Gluten-Free Bread and Bakery Products Technology
Abstract
:1. Introduction
2. Raw Materials for Gluten-Free Bread and Bakery Products
3. Gluten-Free Dough Specifications
3.1. Proteins in Gluten-Free Dough and Products
3.2. Starch in Gluten-Free Dough and Products
- (a)
- Using enzyme preparations.
- (b)
- Application of hydrocolloids.
- (c)
- Using sourdough fermentation.
- (d)
- Suitable packaging method.
3.2.1. Use of Enzyme Preparations
3.2.2. Use of Hydrocolloids
3.2.3. Microbial Fermentation in Gluten-Free Bread Production
3.3. Gluten-Free Bread and Bakery Products Spoilage
3.4. New Technologies in Gluten-Free Dough and Bread Preparation
4. Clean Label vs. Gluten-Free Products
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Toma, A.; Volta, U.; Auricchio, R.; Castillejo, G.; Sanders, D.S.; Cellier, C.; Mulder, C.J.; Lundin, K. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur. Gastroenterol. J. 2019, 7, 583–613. [Google Scholar] [CrossRef]
- Gabrovská, D.; Hálová, I.; Chrpová, D.; Ouhrabková, J.; Sluková, M.; Vavreinová, S.; Faměra, O.; Kohout, P.; Pánek, J.; Skřivan, P. Cereals in Human Nutrition (Obiloviny v Lidské Výživě), 1st ed.; Federation of the Food and Drink Industries of the Czech Republic: Prague, Czech Republic, 2015; pp. 44–49. [Google Scholar]
- Toth, M.; Vatai, G.; Koris, A. Consumers’ Acceptance, Satisfaction in Consuming Gluten-free Bread: A Market Survey Approach. Int. J. Celiac Dis. 2020, 8, 44–49. [Google Scholar]
- Codex Standard 118-1979. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B118-1979%252FCXS_118e_2015.pdf (accessed on 9 January 2022).
- Wieser, H. Chemistry of gluten proteins. Food Microbiol. 2007, 24, 115–119. [Google Scholar] [CrossRef]
- Gluten Structure from the Database UNIPROT. Available online: https://www.uniprot.org/ (accessed on 22 January 2022).
- Gomez, A.; Ferrero, C.; Calvelo, A.; Añón, M.; Puppo, M. Effect of Mixing Time on Structural and Rheological Properties of Wheat Flour Dough for Breadmaking. Int. J. Food Prop. 2011, 14, 583–598. [Google Scholar] [CrossRef]
- Culetu, A.; Susman, I.E.; Duta, D.E.; Belc, N. Nutritional and Functional Properties of Gluten-Free Flours. Appl. Sci. 2021, 11, 6283. [Google Scholar] [CrossRef]
- Djeghim, F.; Bourekoua, H.; Różyło, R.; Bieńczak, A.; Tanaś, W.; Zidoune, M.N. Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties. Appl. Sci. 2021, 11, 4605. [Google Scholar] [CrossRef]
- Kirbas, Z.; Kumcuoglu, S.; Tavman, S. Effects of apple, orange and carrot pomace powders on gluten-free batter rheology and cake properties. J. Food Sci. Technol. 2019, 56, 914–926. [Google Scholar] [CrossRef]
- Krishna, K.R.; Bejkar, M.; Du, S.; Serventi, L. Flax and wattle seed powders enhance volume and softness of gluten-free bread. Food Sci. Technol. Int. 2019, 25, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Steffolani, E.; de la Hera, E.; Pérez, G.; Gómez, M. Effect of Chia on Gluten-Free Bread Quality. J. Food Qual. 2014, 37, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Fratelli, C.; Santos, F.G.; Muniz, D.G.; Habu, S.; Braga, A.R.C.; Capriles, V.D. Psyllium improves the quality and shelf life of gluten-free bread. Foods 2021, 10, 954. [Google Scholar] [CrossRef] [PubMed]
- Genevois, C.E.; de Escalada Pla, M.F. Soybean by-products and modified cassava starch for improving alveolar structure and quality characteristics of gluten-free bread. Eur. Food Res. Technol. 2021, 247, 1477–1488. [Google Scholar] [CrossRef]
- Skendi, A.; Papageorgiou, M.; Varzakas, T. High Protein Substitutes for Gluten in Gluten-Free Bread. Foods 2021, 10, 1997. [Google Scholar] [CrossRef]
