Starch Molecular Structural Features and Volatile Compounds Affecting the Sensory Properties of Polished Australian Wild Rice
Abstract
:1. Introduction
- (1)
- Studying the sensory properties of a polished AWR and CR counterparts.
- (2)
- Characterization of the molecular size distributions of whole branched starch and chain-length distributions (CLDs) of these debranched starches, using size-exclusion chromatography (SEC) for Am and fluorophore-assisted carbohydrate electrophoresis (FACE) for Ap. FACE gives baseline resolution for amylopectin chains but cannot go above a degree of polymerization of 150 and, thus, is essentially confined to amylopectin chains. SEC can be used for any degree of polymerization, but suffers from band-broadening and uncertainties arising from the assumptions needed to convert SEC elution volume to degree of polymerization; with this caveat, it is used here for amylose chains. The Ap and Am CLDs were characterized using biosynthesis-based mathematical models [11,12] to obtain biologically-relevant structural parameters for subsequent use in finding structure-property relations.
- (3)
- Volatile compounds were studied by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS).
- (4)
- Model-fitting parameters and the amounts of volatile compounds were correlated with sensory attributes by Pearson correlation.
2. Materials and Methods
2.1. Materials
2.2. In-Vitro Digestion
2.3. Composition of Rice Grains
2.4. Color of Rice Grains
2.5. Starch Extraction from Rice Grains
2.6. Rice Cooking and Physical Properties
2.7. Sensory Evaluation
2.8. Starch Molecular Structural Characterization
2.9. Fitting Ap and Am CLDs to Models
2.10. Analysis of Volatile Compounds
2.11. Statistical Analysis
3. Results and Discussion
3.1. Comparison of In-Vitro Digestibility Properties of AWR and CRs
3.2. Chemical Composition and Physical Traits of Rice Grains
3.3. Sensory Attributes and Evaluation of the Accuracy of the Sensory Data
3.4. Comparison of Sensory Properties between Cooked AWR and CRs
3.5. Starch Molecular Structure Analysis
3.6. Comparison of Starch Molecular Structural Parameters of AWR and CRs
3.7. Determination of Volatile Compounds
3.8. Correlations between Chemical Compositions, Molecular Structural Parameters, and Broken Grains
3.9. Correlations between Molecular Structural Parameters, Volatile Compounds, and Sensory Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Huang, L.; Sreenivasulu, N.; Liu, Q. Waxy editing: Old meets new. Trends Plant Sci. 2020, 25, 963–966. [Google Scholar] [CrossRef] [PubMed]
- Brozynska, M.; Copetti, D.; Furtado, A.; Wing, R.A.; Crayn, D.; Fox, G.; Ishikawa, R.; Henry, R.J. Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice. Plant Biotechnol. J. 2017, 15, 765–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Henry, R.J.; Gilbert, R.G. Starch structure-property relations in Australian wild rices compared to domesticated rices. Carbohydr. Polym. 2021, 271, 118412. [Google Scholar] [CrossRef] [PubMed]
- Tikapunya, T.; Henry, R.J.; Smyth, H. Evaluating the sensory properties of unpolished Australian wild rice. Food Res. Int. 2018, 103, 406–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, K.; Yu, W.; Gilbert, R.G. High-amylose rice: Starch molecular structural features controlling cooked rice texture and preference. Carbohydr. Polym. 2019, 219, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Zhao, C.; Yan, M.; Huang, D.; David Julian, M.; Huang, Z.; Cao, C. Influence of gene regulation on rice quality: Impact of storage temperature and humidity on flavor profile. Food Chem. 2019, 283, 141–147. [Google Scholar] [CrossRef]
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Aroma compounds. In Food Chemistry; Belitz, H.-D., Grosch, W., Schieberle, P., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2004; pp. 342–408. [Google Scholar] [CrossRef]
- Li, H.; Prakash, S.; Nicholson, T.M.; Fitzgerald, M.A.; Gilbert, R.G. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohydr. Polym. 2016, 146, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Fan, N.; Shewan, H.M.; Smyth, H.E.; Yakubov, G.E.; Stokes, J.R. Dynamic tribology protocol (DTP): Response of salivary pellicle to dairy protein interactions validated against sensory perception. Food Hydrocoll. 2021, 113, 106478. [Google Scholar] [CrossRef]
- Gao, C.; Li, Y.; Pan, Q.; Fan, M.; Wang, L.; Qian, H. Analysis of the key aroma volatile compounds in rice bran during storage and processing via HS-SPME GC/MS. J. Cereal Sci. 2021, 99, 103178. [Google Scholar] [CrossRef]
- Wu, A.C.; Morell, M.K.; Gilbert, R.G. A parameterized model of amylopectin synthesis provides key insights into the synthesis of granular starch. PLoS ONE 2013, 8, e65768. [Google Scholar] [CrossRef]
- Nada, S.S.; Zou, W.; Li, C.; Gilbert, R.G. Parameterizing amylose chain-length distributions for biosynthesis-structure-property relations. Anal. Bioanal. Chem. 2017, 409, 6813–6819. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tan, X.; Wu, G.; Gilbert, R.G. