Pulsed Vacuum Drying of Pepper (Capsicum annuum L.): Effect of High-Humidity Hot Air Impingement Blanching Pretreatment on Drying Kinetics and Quality Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HHAIB Pretreatment Experiments
2.3. Drying Process
2.3.1. PVD Equipment
2.3.2. Experimental Procedure
2.4. Measurement of Polyphenol Oxidase (PPO) Activity
2.5. Analysis of Drying Characteristics
2.5.1. Moisture Ratio (MR)
2.5.2. Drying Rate (DR)
2.5.3. Effective Moisture Diffusivity (Deff)
2.6. Kinetic Modeling
2.7. Color Measurement
2.8. Determination of Red Pigment Content
2.9. Ultrastructure Analysis
2.10. Statistical Analysis
3. Results
3.1. Effects of Different Blanching Methods on the Residual Activity of PPO
3.2. Effects of PVD on the Drying Characteristics of Red Peppers
3.3. Different Models Used to Fit the Drying Parameters
3.4. Effect of Drying Temperature on the Pigment Content of Red Peppers
3.5. Effect of Drying Temperature on the Red Pigment Content of Red Peppers
3.6. TEM Imaging of Peppers with Different Blanching Treatments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Zhang, Q.; Mujumdar, A.S.; Fang, X.M.; Wang, J.; Pei, Y.P.; Wu, W.; Zielinska, M.; Xiao, H.W. High-Humidity Hot Air Impingement Blanching (HHAIB) Efficiently Inactivates Enzymes, Enhances Extraction of Phytochemicals and Mitigates Brown Actions of Chili Pepper. Food Control 2020, 111, 107050. [Google Scholar] [CrossRef]
- Food and Agriculture Organiszation (FAO). Fao Stat Database. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 3 February 2021).
- Morm, E.; Ma, K.; Horn, S.; Debaste, F.; Haut, B.; In, S. Experimental Characterization of the Drying of Kampot Red Pepper (Piper nigrum L.). Foods 2020, 9, 1532. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, X.H.; Mujumdar, A.S.; Wang, D.; Zhao, J.H.; Fang, X.M.; Zhang, Q.; Xie, L.; Gao, Z.J.; Xiao, H.W. Effects of Various Blanching Methods on Weight Loss, Enzymes Inactivation, Phytochemical Contents, Antioxidant Capacity, Ultrastructure and Drying Kinetics of Red Bell Pepper (Capsicum annuum L.). LWT Food Sci. Technol. 2017, 77, 337–347. [Google Scholar] [CrossRef]
- Xiao, H.W.; Bai, J.W.; Sun, D.W.; Gao, Z.J. The Application of Superheated Steam Impingement Blanching (SSIB) in Agricultural Products Processing-a Review. J. Food Eng. 2014, 132, 39–47. [Google Scholar] [CrossRef]
- González-Toxqui, C.; González-Ngeles, L.; López-Avitia, R.; González-Balvaneda, D. Drying Habanero Pepper (Capsicum chinense) by Modified Freeze Drying Process. Foods 2020, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.H.; Vidyarthi, S.K.; Zhong, C.S.; Zheng, Z.A.; An, Y.; Wang, J.; Wei, Q.; Xiao, H.W. Cold Plasma Enhances Drying and Color, Rehydration Ratio and Polyphenols of Wolfberry via Microstructure and Ultrastructure Alteration. LWT Food Sci. Technol. 2020, 134, 110173. [Google Scholar] [CrossRef]
- Sharma, R.; Joshi, V.; Kaushal, M. Effect of pre-treatments and drying methods on quality attributes of sweet bell-pepper (Capsicum annum) powder. J. Food Sci. Technol. 2015, 52, 3433–3439. [Google Scholar] [CrossRef]