- Korus, J.; Achremowicz, B. Fiber preparations of different origin used as additives in baking gluten-free breads. Food Sci. Technol. Qual. 2004, 1, 65–73. [Google Scholar]
- Arslan, M.; Rakha, A.; Xiaobo, Z.; Mahmood, M.A. Complimenting gluten free bakery products with dietary fiber: Opportunities and constraints. Trends Food Sci. Technol. 2019, 83, 194–202. [Google Scholar] [CrossRef]
- Morreale, F.; Benavent-Gila, Y.; Rosell, C.M. Inulin enrichment of gluten free breads: Interaction between inulin and yeast. Food Chem. 2019, 278, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Drabinska, N.; Zielinski, H.; Krupa-Kozak, U. Technological benefits of inulin-type fructans application in gluten-free products—A review. Trends Food Sci. Technol. 2016, 56, 149–157. [Google Scholar] [CrossRef]
- Tsatsaragkou, K.; Protonotariu, S.; Mandala, I. Structural role of fibre addition to increase knowledge of non-gluten bread. J. Cereal Sci. 2016, 67, 58–67. [Google Scholar] [CrossRef]
- Azizi, S.; Azizi, M.H.; Moogouei, R.; Rajaei, P. The effect of Quinoa flour and enzymes on the quality of gluten-free bread. Food Sci. Nutr. 2020, 8, 2373–2382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandri, L.T.B.; Santos, F.G.; Fratelli, C.; Capriles, V.D. Development of gluten-free bread formulations containing whole chia flour with acceptable sensory properties. Food Sci Nutr. 2017, 5, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Ramos, L.; Alonso-Hernando, A.; Martínez-Castro, M.; Morán-Pérez, J.A.; Cabrero-Lobato, P.; Pascual-Maté, A.; Téllez-Jiménez, E.; Mujico, J.R. Sourdough Biotechnology Applied to Gluten-Free Baked Goods: Rescuing the Tradition. Foods 2021, 10, 1498. [Google Scholar] [CrossRef]
- Ketabi, A.; Soleimanian-Zad, S.; Kadivar, M.; Sheikh-zeinoddin, M. Production of microbial exopolysaccharides in the sourdough and its effects on the rheological properties of dough. Food Res. Int. 2008, 41, 948–951. [Google Scholar] [CrossRef]
- Deora, N.V.; Deswal, A.H.N.; Mishra, H.N. Alternative approaches towards gluten-free dough development: Recent trends. Food Eng. Rev. 2014, 6, 89–104. [Google Scholar] [CrossRef]
- Horstman, S.W.; Atzler, J.J.; Heitmann, M.; Zannini, E.; Lynch, K.M.; Arendt, E.K. A comparative study of gluten-free sprouts in the gluten-free bread-making process. Eur. Food Res. Technol. 2019, 245, 617–629. [Google Scholar] [CrossRef]
- Ouazib, M.; Garzon, R.; Zaidi, F.; Rosell, C.M. Germinated, toasted and cooked chickpea as ingredients for breadmaking. J. Food Sci. Technol. 2016, 53, 2664–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, M.H.B.; Moore, M.M.; Ryan, L.A.M.; Arendt, E.K. Impact of emulsifiers on the quality and rheological properties of gluten-free breads and batters. Eur. Food Res. Technol. 2009, 228, 633–642. [Google Scholar] [CrossRef]
- Medvid, I.; Shydlovska, O.; Ishchenko, T. Influence of the combination of emulsifiers on the properties of rice gluten-free dough and the quality of bread. Food and Environ. Saf. 2021, 20, 172–181. [Google Scholar]
- Gómez, M.; Sciarini, L.S. Gluten-Free Bakery Products and Pasta. In Advances in the Understanding of Gluten Related Pathology and the Evolution of Gluten-Free Foods; Arranz, E., Fernández-Bañares, F., Rosell, C.M., Rodrigo, L., Peña, A.S., Eds.; OmniaScience: Barcelona, Spain, 2015; pp. 565–604. [Google Scholar]
- Capelli, A.; Oliva, N.; Cini, E. A systematic review of gluten-free dough and bread: Dough rheology, bread characteristics, and improvement strategies. Appl. Sci. 2020, 10, 6559. [Google Scholar] [CrossRef]
- Anton, A.A.; Artfield, S.D. Hydrocolloids in gluten-free breads: A review. Int. J. Food Sci. Nutr. 2008, 59, 11–23. [Google Scholar] [CrossRef]
- McCarthy, D.F.; Gallagher, E.; Gormley, T.R.; Schober, T.J.; Arendt, E.K. Application of response surface methodology in the development of gluten-free bread. Cereal. Chem. 2005, 82, 609–615. [Google Scholar] [CrossRef]
- Demirkesen, I.; Mert, B.; Sumnu, G.; Sahin, S. Rheological properties of gluten-free bread formulations. J. Food Engineer. 2010, 96, 295–303. [Google Scholar] [CrossRef]
- Conte, P.; Fadda, C.; Drabinska, N.; Krupa-Kozak, U. Technological and nutritional challenges, and novelty in gluten-free breadmaking: A review. Pol. J. Food Nutr. Sci. 2019, 69, 5–21. [Google Scholar] [CrossRef]
- Burešová, I.; Bureš, D.; Čurečkova, K. Comparison of Gluten-Free Dough Ability to Produce Leavening Gas During Baking and its Impact on Crumb Characteristics. Kvasny Prum. 2017, 63, 8–10. [Google Scholar] [CrossRef] [Green Version]
- Arendt, E.K.; Da Bello, F. Gluten-Free Cereal products and Beverages; Department of Food and Nutritional Sciences University College Cork Ireland: Cork, Ireland; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Burešová, I. Evaluation of Rheological Characteristics of Gluten-Free Doughs (Metody Hodnocení Reologických Vlastností Bezlepkového Těsta). Ph.D. Thesis, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic, 2015. Available online: https://theses.cz/id/z89z21/buresova-iva-2015.pdf (accessed on 28 January 2022).
- Arendt, E.K. Advances in Gluten Free Cereal Research; School of Food and Nutritional Sciences, University College Cork: Cork, Ireland, 2016; Available online: https://www.ksla.se/wp-content/uploads/2016/02/Elke-Arendt.pdf (accessed on 29 January 2022).
- Burešová, I.; Buňka, F.; Kráčmar, S. Rheological characteristics of gluten-free dough. J. Microbiol. Biotech. Food Sci. 2014, 3, 195–198. [Google Scholar]
- Salehi, F. Improvement of gluten-free bread and cake properties using natural hydrocolloids: A review. Food Sci. Nutr. 2019, 7, 3391–3402. [Google Scholar] [CrossRef] [Green Version]
- Rustagi, S.; Khan, S.; Choudhary, S.; Pandey, A.; Khan, M.K.; Kumari, A.; Singh, A. Hydroxypropyl methylcellulose and whey protein concentrate as technological improver in formulation of gluten-free protein rich bread. Curr. Res. Nutr Food Sci Jour. 2018, 6, 211–221. [Google Scholar]
- Lerner, A.; Wusterhausen, P.; Ramesh, A.; Torsten, M. Celiac Disease and Lactose Intolerance. Int. J. Celiac Dis. 2018, 6, 68–70. [Google Scholar]
- Huettner, E.; Arendt, E. Recent advances in gluten-free baking and the current status of oats. Trends Food Sci. Technol. 2010, 21, 303–331. [Google Scholar] [CrossRef]
- Espinoza-Herrera, J.; Martínez, L.M.; Serna-Saldívar, S.O.; Chuck-Hernández, C. Methods for the modification and evaluation of cereal proteins for the substitution of wheat gluten in dough systems. Foods 2021, 10, 118. [Google Scholar] [CrossRef]
- Federici, E. Physical and chemical treatments of zein to improve gluten-free bread quality. A Dissertation Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy. Department of Food Science, West Lafayette, Indiana May 2021. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwir0rf3yuT1AhV-7rsIHUp8D4EQFnoECBgQAQ&url=https%3A%2F%2Fhammer.purdue.edu%2Farticles%2Fthesis%2FPHYSICAL_AND_CHEMICAL_TREATEMENTS_OF_ZEIN_TO_IMPROVE_GLUTEN-FREE_BREAD_QUALITY%2F14079554%2F1%2Ffiles%2F26640344.pdf&usg=AOvVaw3O_ie9adAd3_SLq1-sknJF (accessed on 13 January 2022).
- Föste, M.; Elgeti, D.; Jekle, M.; Becker, T. Manufacture of gluten-free breads—A question of the substrate? Bak. + Biscuit 2013, 6, 46–49. [Google Scholar]
- Sciarini, L.S.; Ribotta, P.D.; León, A.E.; Pérez, G.T. Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food Bioprocess. Technol. 2010, 3, 577–585. [Google Scholar] [CrossRef]
- Foschia, M.; Horstmann, S.W.; Arendt, E.K.; Zannini, E. Legumes as Functional Ingredients in Gluten-Free Bakery and Pasta Products. Annu. Rev. Food Sci. Technol. 2017, 8, 75–96. [Google Scholar] [CrossRef] [PubMed]
- Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Current and forward-looking approaches to technological and nutritional improvements of gluten-free bread with legume flours: A critical review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1101–1122. [Google Scholar] [CrossRef] [PubMed]
- Aditiya, U.J.; Changqi, L.; Shridhar, K.S. Functional properties of select seed flours. LWT—Food Sci. Technol. 2015, 60, 325–331. [Google Scholar]
- Burbano, J.J.; Cabezas, D.M.; Correa, M.J. Effect of walnut flour addition on rheological, thermal and microstructural properties of a gluten free-batter. LWT—Food Sci. Technol. 2022, 154, 112819. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Horstmann, S.; Lynch, K.M.; Arendt, E.K. Starch characteristics linked to gluten-free products. Foods 2017, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aal, E.-S.M. 11 Functionality of Starches and Hydrocolloids in Gluten-Free Foods. In Gluten-Free Food Science and Technology; Gallagher, E., Ed.; Wiley-Blackwell: Oxford, UK, 2009; p. 200. [Google Scholar]
- Hug-Iten, S.; Escher, F.; Conde-Petit, B. Structural Properties of Starch in Bread and Bread Model Systems: Influence of an Antistaling α-Amylase. Cereal Chem. 2001, 78, 421–428. [Google Scholar] [CrossRef]
- Mancebo, C.M.; Merino, C.; Martínez, M.M.; Gómez, M. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality. J. Food Sci. Technol. 2015, 52, 6323–6333. [Google Scholar] [CrossRef] [Green Version]
- Ziobro, R.; Korus, J.; Witczak, M.; Juszczak, L. Influence of modified starches on properties of gluten-free dough and bread. Part II: Quality and staling of gluten-free bread. Food Hydrocoll. 2012, 29, 68–74. [Google Scholar] [CrossRef]
- Hu, X.; Guo, B.; Liu, C.; Yan, X.; Chen, J.; Luo, S.; Liu, Y.; Wang, H.; Yang, R.; Zhong, Y.; et al. Modification of potato starch by using superheated steam. Carbohydr. Polym. 2018, 198, 375–384. [Google Scholar] [CrossRef]
- Witczak, M.; Ziobro, R.; Juszczak, L.; Korus, J. Starch and starch derivatives in gluten-free systems—A review. J. Cereal Sci. 2016, 67, 46–57. [Google Scholar] [CrossRef]
- Kaur, R.S.; Chopra, C.S. Gluten-free products for celiac susceptible people. Front. Nutr. 2018, 5, 116. [Google Scholar]
- Palabiyik, I.; Yildiz, O.; Toker, O.S.; Cavus, M.; Ceylan, M.M.; Yurt, B. Investigating the addition of enzymes in gluten-free flours—The effect on pasting and textural properties. LWT—Food Sci. Technol., 2016, 69, 633–641. [Google Scholar] [CrossRef]
- Motahar, S.F.S.; Ariaeenejad, S.; Salami, M.; Emam-Djomeh, Z.; Mamaghani, A.S.A. Improving the quality of gluten-free bread by a novel acidic thermostable α-amylase from metagenomics data. Food Chem. 2021, 352, 129307. [Google Scholar] [CrossRef] [PubMed]
- Haghighat-Kharazi, S.; Kasaai, M.R.; Milani, J.M.; Khajeh, K. Microencapsulation of α-amylase in beeswax and its application in gluten-free bread as an anti-staling agent. Food Sci. Nutr. 2020, 8, 5888–5897. [Google Scholar] [CrossRef] [PubMed]
- Ngemakwe, P.N.; Le Roes-Hill, M.; Jideani, V. Advances in gluten-free bread technology. Food Sci. Technol. Int. 2014, 21, 256–276. [Google Scholar] [CrossRef]
- Bender, D.; Schoenlechner, R. Innovative approaches towards improved gluten-free bread properties. J.Cereal Sci. 2020, 91, 102904. [Google Scholar] [CrossRef]
- Huang, W.; Li, L.; Wang, F.; Wan, J.; Tilley, M.; Ren, C.; Wu, S. Effects of transglutaminase on the rheologicaland Mixolab thermomechanical characteristics of oat dough. Food Chem. 2010, 121, 934–939. [Google Scholar] [CrossRef]
- Ogilvie, O.; Roberts, S.; Sutton, K.; Larsen, N.; Gerrard, J.; Domigan, L. The use of microbial transglutaminasein a bread system: A study of gluten protein structure, deamidation state and protein digestion. Food Chem. 2021, 340, 127903. [Google Scholar] [CrossRef]
- Dłużewska, E.; Marciniak-Lukasiak, K.; Kurek, N. Effect of transglutaminase additive on the quality of gluten-free bread. CyTA–J. Food 2015, 13, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Tomić, J.; Torbica, A.; Belović, M. Effect of non-gluten proteins and transglutaminase on dough rheological properties and quality of bread based on millet (Panicum miliaceum) flour. LWT 2020, 118, 108852. [Google Scholar] [CrossRef]
- Diowksz, A.; Sadowska, A. Impact of sourdough and transglutaminase on gluten-free buckwheat bread quality. Food Biosci. 2021, 43, 101309. [Google Scholar] [CrossRef]
- Silva, H.A.; Paiva, E.G.; Lisboa, H.M.; Duarte, E.; Cavalcanti-Mata, M.; Gusmão, T.; de Gusmão, R. Role of chitosan and transglutaminase on the elaboration of gluten-free bread. J. Food Sci. Technol. 2020, 57, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Li, Y.; Li, C.; Ban, X.; Cheng, L.; Hong, Y.; Gu, Z. Co-supported hydrocolloids improve the structure and texture quality of gluten-free bread. LWT 2021, 152, 112248. [Google Scholar] [CrossRef]
- Azghar, A.; Zia, M. Effects of xanthan gum and guar gum on the quality and storage stability of gluten free frozen dough bread. Amer. J. Food Nutr. 2016, 6, 107–112. [Google Scholar]
- Manik, L.C.M.; Nur, M. The recent development of gluten-free bread quality using hydrocolloids. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 733, p. 012101. [Google Scholar]
- Ren, Y.; Linter, B.R.; Linforth, R.; Foster, T.J. A comprehensive investigation of gluten free bread dough rheology, proving and baking performance and bread qualities by response surface desigh and principal component analysis. Food Funct. 2020, 11, 5333–5345. [Google Scholar] [CrossRef]
- Liu, X.; Mu, T.; Sun, H.; Zhang, M.; Chen, J.; Fauconnier, M.L. Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour. Food Chem. 2018, 239, 1064–1074. [Google Scholar] [CrossRef] [Green Version]
- Morreale, F.; Garzón, R.; Rosell, C.M. Understanding the role of hydrocolloids viscosity and hydration in developing gluten-free bread. A study with hydroxypropylmethylcellulose. Food Hydrocoll. 2018, 77, 629–635. [Google Scholar] [CrossRef]
- Lazaridou, A.; Duta, D.; Papageorgiou, M.; Belc, N.; Biliaderis, C.G. Effects of hydrocolloids on doughrheology and bread quality parameters in gluten-free formulations. J. Food Eng. 2007, 79, 10331047. [Google Scholar] [CrossRef]
- Hager, A.S.; Arendt, E.K. Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and theircombination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breadsbased on rice, maize, teff and buckwheat. Food Hydrocoll. 2013, 32, 195–203. [Google Scholar] [CrossRef]
- Belorio, M.; Gómez, M. Effect of hydration on gluten-free breads made with hydroxypropyl methylcellulose in comparison with psyllium and xanthan gum. Foods 2020, 9, 1548. [Google Scholar] [CrossRef]
- Zoghi, A.; Mirmahdi, R.S.; Mohammadi, M. The role of hydrocolloids in the development of gluten-free cereal-based products for coeliac patients: A review. Int. J. Food Sci. Technol. 2021, 56, 3138–3147. [Google Scholar] [CrossRef]
