruits (Opuntia spp.) as functional foods. Ital. J. Food Sci. 2018, 30, 614–627. [Google Scholar]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeddes, N.; Chérif, J.K.; Guyot, S.; Sotin, H.; Ayadi, M.T. Comparative study of antioxidant power, polyphenols, flavonoids and betacyanins of the peel and pulp of three Tunisian Opuntia forms. Antioxidants 2013, 2, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Kongkiattikajorn, J. Antioxidant Properties of Roselle Vinegar Production by Mixed Culture of Acetobacter aceti and Acetobacter cerevisiae. Kasetsart J. 2014, 48, 980–988. [Google Scholar]
- Zou, B.; Wu, J.; Yu, Y.; Xiao, G.; Xu, Y. Evolution of the antioxidant capacity and phenolic contents of persimmon during fermentation. Food Sci. Biotechnol. 2017, 26, 563–571. [Google Scholar] [CrossRef] [PubMed]
- El-Hawary, S.S.; EL-Hefnawy, H.M.; Osman, S.M.; EL-Raey, M.A.; Mokhtar Ali, F.A. Phenolic profiling of different Jasminum species cultivated in Egypt and their antioxidant activity. Nat. Prod. Res. 2021, 35, 4663–4668. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.; Sipahi, H.; Zeybekoglu, G.; Celik, N.; Kirmizibekmez, H.; Kaklikkaya, N.; Aydin, A. Hydroxytyrosol: The Factor Responsible for Bioactivity of Traditionally used Olive Pits. Euroasian J. Hepatogastroenterol. 2018, 8, 126–132. [Google Scholar] [CrossRef] [PubMed]
Compounds | RT | Juice | Wine | Vinegar | ANOVA | |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | F Ratio | p-Value | ||
Ethyl acetate | 8.89 | 0.3421 ± 0.0428 a | 13.96 ± 1.169 b | 0.1669 ± 0.2122 a | 3126 | 0.0000 * |
1,3-Dioxolane, 2,4,5-trimethyl- | 11.72 | ND a | 0.1049 ± 0.0517 b | 0.0089 ± 0.0256 a | 13.5 | 0.0000 * |
Diacetyl | 13.08 | 0.0055 ± 0.0003 | ND | 0.0093 ± 0.0130 | 0.590 | 0.5561 |
Isobutyl acetate | 15.00 | 0.0058 ± 0.0002 a | 0.0915 ± 0.0004 b | 0.0047 ± 0.0105 a | 68.4 | 0.0000 * |
Hexanal | 18.01 | 0.0110 ± 0.0001 b | 0.0028 ± 0.0002 a | 0.0026 ± 0.0011 a | 56.7 | 0.0000 * |
2-methyl-1-propanol | 19.04 | 0.0022 ± 0.0004 a | 0.0334 ± 0.0003 b | 0.0027 ± 0.0062 a | 24.2 | 0.0000 * |
Isoamyl acetate | 19.74 | 0.0555 ± 0.0161 a | 0.8122 ± 0.0257 b | 0.0402 ± 0.0756 a | 104 | 0.0000 * |
Acetic acid, pentyl ester | 21.59 | 0.0321 ± 0.0017 c | 0.0093 ± 0.0003 b | ND a | 30,820 | 0.0000 * |
2,6-dimethyl-4-heptanone | 21.69 | 0.0062 ± 0.0005 | 0.0086 ± 0.0011 | 0.0045 ± 0.0047 | 0.863 | 0.4254 |
2-methyl-1-butanol | 23.11 | 0.0032 ± 0.0025 a | 0.4001 ± 0.0296 b | 0.0234 ± 0.0442 a | 72.6 | 0.0000 * |
3-methyl-1-butanol | 23.24 | 0.0050 ± 0.0005 a | 0.3833 ± 0.0314 b | 0.0279 ± 0.0473 a | 56.6 | 0.0000 * |
Furan, 2-pentyl- | 23.67 | 0.0068 ± 0.0009 b | ND a | ND a | 4884 | 0.0000 * |
Hexanoic acid, ethyl ester | 23.85 | 0.0115 ± 0.0017 a | 0.0287 ± 0.0257 b | 0.0035 ± 0.0042 a | 27.6 | 0.0000 * |