- Rybak, K.; Wiktor, A.; Witrowarajchert, D.; Parniakov, O.; Nowacka, M. The Quality of Red Bell Pepper Subjected to Freeze-Drying Preceded by Traditional and Novel Pretreatment. Foods 2021, 10, 226. [Google Scholar] [CrossRef]
- Castro, S.M.; Saraiva, J.A.; Domingues, F.M.J.; Delgadillo, I. Effect of mild pressure treatments and thermal blanching on yellow bell peppers (Capsicum annuum L.). LWT Food Sci. Technol. 2011, 44, 363–369. [Google Scholar] [CrossRef]
- Wang, J.; Mujumdar, A.S.; Deng, L.Z.; Gao, Z.J.; Xiao, H.W.; Raghavan, G.S.V. High-humidity hot air impingement blanching alters texture, cell-wall polysaccharides, water status and distribution of seedless grape. Carbohydr. Polym. 2018, 194, 9–17. [Google Scholar] [CrossRef]
- Ren, F.Y.; Perussello, C.A.; Zhang, Z.H.; Gaffney, M.T.; Kerry, J.P.; Tiwari, B.K. Enhancement of phytochemical content and drying efficiency of onions (Allium cepa L.) through blanching. J. Sci. Food Agric. 2018, 98, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Bharti, S.; Sehgal, V.K. Convective drying kinetics of red chillies. Dry. Technol. 2006, 24, 189–193. [Google Scholar] [CrossRef]
- Yong, C.K.; Islam, M.R.; Mujumdar, A.S. Mechanical means of enhancing drying rates: Effect on drying kinetics and quality. Dry. Technol. 2006, 24, 397–404. [Google Scholar] [CrossRef]
- Deng, L.Z.; Pan, Z.L.; Mujumdar, A.S.; Zhao, J.H.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. High-Humidity Hot Air Impingement Blanching (HHAIB) Enhances Drying Quality of Apricots by Inactivating the Enzymes, Reducing Drying Time and Altering Cellular Structure. Food Control 2019, 96, 104–111. [Google Scholar] [CrossRef]
- Deng, L.Z.; Mujumdar, A.S.; Yang, X.H.; Wang, J.; Zhang, Q.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. High Humidity Hot Air Impingement Blanching (HHAIB) Enhances Drying Rate and Softens Texture of Apricot via Cell Wall Pectin Polysaccharides Degradation and Ultrastructure Modification. Food Chem. 2018, 261, 292–300. [Google Scholar] [CrossRef]
- Liu, Z.L.; Bai, J.W.; Yang, W.X.; Wang, J.; Deng, L.Z.; Yu, X.L.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Effect of high-humidity hot air impingement blanching (HHAIB) and drying parameters on drying characteristics and quality of broccoli florets. Dry. Technol. 2018, 37, 1251–1264. [Google Scholar] [CrossRef]
- Fudholi, A.; Othman, M.Y.; Ruslan, M.H.; Sopian, K. Drying of Malaysian Capsicum annuum L. (Red Chili) Dried by Open and Solar Drying. Int. J. Photoenergy 2013, 1, 4589–4594. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.Z.; Yang, X.H.; Mujumdar, A.S.; Zhao, J.H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z.J.; Xiao, H.W. Red Pepper (Capsicum annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Dry. Technol. 2018, 36, 893–907. [Google Scholar] [CrossRef]
- Topuz, A.; Özdemir, F. Influence of Gamma-Irradiation and Storage on the Carotenoids of Sun-Dried and Dehydrated Paprika. J. Agric. Food Chem. 2003, 51, 4972–4977. [Google Scholar] [CrossRef]