- Marti, A.; Bottega, G.; Franzetti, L.; Morandin, F.; Quaglia, L.; Pagani, M.A. From wheat sourdough to gluten-free sourdough: A non-conventional process for producing gluten-free bread. Int. J. Food Sci. Technol. 2015, 50, 1268–1274. [Google Scholar] [CrossRef]
- Maidana, S.D.; Finch, S.; Garro, M.; Savoy, G.; Gänzle, M.; Vignolo, G. Development of gluten-free breads started with chia and flaxseed sourdoughs fermented by selected lactic acid bacteria. LWT 2020, 125, 109189. [Google Scholar] [CrossRef]
- Moroni, A.V.; Dal Bello, F.; Arendt, E.K. Sourdough in gluten-free bread-making: An ancient technology to solve a novel issue? Food Microbiol. 2009, 26, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M.; Paciulli, M.; Caligiani, A.; Scazzina, F.; Chiavaro, E. Sourdough fermentation and chestnut flour in gluten-free bread: A shelf-life evaluation. Food Chem. 2017, 224, 144–152. [Google Scholar] [CrossRef]
- Jagelaviciute, J.; Cizeikiene, D. The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. LWT 2021, 137, 110457. [Google Scholar] [CrossRef]
- Olojede, A.O.; Sanni, A.I.; Banwo, K.; Adesulu-Dahunsi, A.T. Sensory and antioxidant properties and in-vitro digestibility of gluten-free sourdough made with selected starter cultures. LWT 2020, 129, 109576. [Google Scholar] [CrossRef]
- Puerta, P.; Garzón, R.; Rosell, C.M.; Fiszman, S.; Laguna, L.; Tárrega, A. Modifying gluten-free bread’s structure using different baking conditions: Impact on oral processing and texture perception. LWT 2021, 140, 110718. [Google Scholar] [CrossRef]
- Różyło, R.; Rudy, S.; Krzykowski, A.; Dziki, D.; Gawlik-Dziki, U.; Różyło, K.; Skonecki, S. Effect of adding fresh and freeze-dried buckwheat sourdough on gluten-free bread quality. Int. J. Food Sci. Technol. 2014, 50, 313–322. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F. Strategies to extend bread and GF bread shelf-life: From sourdough to antimicrobial active packaging and nanotechnology. Fermentation 2018, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 3rd ed; Springer: New York, NY, USA, 2009; pp. 401–404. [Google Scholar]
- Garcia, M.V.; Copetti, M.V. Alternative methods for mould spoilage control in bread and bakery products. Int. Food Res. J. 2019, 26, 737–749. [Google Scholar]
- Valerio, F.; De Bellis, P.; Di Biase, M.; Lonigro, S.L.; Giussani, B.; Visconti, A.; Lavermicocca, P.; Sisto, A. Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread. Int. J. Food Microbiol. 2012, 156, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Axel, C.; Zannini, E.; Arendt, E. Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Crit. Rev. Food Sci. Nutr. 2016, 57, 3528–3542. [Google Scholar] [CrossRef]
- Qian, M.; Liu, D.; Zhang, X.; Yin, Z.; Ismail, B.B.; Ye, X.; Guo, M. A review of active packaging in bakery products: Applications and future trends. Trends Food Sci. Technol. 2021, 114, 459–471. [Google Scholar] [CrossRef]
- Romão, B.; Botelho, R.B.A.; Alencar, E.R.; Nunes da Silva, V.S.; Bertoldo Pacheco, M.T.; Puppin Zandonadi, R. Chemical composition and glycemic index of gluten-free bread commercialized in Brazil. Nutrients 2020, 12, 2234. [Google Scholar] [CrossRef]
- Roman, L.; Belorio, M.; Gomez, M. Gluten-free breads: The gap between research and commercial reality. Compr. Rev. Food Sci. Food Saf. 2019, 18, 690–702. [Google Scholar] [CrossRef] [Green Version]
- Kurek, M.A.; Wyrwisz, J.; Karp, S. Effect of modified atmosphere packaging on the quality of wheat bread fortified with soy flour and oat fibre. Food Meas. 2019, 13, 1864–1872. [Google Scholar] [CrossRef] [Green Version]
- Pasqualone, A. Bread Packaging: Features and Functions. In Flour and Breads and their Fortification in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press: London, UK, 2019; pp. 211–222. [Google Scholar]