Styrene | 24.50 | 0.0015 ± 0.0002 b | 0.0075 ± 0.0031 c | 0.0003 ± 0.0002 a | 331 | 0.0000 * |
1-pentanol | 24.58 | 0.0039 ± 0.0001 c | 0.0025 ± 0.0002 b | 0.0001 ± 0.0003 a | 220 | 0.0000 * |
Hexyl acetate | 25.50 | 0.0460 ± 0.0055 c | 0.0108 ± 0.0027 b | 0.0012 ± 0.0028 a | 255 | 0.0000 * |
Acetoin | 25.72 | ND | ND | 0.1369 ± 0.1829 | 1.09 | 0.3384 |
Acetol | 26.08 | 0.0079 ± 0.0008 a | 0.0489 ± 0.0150 b | 0.0085 ± 0.0068 a | 33.2 | 0.0000 * |
2-octanone | 26.12 | 0.0068 ± 0.0005 b | 0.0132 ± 0.0031 c | ND a | 1904 | 0.0000 * |
3-Hexen-1-ol, acetate, (Z) | 26.90 | 0.0054 ± 0.0000 b | ND a | ND a | 1.30 × 109 | 0.0000 * |
E-3-hexenyl acetate | 26.91 | 0.0054 ± 0.0001 c | 0.0028 ± 0.0004 b | ND a | 15,409 | 0.0000 * |
2-Hexen-1-ol, acetate, (E) | 27.45 | 0.0304 ± 0.0032 b | ND a | ND a | 7647 | 0.0000 * |
Ethyl lactate | 27.55 | 0.0005 ± 0.0000 a | 0.2038 ± 0.0148 ab | 0.3701 ± 0.1801 b | 4.98 | 0.0089 * |
1-hexanol | 28.14 | 0.0288 ± 0.0009 b | 0.0334 ± 0.0028 b | 0.0006 ± 0.0019 a | 473 | 0.0000 * |
3-Hexen-1-ol, (E)- | 28.41 | 0.0033 ± 0.0005 b | 0.0046 ± 0.0021 c | 0.0001 ± 0.0005 a | 96.4 | 0.0000 * |
3-Hexen-1-ol, (Z)- | 29.20 | 0.0025 ± 0.0003 b | 0.0022 ± 0.0001 b | 0.0002 ± 0.0005 a | 34.4 | 0.0000 * |
2-Hexen-1-ol, (E)- | 29.89 | 0.0072 ± 0.0007 b | ND a | ND a | 8389 | 0.0000 * |
Acetic acid | 30.79 | 0.0444 ± 0.0003 | 0.0503 ± 0.0043 | 0.2439 ± 0.2641 | 1.08 | 0.3428 |
2-octenal | 31.31 | 0.0268 ± 0.0040 b | ND a | ND a | 3772 | 0.0000 * |
Octanoic acid, ethyl ester | 31.46 | ND a | 0.1203 ± 0.0103 b | 0.0007 ± 0.0031 a | 1306 | 0.0000 * |
trans-linalooloxide | 31.60 | ND | ND | 0.0079 ± 0.0054 | 4.20 | 0.0180 * |
1-heptanol | 31.82 | 0.0033 ± 0.0001 b | 0.0056 ± 0.0008 c | ND a | 5231 | 0.0000 * |
2,4-heptadienal, (E,E)- | 32.29 | 0.0037 ± 0.0010 b | ND a | ND a | 1129 | 0.0000 * |
cis-linalooloxide | 32.61 | 0.0003 ± 0.0000 a | 0.0013 ± 0.0005 b | 0.0056 ± 0.0015 c | 20.5 | 0.0000 * |
4-Octenoic acid, ethyl ester, (Z)- | 32.73 | ND a | 0.0041 ± 0.0001 b | ND a | 189,066 | 0.0000 * |
1-Hexanol, 2-ethyl- | 33.05 | 0.0016 ± 0.0001 | 0.0097 ± 0.0009 | 0.0160 ± 0.0139 | 1.25 | 0.2914 |
Cyclopentene | 34.17 | 0.0012 ± 0.0001 b | 0.0011 ± 0.0001 b | 0.0001 ± 0.0002 a | 34.2 | 0.0000 * |
Benzaldehyde | 34.41 | 0.0012 ± 0.0001 a | 0.0015 ± 0.0001 a | 0.0118 ± 0.0064 b | 5.17 | 0.0075 * |
2,3-butanediol | 34.67 | 0.0010 ± 0.0002 a | 0.0059 ± 0.0008 ab | 0.0151 ± 0.0069 b | 5.73 | 0.0046 * |
Linalool | 35.02 | 0.0190 ± 0.0007 b | 0.0673 ± 0.0007 c | 0.0012 ± 0.0017 a | 1671 | 0.0000 * |
Nonenal | 35.14 | 0.0075 ± 0.0008 b | ND a | ND a | 6850 | 0.0000 * |
Isobutyric acid | 35.40 | 0.0047 ± 0.0006 | 0.0221 ± 0.0012 | 0.0164 ± 0.0157 | 0.705 | 0.4969 |
1-octanol | 35.53 | 0.0079 ± 0.0006 b | 0.0339 ± 0.0005 c | 0.0010 ± 0.0022 a | 222 | 0.0000 * |