- Scala, K.D.; Crapiste, G. Drying Kinetics and Quality Changes during Drying of Red Pepper. LWT Food Sci. Technol. 2008, 41, 789–795. [Google Scholar] [CrossRef]
- Xie, Y.C.; Gao, Z.J.; Liu, Y.H.; Xiao, H.W. Pulsed Vacuum Drying of Rhizoma Dioscoreae Slices. LWT Food Sci. Technol. 2017, 80, 237–249. [Google Scholar] [CrossRef]
- Liu, Z.L.; Xie, L.; Zielinska, M.; Pan, Z.L.; Wang, J.; Deng, L.Z.; Wang, H.; Xiao, H.W. Pulsed vacuum drying enhances drying of blueberry by altering micro-, ultrastructure and water status and distribution. LWT Food Sci. Technol. 2021, 142, 111013. [Google Scholar] [CrossRef]
- Xie, L.; Mujumdar, A.S.; Fang, X.M.; Wang, J.; Dai, J.W.; Du, Z.; Xiao, H.W.; Liu, Y.H.; Gao, Z.J. Far-Infrared Radiation Heating Assisted Pulsed Vacuum Drying (FIR-PVD) of Wolfberry (Lycium barbarum L.): Effects on Drying Kinetics and Quality Attributes. Food. Bioprod. Process. 2017, 102, 320–331. [Google Scholar] [CrossRef]
- Yac, S.; Evci, T. Effect of instant controlled pressure drop process on some physicochemical and nutritional properties of snacks produced from chickpea and wheat. J. Food Sci. Technol. 2015, 50, 1901–1910. [Google Scholar] [CrossRef]
- Dai, J.W.; Fu, Q.Q.; Huang, H.; Li, M.; Li, L.J.; Xu, L.J. Drying characteristics and quality optimization of green prickly ashes during vacuum pulsed drying. Trans. CSAE 2021, 37, 279–287. [Google Scholar] [CrossRef]
- Wang, J.; Law, C.L.; Nema, P.K.; Zhao, J.H.; Liu, Z.L.; Deng, L.Z.; Gao, Z.J.; Xiao, H.W. Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. J. Food Eng. 2018, 224, 129–138. [Google Scholar] [CrossRef]
- Wang, J.; Mujumdar, A.S.; Wang, H.; Fang, X.M.; Xiao, H.W. Effect of drying method and cultivar on sensory attributes, textural profiles, and volatile characteristics of grape raisins. Dry. Technol. 2020, 39, 1–12. [Google Scholar] [CrossRef]
- Xie, L.; Zheng, Z.A.; Mujumdar, A.S.; Fang, X.M.; Wang, J.; Zhang, Q.; Ma, Q.; Xiao, H.W.; Liu, Y.H.; Gao, Z.J. Pulsed vacuum drying (PVD) of wolfberry: Drying kinetics and quality attributes. Dry. Technol. 2018, 28, 1312–1326. [Google Scholar] [CrossRef]
- Fang, X.M.; Zhang, X.L.; Wang, J.; Zhang, Q.; Xiao, H.W.; Liu, Y.H.; Ju, H.Y.; Liang, S.; Gao, Z.J. Vacuum Pulsed Drying Characteristics and Quality of Lotus Pollen. Trans. CSAE 2016, 32, 287–295. [Google Scholar] [CrossRef]
- Wang, J.; Bai, T.Y.; Wang, D.; Fang, X.M.; Xue, L.Y.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Pulsed vacuum drying of Chinese ginger (Zingiber officinale Roscoe) slices: Effects on drying characteristics, rehydration ratio, water holding capacity, and microstructure. Dry. Technol. 2018, 37, 301–311. [Google Scholar] [CrossRef]
- Zhang, W.P.; Pan, Z.L.; Xiao, H.W.; Zheng, Z.A.; Chen, C.; Gao, Z.J. Pulsed Vacuum Drying (PVD) Technology Improves Drying Efficiency and Quality of Poria Cubes. Dry. Technol. 2017, 36, 1–14. [Google Scholar] [CrossRef]
- Zhang, W.P.; Chen, C.; Pan, Z.L.; Xiao, H.W.; Zheng, Z.A. Design and performance evaluation of a pilot-scale pulsed vacuum infrared drying (PVID) system for drying of berries. Dry. Technol. 2020, 38, 1340–1355. [Google Scholar] [CrossRef]