- Valková, V.; Ďúranová, H.; Galovičová, L.; Vukovic, N.L.; Vukic, M.; Kačániová, M. In Vitro antimicrobial activity of lavender, mint, and rosemary essential oils and the effect of their vapours on growth of Penicillium spp. in a bread model system. Molecules 2021, 26, 3859. [Google Scholar] [CrossRef]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.Ł.; Čmiková, N.; Kačániová, M. Thymus vulgaris essential oil and its biological activity. Plants 2021, 10, 1959. [Google Scholar] [CrossRef] [PubMed]
- Axel, C.; Brosnan, B.; Zannini, E.; Furey, A.; Coffey, A.; Arendt, E.K. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. Int. J. Food Microbiol. 2016, 239, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Axel, C.; Röcker, B.; Brosnan, B.; Zannini, E.; Furey, A.; Coffey, A.; Arendt, E.K. Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiol. 2015, 47, 36–44. [Google Scholar] [CrossRef]
- Bartkiene, E.; Lele, V.; Ruzauskas, M.; Domig, K.J.; Starkute, V.; Zavistanaviciute, P.; Bartkevics, V.; Pugajeva, I.; Klupsaite, D.; Juodeikiene, G.; et al. Lactic acid bacteria isolation from spontaneous sourdough and their characterization including antimicrobial and antifungal properties evaluation. Microorganisms 2020, 8, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zangeneh, M.; Khorami, S.; Khalegh, M. Bacteriostatic activity and partial characterization of the bacteriocin produced by L. plantarum sp. isolated from traditional sourdough. Food Sci. Nutr. 2020, 11, 6023–6030. [Google Scholar] [CrossRef]
- Quattrini, M.; Liang, N.; Fortina, M.G.; Xiang, S.; Curtis, J.; Gänzle, M. Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. Int. J. Food Microbiol. 2019, 302, 8–14. [Google Scholar] [CrossRef]
- Jeong, D.; Hong, J.S.; Liu, Q.; Choi, H.; Chung, H. The effects of different levels of heat-treated legume flour on nutritional, physical, textural, and sensory properties of gluten-free muffins. Cereal Chem. 2020, 98, 392–404. [Google Scholar] [CrossRef]
- Villanueva, M.; Harasym, J.; Muñoz, J.M.; Ronda, F. Rice flour physically modified by microwave radiation improves viscoelastic behavior of doughs and its bread-making performance. Food Hydrocoll. 2019, 90, 472–481. [Google Scholar] [CrossRef] [Green Version]
- Boulemkahel, S.; Benatallah, L.; Besombes, C.; Allaf, K.; Zidoune, M.N. Impact of instant controlled pressure drop (DIC) treatment on the technological quality of gluten-free bread based on rice-field bean formula using design of experiments. Afr. J. Food Sci. 2021, 15, 121–130. [Google Scholar]
- Chhanwal, N.; Bhushette, P.R.; Anandharamakrishnan, C. Current perspectives on non-conventional heating ovens for baking process—A review. Food Bioprocess. Technol. 2019, 12, 1–15. [Google Scholar] [CrossRef]
- Rosell, C.M.; Aalami, M.; Mahdavi, S.A. Innovative Gluten-Free Products. In Innovative Processing Technologies for Healthy Grains; Pojic, M., Tiwari, U., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 177–198. [Google Scholar] [CrossRef]
- Simsek, S.T. Evaluation of partial-vacuum baking for gluten-free bread: Effects on quality attributes and storage properties. J. Cereal Sci. 2020, 91, 102891. [Google Scholar] [CrossRef]
- Do Nascimento, K.d.O.; do Nascimento Dias Paes, S.; Ivanilda, M.A. A Review ‘Clean Labeling’: Applications of Natural Ingredients in Bakery Products. J. Food Nutr. Res. 2018, 6, 285–294. [Google Scholar] [CrossRef]
- Kajzer, M.; Diowksz, A. The clean label concept: Novel approaches in gluten-free breadmaking. Appl. Sci. 2021, 11, 6129. [Google Scholar] [CrossRef]
- Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX:32008R1333 (accessed on 15 December 2021).