trans-2-cis-6-nonadienal | 36.82 | 0.0117 ± 0.0008 b | 0.0314 ± 0.0023 c | 0.0001 ± 0.0004 a | 4988 | 0.0000 * |
trans-2-Decenol | 37.43 | 0.0066 ± 0.0001 b | ND a | ND a | 1,139,269 | 0.0000 * |
Butanoic acid | 37.65 | ND | ND | 0.0011 ± 0.0014 | 1.17 | 0.3135 |
Sulfide, allyl methyl | 38.12 | 0.0022 ± 0.0001 a | 0.0115 ± 0.0005 c | 0.0043 ± 0.0027 b | 8.08 | 0.0006 * |
Decanoic acid, ethyl ester | 38.82 | ND a | 0.0248 ± 0.0022 b | ND a | 10,625 | 0.0000 * |
Isovaleric acid | 39.17 | ND | ND | 0.0341 ± 0.0390 | 1.50 | 0.2288 |
1-nonanol | 39.23 | 0.0180 ± 0.0004 b | 0.1010 ± 0.0064 c | 0.0039 ± 0.0041 a | 557 | 0.0000 * |
Butanedioic acid, diethyl ester | 39.62 | ND a | 0.0166 ± 0.0007 ab | 0.0259 ± 0.0099 b | 7.60 | 0.0009 * |
trans, cis-2,6-nonadienyl acetate | 40.23 | 0.0220 ± 0.0030 b | ND a | ND a | 4479 | 0.0000 * |
α-Terpineol | 40.76 | 0.0048 ± 0.0001 a | 0.0235 ± 0.0005 b | 0.0083 ± 0.0044 a | 12.7 | 0.0000 * |
2-Nonen-1-ol, (E)- | 41.13 | 0.0518 ± 0.0029 c | ND a | 0.0017 ± 0.0044 b | 128 | 0.0000 * |
cis-6-nonenol | 41.22 | 0.0394 ± 0.0026 a | 0.2145 ± 0.0073 b | 0.0221 ± 0.0291 a | 44.0 | 0.0000 * |
Benzyl acetate | 41.59 | 0.0131 ± 0.0042 | 0.0046 ± 0.0002 | 0.0057 ± 0.0054 | 1.91 | 0.1536 |
β-Citronellol | 42.96 | 0.1333 ± 0.0019 c | 0.0239 ± 0.0014 b | 0.0028 ± 0.0014 a | 8759 | 0.0000 * |
trans, cis-2,6-Nonadien-1-ol | 42.96 | 0.1340 ± 0.0011 b | ND a | ND a | 1,226,155 | 0.0000 * |
Methyl salicylate | 43.47 | 0.0196 ± 0.0012 b | 0.0256 ± 0.0002 c | 0.0011 ± 0.0011 a | 711 | 0.0000 * |
Ethyl phenylacetate | 43.60 | 0.0027 ± 0.0000 | 0.0223 ± 0.0003 | 0.0145 ± 0.0189 | 0.568 | 0.5687 |
Phenethyl acetate | 44.78 | 0.0383 ± 0.0049 | 0.1995 ± 0.0011 | 0.2040 ± 0.2131 | 0.605 | 0.5481 |
2,4-decadienal | 44.98 | 0.0065 ± 0.0019 b | ND a | ND a | 1056 | 0.0000 * |
β-damascenone | 45.24 | ND a | 0.0075 ± 0.0048 b | ND a | 206 | 0.0000 * |
Hexanoic acid | 45.41 | 0.0048 ± 0.0002 | 0.0119 ± 0.0012 | 0.0183 ± 0.0126 | 1.37 | 0.2572 |
Geraniol | 45.74 | 0.0067 ± 0.0004 b | 0.0167 ± 0.0001 c | 0.0013 ± 0.0021 a | 58.0 | 0.0000 * |
cis-geranylacetone | 46.28 | 0.0018 ± 0.0002 a | 0.0129 ± 0.0012 b | 0.0026 ± 0.0037 a | 7.63 | 0.0009 * |
Benzyl alcohol | 46.58 | 0.0043 ± 0.0001 a | 0.0072 ± 0.0001 a | 0.0110 ± 0.0023 b | 11.3 | 0.0000 * |
Benzenepropanoic acid, ethyl ester | 47.18 | ND a | 0.0420 ± 0.0018 b | 0.0054 ± 0.0062 a | 36.0 | 0.0000 * |
Phenylethyl alcohol | 47.88 | 0.0096 ± 0.0011 a | 0.1723 ± 0.0041 ab | 0.2644 ± 0.1385 b | 3.77 | 0.0267 * |
3-Phenyl-1-propanol, acetate | 49.09 | 0.0038 ± 0.0015 | 0.0092 ± 0.0008 | 0.0082 ± 0.0155 | 0.084 | 0.9194 |
2,4-Decadien-1-ol | 50.65 | 0.0030 ± 0.0004 b | ND a | ND a | 5293 | 0.0000 * |
Phenol | 50.73 | 0.0012 ± 0.0004 a | 0.0045 ± 0.0008 b | 0.0035 ± 0.0008 b | 8.41 | 0.0005 * |
4-hydroxynonanoic acid lactone | 52.19 | 0.0225 ± 0.0014 a | 0.0315 ± 0.0003 a | 0.0521 ± 0.0073 b | 23.6 | 0.0000 * |
Benzenepropanol | 52.31 | ND a | 0.0046 ± 0.0004 ab | 0.0050 ± 0.0023 b | 4.63 | 0.0122 * |
Octanoic acid | 52.57 | 0.0275 ± 0.0023 a | 0.1683 ± 0.0031 b | 0.1106 ± 0.0525 ab | 3.78 | 0.0264 * |
Ethyl cinnamate | 55.18 | ND a | 0.0135 ± 0.0000 b | 0.0031 ± 0.0019 a | 34.1 | 0.0000 * |
Cinnamyl acetate | 55.67 | 0.0030 ± 0.0007 b | 0.0010 ± 0.0001 a | 0.0004 ± 0.0003 a | 58.3 | 0.0000 * |
Nonanoic acid | 55.92 | 0.0136 ± 0.0003 a | 0.0817 ± 0.0008 b | 0.0432 ± 0.0269 ab | 3.34 | 0.0398 * |
Thymol | 56.40 | 0.0027 ± 0.0001 a | 0.0146 ± 0.0003 b | 0.0045 ± 0.0013 a | 59.4 | 0.0000 * |
2-Octenoic acid | 56.43 | 0.0042 ± 0.0004 b | ND a | ND a | 10,244 | 0.0000 * |
Decanoic acid | 59.15 | 0.0253 ± 0.0118 a | 0.1164 ± 0.0007 b | 0.0256 ± 0.0176 a | 26.4 | 0.0000 * |
2-nonenoic acid | 59.62 | 0.0089 ± 0.0007 b | 0.0016 ± 0.0004 a | 0.0024 ± 0.0016 a | 17.2 | 0.0000 * |
Dihydromethyl jasmonate | 59.95 | ND a | ND a | 0.0013 ± 0.0010 b | 3.35 | 0.0396 * |
Ɣ-dodecalactone | 63.08 | 0.0136 ± 0.0031 a | 0.0530 ± 0.0008 b | 0.0169 ± 0.0055 a | 43.4 | 0.0000 * |
Dodecanoic acid | 66.58 | 0.0166 ± 0.0086 a | 0.1231 ± 0.0053 b | 0.0082 ± 0.0089 a | 165 | 0.0000 * |
Tetradecanoic acid | 78.46 | 0.0052 ± 0.0004 a | 0.0123 ± 0.0014 b | 0.0024 ± 0.0025 a | 17.0 | 0.0000 * |
Compounds | Temperature (30 °C/37 °C) | Bacteria Inoculum (A/G/M) | ||
---|---|---|---|---|
F Ratio | p-Value | F Ratio | p-Value | |
Ethyl acetate | 0.076 | 0.7833 | 0.425 | 0.6546 |
1,3-Dioxolane, 2,4,5-trimethyl | 11.4 | 0.0011 * | 0.980 | 0.3795 |
Diacetyl | 35.3 | 0.0000 * | 0.582 | 0.5610 |
Isobutyl acetate | 0.057 | 0.8108 | 0.196 | 0.8219 |
Hexanal | 11.4 | 0.0011 * | 2.24 | 0.1126 |
2-methyl-1-propanol | 19.1 | 0.0000 * | 0.070 | 0.9317 |
Isoamyl acetate | 0.016 | 0.8987 | 0.374 | 0.6885 |
2,6-dimethyl-4-heptanone | 6.91 | 0.0102 * | 0.281 | 0.7551 |
2-methyl-1-butanol | 17.0 | 0.0001 * | 1.39 | 0.2524 |
3-methyl-1-butanol | 24.4 | 0.0000 * | 0.486 | 0.6167 |
Hexanoic acid, ethyl ester | 0.766 | 0.3837 | 0.801 | 0.4522 |
Styrene | 1.10 | 0.2962 | 0.967 | 0.3844 |
1-pentanol | 10.0 | 0.0021 * | 0.926 | 0.4000 |
Hexyl acetate | 13.0 | 0.0005 * | 7.46 | 0.0010* |
Acetoin | 59.1 | 0.0000 * | 1.16 | 0.3161 |
Acetol | 0.308 | 0.5799 | 2.44 | 0.0927 |
Ethyl lactate | 0.740 | 0.3921 | 2.92 | 0.0593 |
1-hexanol | 8.47 | 0.0046 * | 0.412 | 0.6635 |
3-Hexen-1-ol, (E)- | 5.08 | 0.0267 * | 0.945 | 0.3927 |
3-Hexen-1-ol, (Z)- | 12.8 | 0.0006 * | 0.622 | 0.5392 |
Acetic acid | 47.6 | 0.0000 * | 1.43 | 0.2443 |
Octanoic acid, ethyl ester | 0.008 | 0.9286 | 0.833 | 0.4382 |
trans-linalooloxide | 353 | 0.0000 * | 0.091 | 0.9127 |
cis-linalooloxide | 234 | 0.0000 * | 0.100 | 0.9042 |
1-Hexanol, 2-ethyl- | 4378 | 0.0000 * | 0.045 | 0.9558 |
Cyclopentene | 11.0 | 0.0013 * | 0.578 | 0.5628 |
Benzaldehyde | 24.6 | 0.0000 * | 4.33 | 0.0161 * |
2,3-butanediol | 23.2 | 0.0000 * | 1.40 | 0.2504 |
Linalool | 45.4 | 0.0000 * | 0.639 | 0.5303 |
Isobutyric acid | 60.3 | 0.0000 * | 1.30 | 0.2777 |
1-octanol | 16.3 | 0.0001 * | 0.907 | 0.4075 |
trans-2-cis-6-nonadienal | 12.3 | 0.0007 * | 1.07 | 0.3465 |
Butanoic acid | 74.5 | 0.0000 * | 0.959 | 0.3871 |
Sulfide, allyl methyl | 3.75 | 0.0559 | 1.64 | 0.1992 |
Isovaleric acid | 50.9 | 0.0000 * | 2.05 | 0.1350 |
1-nonanol | 10.7 | 0.0015 * | 2.10 | 0.1279 |
Butanedioic acid, diethyl ester | 39.1 | 0.0000 * | 1.44 | 0.2407 |
α-terpineol | 490 | 0.0000 * | 0.490 | 0.6140 |
2-Nonen-1-ol, (E)- | 4.63 | 0.0342 * | 3.05 | 0.0523 |
cis-6-nonenol | 6.50 | 0.0126 * | 1.02 | 0.3623 |
Benzyl acetate | 31.0 | 0.0000 * | 2.66 | 0.0755 |
β-Citronellol | 30.3 | 0.0000 * | 2.34 | 0.1026 |
Methyl salicylate | 72.0 | 0.0000 * | 2.77 | 0.0682 |
Ethyl phenylacetate | 15.8 | 0.0001 * | 0.847 | 0.4322 |
Phenethyl acetate | 34.4 | 0.0000 * | 0.050 | 0.9509 |
Hexanoic acid | 35.6 | 0.0000 * | 2.35 | 0.1007 |
Geraniol | 29.8 | 0.0000 * | 1.95 | 0.1480 |
cis-geranylacetone | 0.008 | 0.9261 | 0.229 | 0.7954 |
Benzyl alcohol | 0.875 | 0.3522 | 3.33 | 0.0404 * |
Benzenepropanoic acid, ethyl ester | 66.9 | 0.0000 * | 0.394 | 0.6754 |
Phenylethyl alcohol | 1.14 | 0.2874 | 2.18 | 0.1191 |
3-Phenyl-1-propanol, acetate | 11.1 | 0.0013 * | 0.767 | 0.4676 |
Phenol | 21.0 | 0.0000 * | 0.559 | 0.5735 |
4-hydroxynonanoic acid lactone | 20.6 | 0.0000 * | 0.318 | 0.7286 |
Benzenepropanol | 35.0 | 0.0000 * | 1.94 | 0.1489 |
Octanoic acid | 15.4 | 0.0002 * | 2.86 | 0.0624 |
Ethyl cinnamate | 257 | 0.0000 * | 1.20 | 0.3047 |
Cinnamyl acetate | 42.1 | 0.0000 * | 0.429 | 0.6521 |
Nonanoic acid | 33.1 | 0.0000 * | 2.07 | 0.1326 |
Thymol | 41.2 | 0.0000 * | 1.35 | 0.2638 |
Decanoic acid | 42.6 | 0.0000 * | 1.52 | 0.2239 |
2-nonenoic acid | 31.0 | 0.0000 * | 3.47 | 0.0354 * |
Dihydromethyl jasmonate | 106 | 0.0000 * | 0.530 | 0.5904 |
Ɣ-Dodecalactone | 72.4 | 0.0000 * | 1.17 | 0.3139 |
Dodecanoic acid | 56.3 | 0.0000 * | 1.10 | 0.3348 |
Tetradecanoic acid | 75.8 | 0.0000 * | 0.436 | 0.6477 |
Compounds | 30 °C | 37 °C |
---|---|---|
Mean ± SD | Mean ± SD | |
Ethyl acetate | 0.1607 ± 0.1160 | 0.1733 ± 0.2798 |
1,3-dioxolane, 2,4,5-trimethyl- | 0.0176 ± 0.0340 b | ND a |
Diacetyl | 0.0162 ± 0.0149 b | 0.0022 ± 0.0042 a |
Isobutyl acetate | 0.0045 ± 0.0028 | 0.0050 ± 0.0147 |
Hexanal | 0.0030 ± 0.0010 b | 0.0023 ± 0.0011 a |
2-methyl-1-propanol | 0.0053 ± 0.0080 b | 0.0000 ± 0.0001 a |
Isoamyl acetate | 0.0391 ± 0.0317 | 0.0412 ± 0.1034 |
2,6-dimethyl-4-heptanone | 0.0058 ± 0.0055 b | 0.0032 ± 0.0034 a |
2-methyl-1-butanol | 0.0411 ± 0.0568 b | 0.0052 ± 0.0062 a |
3-meth-1-butanol | 0.0499 ± 0.0586 b | 0.0054 ± 0.0066 a |
Hexanoic acid, ethyl ester | 0.0031 ± 0.0033 | 0.0039 ± 0.0049 |
Styrene | 0.0003 ± 0.0003 | 0.0002 ± 0.0002 |
1-pentanol | 0.0002 ± 0.0004 b | 0.0000 ± 0.0001 a |
Hexyl acetate | 0.0022 ± 0.0036 b | 0.0002 ± 0.0004 a |
Acetoin | 0.2520 ± 0.1984 b | 0.0191 ± 0.0101 a |
Acetol | 0.0089 ± 0.0044 | 0.0081 ± 0.0087 |
Ethyl lactate | 0.3537 ± 0.2461 | 0.3869 ± 0.0617 |
1-hexanol | 0.0012 ± 0.0026 b | ND a |
3-Hexen-1-ol, (E)- | 0.0002 ± 0.0007 b | ND a |
3-Hexen-1-ol, (Z)- | 0.0004 ± 0.0007 b | ND a |
Acetic acid | 0.3995 ± 0.2952 b | 0.0847 ± 0.0484 a |
Octanoic acid, ethyl ester | 0.0007 ± 0.0029 | 0.0007 ± 0.0034 |
trans-linalooloxide | 0.0031 ± 0.0031 a | 0.0127 ± 0.0013 b |
cis-linalooloxide | 0.0043 ± 0.0007 a | 0.0068 ± 0.0009 b |
1-Hexanol, 2-ethyl- | 0.0025 ± 0.0010 a | 0.0298 ± 0.0025 b |
Cyclopentene | 0.0002 ± 0.0003 b | ND a |
Benzaldehyde | 0.0088 ± 0.0073 a | 0.0149 ± 0.0033 b |
2,3-butanediol | 0.0120 ± 0.0051 a | 0.0184 ± 0.0071 b |
Linalool | 0.0022 ± 0.0018 b | 0.0003 ± 0.0005 a |
Isobutyric acid | 0.0263 ± 0.0168 b | 0.0063 ± 0.0020 a |
1-octanol | 0.0019 ± 0.0029 b | 0.0001 ± 0.0005 a |
Trans-2-cis-6-nonadienal | 0.0003 ± 0.0005 b | ND a |
Butanoic acid | 0.0020 ± 0.0014 b | 0.0001 ± 0.0003 a |
Sulfide, allyl methyl | 0.0049 ± 0.0034 | 0.0038 ± 0.0013 |
Isovaleric acid | 0.0576 ± 0.0433 b | 0.0101 ± 0.0048 a |
1-nonanol | 0.0025 ± 0.0051 a | 0.0053 ± 0.0021 b |
Butanedioic acid, diethyl ester | 0.0204 ± 0.0112 a | 0.0314 ± 0.0029 b |
α-terpineol | 0.0123 ± 0.0023 b | 0.0042 ± 0.0007 a |
2-Nonen-1-ol, (E)- | 0.0027 ± 0.0060 b | 0.0007 ± 0.0012 a |
cis-6-nonenol | 0.0297 ± 0.0395 b | 0.0143 ± 0.0032 a |
Benzyl acetate | 0.0085 ± 0.0065 b | 0.0029 ± 0.0003 a |
β-Citronellol | 0.0035 ± 0.0015 b | 0.0021 ± 0.0007 a |
Methyl salicylate | 0.0019 ± 0.0012 b | 0.0004 ± 0.0001 a |
Ethyl phenylacetate | 0.0218 ± 0.0245 b | 0.0069 ± 0.0015 a |
Phenethyl acetate | 0.3165 ± 0.2540 b | 0.0890 ± 0.0103 a |
Hexanoic acid | 0.0250 ± 0.0149 b | 0.0114 ± 0.0018 a |
Geraniol | 0.0024 ± 0.0026 b | 0.0002 ± 0.0003 a |
cis-geranylacetone | 0.0027 ± 0.0017 | 0.0026 ± 0.0051 |
Benzyl alcohol | 0.0108 ± 0.0031 | 0.0112 ± 0.0009 |
Benzenepropanoic acid, ethyl ester | 0.0094 ± 0.0064 b | 0.0012 ± 0.0012 a |
Phenylethyl alcohol | 0.2801 ± 0.1939 | 0.2484 ± 0.0158 |
3-Phenyl-1-propanol, acetate | 0.0134 ± 0.0207 b | 0.0029 ± 0.0006 a |
Phenol | 0.0038 ± 0.0010 b | 0.0031 ± 0.0005 a |
4-hydroxynonanoic acid lactone | 0.0489 ± 0.0078 a | 0.0554 ± 0.0051 b |
Benzenepropanol | 0.0037 ± 0.0027 a | 0.0062 ± 0.0006 b |
Octanoic acid | 0.1309 ± 0.0676 b | 0.0899 ± 0.0099 a |
Ethyl cinnamate | 0.0047 ± 0.0013 b | 0.0015 ± 0.0004 a |
Cinnamyl acetate | 0.0003 ± 0.0004 a | 0.0006 ± 0.0001 b |
Nonanoic acid | 0.0572 ± 0.0321 b | 0.0289 ± 0.0033 a |
Thymol | 0.0052 ± 0.0014 b | 0.0037 ± 0.0006 a |
Decanoic acid | 0.0356 ± 0.0198 b | 0.0153 ± 0.0046 a |
2-nonenoic acid | 0.0032 ± 0.0019 b | 0.0015 ± 0.0005 a |
Dihydromethyl jasmonate | 0.0006 ± 0.0005 a | 0.0020 ± 0.0008 b |
Ɣ-dodecalactone | 0.0206 ± 0.0053 b | 0.0131 ± 0.0022 a |
Dodecanoic acid | 0.0137 ± 0.0085 b | 0.0025 ± 0.0048 a |
Tetradecanoic acid | 0.0041 ± 0.0023 b | 0.0007 ± 0.0011 a |
Compounds | Juice | Wine | Vinegar | ANOVA | |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | F Ratio | p-Value | |
Gallic acid | 1.52 ± 0.042 | 1.24 ± 0.009 | 1.76 ± 0.471 | 1.48 | 0.2334 |
Hydroxy-tyrosol | 4.34 ± 0.184 | 1.67 ± 0.147 | 2.85 ± 1.80 | 2.33 | 0.1035 |
Epigallocatechin | ND a | 5.93 ± 0.172 b | 8.26 ± 1.45 b | 34.3 | 0.0000 * |
Tyrosol | 57.1 ± 2.54 | 42.4 ± 1.74 | 56.2 ± 9.62 | 2.10 | 0.1289 |
Vanillic acid | ND | ND | 2.19 ± 0.776 | 0.492 | 0.6125 |
Syringic acid | 1.66 ± 0.082 a | 1.69 ± 0.035 ab | 2.32 ± 0.376 b | 5.65 | 0.0049 * |
Ethyl gallate | 3.57 ± 0.233 c | 1.91 ± 0.164 b | ND a | 17373 | 0.0000 * |
m-Coumaric acid | 0.564 ± 0.011 b | ND a | ND a | 555,867 | 0.0000 * |
Hesperidin | 15.0 ± 3.63 | 4.39 ± 0.032 | 8.46 ± 2.06 | 13.8 | 0.0000 * |
Naringenin | 4.56 ± 0.879 c | 2.47 ± 0.011 a | 3.68 ± 0.908 b | 2.73 | 0.0710 |
Protocatechualdehyde | 0.956 ± 0.030 a | 1.28 ± 0.027 ab | 1.39 ± 0.165 b | 7.42 | 0.0010 * |
Caffeic acid | ND a | ND a | 1.06 ± 0.100 b | 220 | 0.0000 * |
Ferulic acid | 1.35 ± 0.065 | 1.33 ± 0.007 | 1.41 ± 0.250 | 0.154 | 0.8581 |
Quercetin | 1.30 ± 0.441 | 1.13 ± 0.117 | 1.33 ± 0.309 | 0.452 | 0.6388 |
Cinnamic acid | ND | 0.048 ± 0.020 | 0.125 ± 0.073 | 3.70 | 0.0286 * |
p-Hydroxybenzoic acid | 9.86 ± 0.469 b | 1.33 ± 0.160 a | 1.14 ± 0.450 a | 370 | 0.0000 * |
Compounds | Temperature (30 °C/37 °C) | Bacteria Inoculum (A/G/M) | ||
---|---|---|---|---|
F Ratio | p-Value | F Ratio | p-Value | |
Gallic acid | 0.173 | 0.6836 | 5.95 | 0.0039 * |
Hydroxy-tyrosol | 115 | 0.0000 * | 6.90 | 0.0017 * |
Epigallocatechin | 40.4 | 0.0000 * | 2.90 | 0.0609 |
Tyrosol | 19.2 | 0.0000 * | 5.12 | 0.0080 * |
Vanillic acid | 1.74 | 0.1907 | 5.53 | 0.0056 * |
Syringic acid | 9.59 | 0.0027 * | 4.46 | 0.0145 * |
Hesperidin | 7.60 | 0.0072 * | 3.13 | 0.0491 * |
Naringenin | 107 | 0.0000 * | 3.45 | 0.0363 * |
Protocatechualdehyde | 21.3 | 0.0000 * | 4.00 | 0.0220 * |
Caffeic acid | 29.1 | 0.0000 * | 0.583 | 0.5647 |
Ferulic acid | 21.1 | 0.0000 * | 1.24 | 0.2959 |
Quercetin | 54.1 | 0.0000 * | 1.08 | 0.3452 |
Cinnamic acid | 21.2 | 0.0000 * | 2.09 | 0.1299 |
p-Hydroxybenzoic acid | 20.4 | 0.0000 * | 1.59 | 0.2096 |
Compounds | 30 °C | 37 °C | Acetobacter | Gluconobacter | Mixture | |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
Gallic acid | 1.76 ± 0.604 | 1.69 ± 0.156 | 1.78 ± 0.410 b | 1.43 ± 0.527 a | 2.10 ± 0.650 b | |