- Yu, X.L.; Zielinska, M.; Ju, H.Y.; Mujumdar, A.S.; Duan, X.; Gao, Z.J.; Xiao, H.W. Multistage relative humidity control strategy enhances energy and exergy efficiency of convective drying of carrot cubes. Int. J. Heat Mass Transf. 2020, 149, 119231. [Google Scholar] [CrossRef]
- Yu, X.L.; Ju, H.Y.; Mujumdar, A.S.; Zheng, Z.A.; Wang, J.; Deng, L.Z.; Gao, Z.J.; Xiao, H.W. Experimental and simulation studies of heat transfer in high-humidity hot air impingement blanching (HHAIB) of carrot. Food. Bioprod. Process. 2019, 114, 196–204. [Google Scholar] [CrossRef]
- González, C.M.; Gil, R.; Moraga, G.; Salvador, A. Natural Drying of Astringent and Non-Astringent Persimmon “Rojo Brillante”. Drying Kinetics and Physico-Chemical Properties. Foods 2021, 10, 647. [Google Scholar] [CrossRef] [PubMed]
- Tom, A.; Bruneau, D.; Djongyang, N. Drying kinetics of beef meat: Modeling by the isenthalpe mass flux method. J. Food Process. Eng. 2021, 44, e13647. [Google Scholar] [CrossRef]
- Wang, J.; Fang, X.M.; Mujumdar, A.S.; Qian, J.Y.; Zhang, Q.; Yang, X.H.; Xiao, H.W. Effect of high-humidity hot air impingement blanching (HHAIB) on drying and quality of red pepper (Capsicum annuum L.). Food Chem. 2017, 220, 145–152. [Google Scholar] [CrossRef]
- Amini, G.; Salehi, F.; Rasouli, M. Drying Kinetics of Basil Seed Mucilage in an Infrared Dryer: Application of GA-NN and ANFIS for Prediction of Drying Time and Moisture Ratio. J. Food Process. Pres. 2021, 45, 15258. [Google Scholar] [CrossRef]
- Gan, S.H.; Chua, L.S.; Aziz, R.; Baba, M.R.; Abdullah, L.C.; Ong, S.P.; Law, C.L. Drying Characteristics of Orthosiphon stamineus Benth by Solar Assisted Heat Pump Drying. Dry. Technol. 2017, 35, 1755–1764. [Google Scholar] [CrossRef]
- Li, B.R.; Lin, J.Y.; Zheng, Z.A.; Duan, H.; Wu, M. Effects of different drying methods on drying kinetics and physicochemical properties of Chrysanthemum morifolium Ramat. Int. J. Agric. Biol. Eng. 2019, 12, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.H.; Li, X.F.; Zhu, W.X.; Luo, L.; Duan, X.; Yin, Y. Drying characteristics, kinetics model and effective moisture diffusivity of vacuum far-infrared dried Rehmanniae. Int. J. Agric. Biol. Eng. 2016, 9, 208–217. [Google Scholar] [CrossRef]
- Corzo, O.; Bracho, N.; Pereira, A. Weibull distribution for modeling air drying of coroba slices. LWT Food Sci. Technol. 2009, 41, 2023–2028. [Google Scholar] [CrossRef]
- Lewis, W.K. The rate of drying of solid materials. J. Ind. Eng. Chem. 1921, 13, 427–432. [Google Scholar] [CrossRef]
- Page, G.E. Factors Influencing the Maximum Rates of Air-Drying of Shelled Corn in Thin Layer. Master’s Thesis, Purdue University, Lafayette, IN, USA, 1949. [Google Scholar]
- Wang, C.Y.; Singh, R.P. Use of Variable Equilibrium Moisture Content in Modeling Rice Drying; ASABE Meeting Paper; ASABE: St. Joseph, MI, USA, 1978; pp. 78–6505. [Google Scholar]
- Sharaf-Elden, Y.I.; Blaisdell, J.L.; Hamdy, M.Y. A model for ear corn drying. Trans. ASAE 1980, 23, 1261–1265. [Google Scholar] [CrossRef]