- Karp, S.; Wyrwisz, J.; Kurek, M.A.; Wierzbicka, A. The use of high-in-β-glucan oat fibre powder as a structuring agent in gluten-free yeast-leavened cake. Food Sci. Technol. Int. 2019, 25, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, M.; Pontonio, E.; Rizzello, C.G. Design of a “Clean-Label” gluten-free bread to meet consumers demand. Foods 2021, 10, 462. [Google Scholar] [CrossRef] [PubMed]
- Carcelli, A.; Masuelli, E.; Diantom, A.; Vittadini, E.; Carini, E. Probing the Functionality of Physically Modified Corn Flour as Clean Label Thickening Agent with a Multiscale Characterization. Foods 2020, 9, 1105. [Google Scholar] [CrossRef] [PubMed]
Flour | Wheat Flour | Gluten-Free 1 | Gluten-Free 2 | Gluten-Free 3 | Gluten-Free 4 | Gluten-Free 5 |
---|---|---|---|---|---|---|
Nutritional Values | per 100 g | per 100 g | per 100 g | per 100 g | per 100 g | per 100 g |
Energy (kJ) | 1430 | 1517 | 919 | 1490 | 1497 | 1475 |
Energy (kcal) | 337 | 362 | 219 | 356 | 358 | 351 |
Fats (g) | 1 | 1.9 | 4.4 | 0.7 | 5.6 | 0.9 |
of which saturates (g) | 0.2 | 0.5 | 1.9 | 0.1 | 0.6 | 0.2 |
Carbohydrates (g) | 69 | 81.9 | 42 | 84 | 66 | 80 |
of which sugars (g) | 2 | 3.8 | <0.5 | <0.5 | 0.8 | 1.4 |
Proteins (g) | 12 | 3.2 | 2.3 | 2.4 | 7.2 | 2.7 |
Fiber (g) | 2 | - | 1.1 | - | 6.0 | 4.4 |
Salt (g) | <0.005 | 0.2 | 1.4 | 1.5 | 2.5 | 0.83 |
Fresh Bun | Conventional | Gluten-Free |
---|---|---|
Nutritional Values | per 100 g | per 100 g |
Energy (kJ) | 1352 | 1144 |
Energy (kcal) | 320 | 272 |
Fats (g) | 5.4 | 8.9 |
of which saturates (g) | 1.6 | 1.8 |
Carbohydrates (g) | 55.8 | 42 |
of which sugars (g) | 1.2 | 3.9 |
Proteins (g) | 10.0 | 4.4 |
Fiber (g) | 2.9 | 3.1 |
Salt (g) | 1.5 | 1.3 |
Wheat Flours | Gluten-Free Flours | |
---|---|---|
Raw materials | ||
swelling | good | better |
Dough | ||
repeated kneading | yes | no |
stickiness | no/small | typically high |
Dynamic oscillation rheometry | ||
G’storage modul | lower | higher |
G´´loss modul | lower | higher |
phase angle tg(d) | higher | lower |
Extensograph | ||
extensibility | high | poor |
extensibility resistance | high | mostly lower |
R/E ratio | mostly lower | mostly higher |
area under the curve (extensibility energy) | high | very low |
Farinograph | ||
development time | low | different according to the raw material |
stability | high | different according to the raw material |
degree of softening | not a clear trend | not a clear trend |
water binding | mostly lower | mostly higher |
Bread | ||
volume | high | low |
crust color | darker | light |
crust | crunchy | more moist, dense |
crumb elasticity | good | low |
porosity | good | low |
pore size | large | small |
staling rate | slow | faster |
crust moisture | optimal | more moist |
crumbliness | low | significantly higher |
hardness | soft | higher |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šmídová, Z.; Rysová, J. Gluten-Free Bread and Bakery Products Technology. Foods 2022, 11, 480. https://doi.org/10.3390/foods11030480
Šmídová Z, Rysová J. Gluten-Free Bread and Bakery Products Technology. Foods. 2022; 11(3):480. https://doi.org/10.3390/foods11030480
Chicago/Turabian StyleŠmídová, Zuzana, and Jana Rysová. 2022. "Gluten-Free Bread and Bakery Products Technology" Foods 11, no. 3: 480. https://doi.org/10.3390/foods11030480
APA StyleŠmídová, Z., & Rysová, J. (2022). Gluten-Free Bread and Bakery Products Technology. Foods, 11(3), 480. https://doi.org/10.3390/foods11030480