Effect of Anolyte on S. Typhimurium and L. monocytogenes Growth in Minced Pork and Beef Cuts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Cultures
2.2. Preparation of Bacterial Cultures for Contamination
2.3. Preparation of Anolyte
2.4. Beef Cut Contamination and Anolyte Treatment
2.5. Minced Pork Contamination and Anolyte Treatment
2.6. Microbiological Analysis
- Total viable count (TVC) on plate count agar (Liofilchem, Italy);
- Number of Salmonella spp. on XLD agar, with colony confirmation using biochemical tests (reaction on triple sugar/iron agar, urea agar, L-lizine decarboxylation medium) and serological reaction if the colonies were suspicious or typical;
- Number of Listeria in Agar Listeria, according to Ottaviani and Agosti (Biolife, Monza, Italy), with colony confirmation using a microscopic view, beta-hemolysis test and L-Rhamnose and D-Xylose tests if the colonies were suspicious or typical.
2.7. Statistical Analysis
3. Results
4. Discussion
- Anolyte is effective at reducing L. monocytogenes and S. Typhimurium counts in beef cuts and minced pork over a 29 day period;
- While initially anolyte can reduce the TVC in beef cuts and minced pork, it starts to increase during the storage period again. However, the TVC is lower, compared to control;
- Taking into account our findings and the findings of other authors, anolyte seems to be a promising tool for reducing bacterial growth in meat products and extending their shelf-life;
- In the future, research could be expanded further by studying the effects of anolyte on other pathogens, as well as in different types of meat and under different processing conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bermúdez-Aguirre, D.; Barbosa-Cánovas, G.V. Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. Food Control. 2013, 29, 82–90. [Google Scholar] [CrossRef]
- Ölmez, H.; Kretzschmar, U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT Food Sci. Technol. 2009, 42, 686–693. [Google Scholar] [CrossRef]
- Bessi, H.; Debbabi, H.; Grissa, K.; Bellagha, S. Microbial reduction and quality of stored date fruits treated by electrolyzed water. J. Food Qual. 2014, 37, 42–49. [Google Scholar] [CrossRef]
- Kiura, H.; Sano, K.; Morimatsu, S.; Nakano, T.; Morita, C.; Yamaguchi, M.; Maeda, T.; Katsuoka, Y. Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration. J. Microbiol. Methods 2002, 49, 285–293. [Google Scholar] [CrossRef]
- Aider, M.; Gnatko, E.; Benali, M.; Plutakhin, G.; Kastyuchik, A. Electro-activated aqueous solutions: Theory and application in the food industry and biotechnology. Innov. Food Sci. Emerg. Technol. 2012, 15, 38–49. [Google Scholar] [CrossRef]
- Steponavičius, D.; Raila, A.; Steponavičienė, A.; Lugauskas, A.; Kemzūraitė, A. Preventive measures reducing superficial mycobiotic contamination of grain. Ann. Agric. Environ. Med. 2012, 19, 193–201. [Google Scholar]
- Ignatov, I.; Gluhchev, G.; Karadzhov, S.; Miloshev, G.; Ivanov, N.; Mosin, O. Preparation of electrochemically activated water solutions (Catholyte/Anolyte) and studying their physical-chemical properties. J. Health Med. Nurs. 2015, 13, 64–78. [Google Scholar]
- Казанкин, Д.C. Бактерициднoе действие анoлита в аспекте биoлoгии и экoлoгии микрooрганизмoв. 2000. Available online: https://ikar.udm.ru/sb/sb17-2.htm (accessed on 10 January 2021).
- Nan, S.; Li, Y.; Li, B.; Wang, C.; Cui, X.; Cao, W. Effect of slightly acidic electrolyzed water for inactivating escherichia coli O157:H7 and staphylococcus aureus analyzed by transmission electron microscopy. J. Food Prot. 2010, 73, 2211–2216. [Google Scholar] [CrossRef]
- Thorn, R.M.S.; Lee, S.W.H.; Robinson, G.M.; Greenman, J.; Reynolds, D.M. Electrochemically activated solutions: Evidence for antimicrobial efficacy and applications in healthcare environments. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 641–653. [Google Scholar] [CrossRef]
- Rajkowski, K.T.; Sommers, C.H. Effect of anolyte on background microflora, salmonella, and listeria monocytogenes on catfish fillets. J. Food Prot. 2012, 75, 765–770. [Google Scholar] [CrossRef]
- Cloete, T.E.; Thantsha, M.S.; Maluleke, M.R.; Kirkpatrick, R. The antimicrobial mechanism of electrochemically activated water against Pseudomonas aeruginosa and Escherichia colias determined by SDS-PAGE analysis. J. Appl. Microbiol. 2009, 107, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Kitanovski, V.D.; Vlahova-Vangelova, D.B.; Dragoev, S.G.; Nikolov, H.N.; Balev, D.K. Effect of electrochemically activated anolyte on the shelf life of cold stored rainbow trout. Food Sci. Appl. Biotechnol. 2018, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Workneh, T.S.; Osthoff, G.; Steyn, M. Effects of preharvest treatment, disinfections, packaging and storage environment on quality of tomato. J. Food Sci. Technol. 2011, 49, 685–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commission regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Off. J. Eur. Union L338 2005, 1–26. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32005R2073 (accessed on 10 January 2021).
- McCarthy, S.; Burkhardt, W. Efficacy of electrolyzed oxidizing water against Listeria monocytogenes and Morganella morganii on conveyor belt and raw fish surfaces. Food Control. 2012, 24, 214–219. [Google Scholar] [CrossRef]
- Al-Holy, M.A.; Rasco, B.A. The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on raw fish, chicken and beef surfaces. Food Control. 2015, 54, 317–321. [Google Scholar] [CrossRef]
- Mikš-Krajnik, M.; Feng, L.X.J.; Bang, W.S.; Yuk, H.-G. Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control. 2017, 74, 54–60. [Google Scholar] [CrossRef]
- Fabrizio, K.A.; Cutter, C.N. Application of electrolyzed oxidizing water to reduce Listeria monocytogenes on ready-to-eat meats. Meat Sci. 2005, 71, 327–333. [Google Scholar] [CrossRef]
- Athayde, D.R.; Flores, D.R.M.; da Silva, J.S.; Genro, A.L.G.; Silva, M.S.; Klein, B.; Mello, R.; Campagnol, P.C.B.; Wagner, R.; de Menezes, C.R.; et al. Application of electrolyzed water for improving pork meat quality. Food Res. Int. 2017, 100, 757–763. [Google Scholar] [CrossRef]
- Liao, X.; Xiang, Q.; Cullen, P.J.; Su, Y.; Chen, S.; Ye, X.; Liu, D.; Ding, T. Plasma-activated water (PAW) and slightly acidic electrolyzed water (SAEW) as beef thawing media for enhancing microbiological safety. LWT 2020, 117, 108649. [Google Scholar] [CrossRef]
- Korodecky, A. Живая и Мертвая Вoда-Сoвершеннoе Лекарствo. In Living and Non-Living Water-Perfect Medicine; Piter publishing house: Saint-Petersburg, Russia, 2010. [Google Scholar]
- Hricova, D.; Stephan, R.; Zweifel, C. Electrolyzed Water and Its Application in the Food Industry. J. Food Prot. 2008, 71, 1934–1947. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-J.; Alexander, E.; Taylor, G.A.; Costa, R.; Kang, D.-H. Effects of organic matter on acidic electrolysed water for reduction of foodborne pathogens on lettuce and spinach. J. Appl. Microbiol. 2008, 105, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Rico, J.; Artés-Hernández, F.; Gomez, P.A.; Sanchez, M.Á.; Artés, F.; Martínez-Hernández, G.B. Neutral and acidic electrolysed water kept microbial quality and health promoting compounds of fresh-cut broccoli throughout shelf life. Innov. Food Sci. Emerg. Technol. 2014, 21, 74–81. [Google Scholar] [CrossRef]
Concentration of Anolyte Used for Spraying of Meat Cuts | Suspension of L. monocytogenes Used for Contamination of Meat Cuts 300 g, CFU/mL | Object of Investigation (Raw Meat) | Total Viable Count. CFU/g Meat Cut | ||||
---|---|---|---|---|---|---|---|
Raw Meat | Meat after Contamination | Meat after Spraying with Anolyte | After 10 Days of Incubationat 0–4 °C | After 29 Days of Incubation at 0–4 °C | |||
20%, beef | 1500 CFU/mL | Control 1 | (2.27 ± 0.06) × 103 | - | - | (1.97 ± 0.06) × 105 | (5.67 ± 0.29) × 106 |
Experimental meat | (2.10 ± 0.0) × 103 | (4.73 ± 0.26) × 103 a | (4.30 ± 0.27) × 102 b | (1.87 ± 0.06) × 105 c | (4.10 ± 0.26) × 106 d * | ||
15,000 CFU/mL | Control 1 | (2.27 ± 0.06) × 103 | - | - | (1.97 ± 0.06) × 105 | (5.67 ± 0.29) × 106 | |
Control 2 | (2.17 ± 0.12) × 103 | (4.4± 0.61) × 103 | - | (2.0 ± 0.0) × 105 | (5.80 ± 0.53) × 106 | ||
Experimental meat | (2.2 ± 0.1) × 103 | (1.2 ± 0.1) × 104 a | (1.0 ± 0.17) × 103 b | (1.87 ± 0.06) × 105 c | (4.33 ± 0.21) × 106 d * |
Concentration of Anolyte Used for Spraying of Meat Cuts | Suspension of L. monocytogenes Used for Contamination of Meat Cuts, CFU/mL | Object of Investigation (Raw Meat) | L. monocytogenes. CFU/g Meat Cut | ||||
---|---|---|---|---|---|---|---|
Raw Meat | Meat after Contamination | Meat after Spraying with Anolyte | After 10 Days of Incubation at 0–4 °C | After 29 Days of Incubation at 0–4 °C | |||
20%, beef | 1500 CFU/mL | Control 1 | <1.0 × 101 | - | - | <1.0 × 101 | <1.0 × 101 |
Experimental meat | <1.0 × 101 | (3.87 ± 0.15) × 103 a | <1.0 × 101 b | <1.0 × 101 b | <1.0 × 101 b | ||
15,000 CFU/mL | Control 1 | <1.0 × 101 | - | - | <1.0 × 101 | <1.0 × 101 | |
Control 2 | <1.0 × 101 | (3.17 ± 0.35) × 103 a | - | (2.97 ± 0.42) × 103 a | (2.67 ± 0.49) × 103 b | ||
Experimental meat | <1.0 × 101 | (8.77 ± 0.59) × 103 a | (3.33 ± 0.58) × 102 b | <1.0 × 101 c | <1.0 × 101 c |
Concentration of Anolyte Used for Spraying of Meat Cuts | Suspension of S. Typhimurium Used for Contamination of Meat Cuts, CFU/mL | Object of Investigation (Raw Meat) | Total Viable Count. CFU/g Meat Cut | ||||
---|---|---|---|---|---|---|---|
Raw Meat | Meat after Contamination | Meat after Spraying with Anolyte | After 10 Days of Incubationat 0–4 °C | After 29 Days of Incubation at 0–4 °C | |||
20%, beef | 1500 CFU/mL | Control 1 | (2.07± 0.06) × 103 | - | - | (2.63 ± 0.06) × 105 | (6.43 ± 0.25) × 106 |
Experimental meat | (2.10 ± 0.00) × 103 | (4.73 ± 0.06) × 103 a | (5.83 ± 0.21) × 102 b | (2.40 ± 0.1) × 105 c * | (4.03 ± 0.06) × 106 * | ||
15,000 CFU/mL | Control 1 | (2.07 ± 0.06) × 103 | - | - | (2.63 ± 0.06) × 105 | (6.43 ± 0.25) × 106 | |
Control 2 | (2.17 ± 0.06) × 103 | (4.4 ± 0.1) × 103 a | - | (2.63 ± 0.06) × 105 b | (6.6 ± 0.26) × 106 c | ||
Experimental meat | (2.13 ± 0.15) × 103 | (1.1 ± 0.06) × 104 a | (1.1 ± 0.06) × 103 b | (2.43 ±0.06) × 105 c | (4.7 ± 0.1) × 106 d * |
Concentration of Anolyte Used for Spraying of Meat Cuts | Suspension of S. Typhimurium Used for Contamination of Meat Cuts, CFU/mL | Object of Investigation (Raw Meat) | Total Viable Count. CFU/g Meat Cut | ||||
---|---|---|---|---|---|---|---|
Raw Meat | Meat after Contamination | Meat after Spraying with Anolyte | After 10 Days of Incubation at 0–4 °C | After 29 Days of Incubation at 0–4 °C | |||
20%, beef | 1500 CFU/mL | Control 1 | <1.0 × 101 | - | - | <1.0 × 101 | <1.0 × 101 |
Experimental meat | <1.0 × 101 | (4.3 ± 0.3) × 103 a | <1.0 × 101 b | <1.0 × 101 b | < 1.0 × 101 b | ||
15,000 CFU/mL | Control 1 | <1.0 × 101 | - | - | <1.0 × 101 | <1.0 × 101 | |
Control 2 | <1.0 × 101 | (3.4 ± 0.26) × 103 a | - | (3.07 ± 0.31) × 103 a | (2.83 ± 0.21) × 103 a | ||
Experimental meat | <1.0 × 101 | (1.0 ± 0.8) × 104 a | (4.3 ± 0.06) × 102 b | <1.0 × 101 c | <1.0 × 101 c |
Contamination Level | Total Viable Count, CFU/g | ||||
---|---|---|---|---|---|
Raw Minced Pork | Raw Pork Contaminated by L. monocytogenes | Contaminated Raw Pork after Addition of 18% Undiluted Anolyte and Mixing | Contaminated Pork Mixed with Anolyte after 10 Days of Incubation at 0–4 °C | Contaminated Pork Mixed with Anolyte after 29 Days of Incubation at 0–4 °C | |
10 mL 1.5 × 103 CFU/mL suspension of L. monocytogenes | (2.20 ± 0.10) × 104 | (1.82 ± 0.10) × 104 a | (8.02 ± 0.10) × 103 b | (1.40 ± 0.10) × 104 a | (2.80 ± 0.17) × 105 c |
10 mL 1.5 × 104 CFU/mL suspension of L. monocytogenes | (2.20 ± 0.10) × 104 | (2.40 ± 0.20) × 104 a | (1.40 ± 0.17) × 104 b * | (1.80 ± 0.20) × 104 b | (4.10 ± 0.10) × 105 c * |
10 mL 1.5 × 105 CFU/mL suspension of L. monocytogenes | (0.70 ± 0.10) × 104 | (6.60 ± 0.26) × 104 a | (2.70 ± 0.20) × 104 b ** | (1.80 ± 0.10) × 104 c | (8.00 ± 0.20) × 105 d ** |
Contamination Level | L. monocytogenes Count. CFU/g | ||||
---|---|---|---|---|---|
Raw Minced Pork | Raw Pork Contaminated by L. monocytogenes | Contaminated Raw Pork after Addition of 18% Undiluted Anolyte and Mixing | Contaminated Pork Mixed with Anolyte after 10 Days of Incubation at 0–4 °C | Contaminated Pork Mixed with Anolyte after 29 Days of Incubation at 0–4 °C | |
10 mL 1.5 × 103 CFU/mL suspension of L. monocytogenes | <1.00 × 101 | (1.60 ± 0.10) × 103 a | <1.00 × 101 b | <1.00 × 101 b | <1.00 × 101 b |
10 mL 1.5 × 104 CFU/mL suspension of L. monocytogenes | <1.00 × 101 | (3.70 ± 0.17) × 103 a | (6.00 ± 0.10) × 102 b | (5.60 ± 0.17) × 102 b | <1.00 × 101 c |
10 mL 1.5 × 105 CFU/mL suspension of L. monocytogenes | <1.00 × 101 | (2.50 ± 0.10) × 104 a | (1.30 ± 0.20) × 103 b | (1.80 ± 0.26) × 103 b | (2.20 ± 0.20) × 102 c * |
Contamination Level | Total Viable Count, CFU/g | ||||
---|---|---|---|---|---|
Raw Minced Pork | Raw Pork Contaminated by S. Typhimurium | Contaminated Raw Pork after Addition of 18% Undiluted Anolyte and Mixing | Contaminated Pork Mixed with Anolyte after 10 Days of Incubation at 0–4 °C | Contaminated Pork Mixed with Anolyte after 29 Days of Incubation at 0–4 °C | |
10 mL 1.5 × 103 CFU/mL suspension of S. Typhimurium | (2.20 ± 0.10) × 104 | (2.20 ± 0.26) × 104 a | (6.40 ± 0.17) × 103 b | (2.10 ± 0.17) × 104 a | (4.10 ± 0.20) × 105 c |
10 mL 1.5 × 104 CFU/mL suspension of S. Typhimurium | (2.20 ± 0.10) × 104 | (5.40 ± 0.26) × 104 a | (1.90 ± 0.10) × 104 b | (2.30 ± 0.26) × 104 b | (4.00 ± 0.17) × 105 c |
10 mL 1.5 × 105 CFU/mL suspension of S. Typhimurium | (0.70 ± 0.11) × 104 | (5.40 ± 0.17) × 104 a | (3.60 ± 0.36) × 104 b | (3.90 ± 0.17) × 104 b | (7.80 ± 0.26) × 105 c * |
Contamination Level | S. Typhimurium. CFU/g | ||||
---|---|---|---|---|---|
Raw Minced Pork | Raw Pork Contaminated by S. Typhimurium | Contaminated Raw Pork after Addition of 18% Undiluted Anolyte and Mixing | Contaminated Pork Mixed with Anolyte after 10 Days of Incubation at 0–4 °C | Contaminated Pork Mixed with Anolyte after 29 Days of Incubation at 0–4 °C | |
10 mL 1.5 × 103 CFU/mL suspension of S. Typhimurium | <1.00 × 101 | (3.50 ± 0.43) × 102 a | <1.00 × 101 b | <1.00 × 101 b | <1.00 × 101 b |
10 mL 1.5 × 104 CFU/mL suspension of S. Typhimurium | <1.00 × 101 | (3.00 ± 0.17) × 103 a | (1.30 ± 0.20) × 103 b | (1.90 ± 0.20) × 103 b | (8.0 ± 0.08) × 101 c * |
10 mL 1.5 × 105 CFU/mL suspension of S. Typhimurium | <1.00 × 101 | (1.90 ± 0.17) × 104 a | (1.40 ± 0.17) × 103 b | (2.00 ± 0.26) × 103 b | (2.30 ± 0.20) × 102 c ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riešutė, R.; Šalomskienė, J.; Šalaševičienė, A.; Mačionienė, I. Effect of Anolyte on S. Typhimurium and L. monocytogenes Growth in Minced Pork and Beef Cuts. Foods 2022, 11, 415. https://doi.org/10.3390/foods11030415
Riešutė R, Šalomskienė J, Šalaševičienė A, Mačionienė I. Effect of Anolyte on S. Typhimurium and L. monocytogenes Growth in Minced Pork and Beef Cuts. Foods. 2022; 11(3):415. https://doi.org/10.3390/foods11030415
Chicago/Turabian StyleRiešutė, Reda, Joana Šalomskienė, Alvija Šalaševičienė, and Irena Mačionienė. 2022. "Effect of Anolyte on S. Typhimurium and L. monocytogenes Growth in Minced Pork and Beef Cuts" Foods 11, no. 3: 415. https://doi.org/10.3390/foods11030415
APA StyleRiešutė, R., Šalomskienė, J., Šalaševičienė, A., & Mačionienė, I. (2022). Effect of Anolyte on S. Typhimurium and L. monocytogenes Growth in Minced Pork and Beef Cuts. Foods, 11(3), 415. https://doi.org/10.3390/foods11030415