- Omolola, A.O.; Jideani, A.; Kapila P, F. Modeling microwave drying kinetics and moisture diffusivity of Mabonde banana variety. Int. J. Agric. Biol. Eng. 2014, 7, 107–113. [Google Scholar] [CrossRef]
- Bai, J.W.; Gao, Z.J.; Xiao, H.W.; Wang, X.T.; Zhang, Q. Polyphenol oxidase inactivation and vitamin C degradation kinetics of Fuji apple quarters by high humidity air impingement blanching. Int. J. Food Sci. Technol. 2013, 48, 1135–1141. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 7541: Ground (Powdered) Paprika—Determination of Total Natural Colouring Matter Content; International Standards Organization: Geneva, Switzerland, 1989; No. 7541:1989. [Google Scholar]
- Liu, L.; Wei, Y.; Shi, F.; Liu, C.; Liu, X.; Ji, S. Intermittent warming improves postharvest quality of bell peppers and reduces chilling injury. Postharvest Biol. Tec. 2014, 101, 18–25. [Google Scholar] [CrossRef]
- Wu, M.; Sun, Y.; Bi, C.H.; Ji, F.; Xing, J.J. Effects of extrusion conditions on the physicochemical properties of soy protein/gluten composite. Int. J. Agric. Biol. Eng. 2018, 11, 230–237. [Google Scholar] [CrossRef]
- Cruz, R.M.; Vieira, M.C.; Silva, C.L. Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale). J. Food Eng. 2006, 72, 8–15. [Google Scholar] [CrossRef]
- Dorantes-Alvarez, L.; Jaramillo-Flores, E.; González, K.; Martinez, R.; Parada, L. Blanching peppers using microwaves. Procedia Food Sci. 2011, 1, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, J.J.; Richard-Forget, F.C.; Goupy, P.M.; Amiot, M.J.; Aubert, S.Y. Enzymatic browning reactions in apple and apple products. Crit. Rev. Food Sci. Nutr. 1994, 34, 109–157. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Pan, Z. Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating. J. Food Eng. 2009, 90, 441–452. [Google Scholar] [CrossRef]
- Yang, X.H.; Deng, L.Z.; Mujumdar, A.S.; Xiao, H.W.; Zhang, Q.; Kan, Z. Evolution and modeling of colour changes of red pepper (Capsicum annuum L.) during hot air drying. J. Food Eng. 2018, 231, 101–108. [Google Scholar] [CrossRef]
- Fayos, O.; Aguiar, A.D.; Jiménez-Cantizano, A.; Ferreiro-González, M.; Garcés-Claver, A.; Martínez, J.; Ruiz-Rodríguez, A.; Palma, M.; Barroso, C. Ontogenetic variation of individual and total capsaicinoids in malagueta peppers (Capsicum frutescens) during fruit maturation. Molecules 2017, 22, 736. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef]
- Rhim, J.W.; Hong, S.I. Effect of water activity and temperature on the color change of red pepper (Capsicum annuum L.) powder. Food Sci. Biotechnol. 2011, 20, 215–222. [Google Scholar] [CrossRef]
- Mendez-Lagunas, L.; Rodríguez-Ramírez, J.; Cruz-Gracida, M.; Sandoval-Torres, S.; Barriada-Bernal, G. Convective drying kinetics of strawberry (Fragaria ananassa): Effects on antioxidant activity, anthocyanins and total phenolic content. Food Chem. 2017, 230, 174–181. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56, 110–129. [Google Scholar] [CrossRef]
Blanching Time (s) | Deff (10−10 m2/s) | R2 | Blanching Temperature (°C) | Deff (10−10 m2/s) | R2 |
---|---|---|---|---|---|
Untreated | 4.22 c | 0.9964 | Untreated | 4.22 c | 0.9964 |