Hydroxy-tyrosol | 2.71 ± 1.63 b | ND a | 2.31 ± 1.36 a | 4.05 ± 1.74 b | 4.34 ± 2.94 b | |
Epigallocatechin | 7.51 ± 1.49 a | 8.97 ± 0.631 b | 8.39 ± 1.27 | 7.16 ± 2.23 | 8.49 ± 2.34 | |
Tyrosol | 52.8 ± 12.1 a | 60.3 ± 4.30 b | 57.9 ± 9.26 b | 47.8 ± 14.8 a | 53.3 ± 7.37 ab | |
Vanillic acid | 2.39 ± 0.738 | 1.38 ± 0.029 | 2.19 ± 0.776 b | ND a | ND ab | |
Syringic acid | 2.24 ± 0.504 a | 2.42 ± 0.168 b | 2.38 ± 0.369 b | 2.01 ± 0.601 a | 2.14 ± 0.232 ab | |
Ethyl gallate | 7.41 ± 1.77 a | 9.74 ± 1.59 b | 8.72 ± 2.08 | 7.50 ± 2.37 | 7.33 ± 2.11 | |
m-Coumaric acid | 2.82 ± 0.328 a | 4.46 ± 0.484 b | 3.63 ± 0.935 a | 3.47 ± 1.16 ab | 4.04 ± 0.676 b | |
Hesperidin | 1.34 ± 0.198 a | 1.44 ± 0.069 b | 1.42 ± 0.150 b | 1.22 ± 0.327 a | 1.42 ± 0.256 ab | |
Naringenin | 1.01 ± 0.082 a | 1.11 ± 0.065 b | 1.06 ± 0.083 | 0.992 ± 0.261 | 1.09 ± 0.168 | |
Protocatechualdehyde | 1.30 ± 0.233 a | 1.53 ± 0.180 b | 1.43 ± 0.238 | 1.26 ± 0.359 | 1.38 ± 0.373 | |
Caffeic acid | 1.13 ± 0.226 a | 1.53 ± 0.204 b | 1.35 ± 0.279 | 1.19 ± 0.412 | 1.38 ± 0.473 | |
Ferulic acid | 0.093 ± 0.045 a | 0.159 ± 0.068 b | 0.129 ± 0.067 | 0.100 ± 0.057 | 0.130 ± 0.131 | |
Quercetin | 1.36 ± 0.532 b | 0.902 ± 0.144 a | 1.15 ± 0.472 | 1.02 ± 0.376 | 1.34 ± 0.426 | |
Cinnamic acid | 1.76 ± 0.604 | 1.69 ± 0.156 | 1.78 ± 0.410 b | 1.43 ± 0.527 a | 2.10 ± 0.650 b | |
p-Hydroxybenzoic acid | 2.71 ± 1.63 b | ND a | 2.31 ± 1.36 a | 4.05 ± 1.74 b | 4.34 ± 2.94 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Es-sbata, I.; Castro, R.; Carmona-Jiménez, Y.; Zouhair, R.; Durán-Guerrero, E. Influence of Different Bacteria Inocula and Temperature Levels on the Chemical Composition and Antioxidant Activity of Prickly Pear Vinegar Produced by Surface Culture. Foods 2022, 11, 303. https://doi.org/10.3390/foods11030303
Es-sbata I, Castro R, Carmona-Jiménez Y, Zouhair R, Durán-Guerrero E. Influence of Different Bacteria Inocula and Temperature Levels on the Chemical Composition and Antioxidant Activity of Prickly Pear Vinegar Produced by Surface Culture. Foods. 2022; 11(3):303. https://doi.org/10.3390/foods11030303
Chicago/Turabian StyleEs-sbata, Ikram, Remedios Castro, Yolanda Carmona-Jiménez, Rachid Zouhair, and Enrique Durán-Guerrero. 2022. "Influence of Different Bacteria Inocula and Temperature Levels on the Chemical Composition and Antioxidant Activity of Prickly Pear Vinegar Produced by Surface Culture" Foods 11, no. 3: 303. https://doi.org/10.3390/foods11030303
APA StyleEs-sbata, I., Castro, R., Carmona-Jiménez, Y., Zouhair, R., & Durán-Guerrero, E. (2022). Influence of Different Bacteria Inocula and Temperature Levels on the Chemical Composition and Antioxidant Activity of Prickly Pear Vinegar Produced by Surface Culture. Foods, 11(3), 303. https://doi.org/10.3390/foods11030303