30 | 4.62 b | 0.9978 | 110 | 4.71 b | 0.9973 |
60 | 4.71 b | 0.9973 | 120 | 4.82 b | 0.9918 |
90 | 5.01 a | 0.9956 | 130 | 5.11 a | 0.9886 |
120 | 4.66 b | 0.9927 | |||
150 | 4.17 c | 0.9902 | |||
180 | 3.89 d | 0.9895 |
Two Term | |||||||
---|---|---|---|---|---|---|---|
Condition | k0 | k1 | a | b | R2 | RMSE | χ2 × 104 |
60 °C | 3.031 | −2.03 | 1.19 | 1.224 | 0.9983 | 0.01394 | 17.48 |
70 °C | 3.672 | −2.673 | 1.059 | 0.9177 | 0.9994 | 0.01246 | 0.000466 |
80 °C | 10.22 | −9.205 | 1.192 | 1.142 | 0.998 | 0.01986 | 15.77 |
Modified Weibull | |||||||
Condition | α | β | A | R2 | RMSE | χ2 × 104 | |
60 °C | 95.28 | 0.827 | 0.167 | 0.9864 | 0.03605 | 130 | |
70 °C | 84.72 | 0.998 | 0.192 | 0.9956 | 0.02391 | 28.6 | |
80 °C | 60 | 0.949 | 0.182 | 0.9947 | 0.03582 | 64.2 | |
Wang and Singh | |||||||
Condition | a | b | R2 | RMSE | χ2 × 104 | ||
60 °C | −0.7027 | 0.122 | 0.9705 | 0.05189 | 296.2 | ||
70 °C | −0.8993 | 0.2067 | 0.9918 | 0.03364 | 67.91 | ||
80 °C | −1.21 | 0.365 | 0.9954 | 0.02472 | 36.66 | ||
Page | |||||||
Condition | k | n | R2 | RMSE | χ2 × 104 | ||
60 °C | 1.116 | 1.03 | 0.9984 | 0.01221 | 16.41 | ||
70 °C | 1.299 | 1.12 | 0.9978 | 0.01728 | 17.92 | ||
80 °C | 1.893 | 1.276 | 0.9992 | 0.01002 | 6.026 | ||
Lewis | |||||||
Condition | k | R2 | RMSE | χ2 × 104 | |||
60 °C | 1.126 | 0.9982 | 0.01227 | 18.06 | |||
70 °C | 1.315 | 0.9957 | 0.02252 | 35.5 | |||
80 °C | 1.794 | 0.9929 | 0.02846 | 56.71 |
Drying Temperature (°C) | Red Pigments (g/kg) | a* | b* | L* |
---|---|---|---|---|
60 | 9.47 ± 0.12 b | 41.27 ± 0.05 b | 37.73 ± 0.15 c | 39.17 ± 0.07 c |
70 | 9.94 ± 0.18 a | 42.92 ± 0.06 a | 42.20 ± 0.07 b | 44.43 ± 0.18 a |
80 | 9.60 ± 0.06 b | 43.77 ± 0.02 a | 43.62 ± 0.02 a | 42.88 ± 0.09 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Z.; Huang, X.; Wang, J.; Xiao, H.; Yang, X.; Zhu, L.; Qi, X.; Zhang, Q.; Hu, B. Pulsed Vacuum Drying of Pepper (Capsicum annuum L.): Effect of High-Humidity Hot Air Impingement Blanching Pretreatment on Drying Kinetics and Quality Attributes. Foods 2022, 11, 318. https://doi.org/10.3390/foods11030318
Geng Z, Huang X, Wang J, Xiao H, Yang X, Zhu L, Qi X, Zhang Q, Hu B. Pulsed Vacuum Drying of Pepper (Capsicum annuum L.): Effect of High-Humidity Hot Air Impingement Blanching Pretreatment on Drying Kinetics and Quality Attributes. Foods. 2022; 11(3):318. https://doi.org/10.3390/foods11030318
Chicago/Turabian StyleGeng, Zhihua, Xiao Huang, Jun Wang, Hongwei Xiao, Xuhai Yang, Lichun Zhu, Xiaochen Qi, Qian Zhang, and Bin Hu. 2022. "Pulsed Vacuum Drying of Pepper (Capsicum annuum L.): Effect of High-Humidity Hot Air Impingement Blanching Pretreatment on Drying Kinetics and Quality Attributes" Foods 11, no. 3: 318. https://doi.org/10.3390/foods11030318
APA StyleGeng, Z., Huang, X., Wang, J., Xiao, H., Yang, X., Zhu, L., Qi, X., Zhang, Q., & Hu, B. (2022). Pulsed Vacuum Drying of Pepper (Capsicum annuum L.): Effect of High-Humidity Hot Air Impingement Blanching Pretreatment on Drying Kinetics and Quality Attributes. Foods, 11(3), 318. https://doi.org/10.3390/foods11030318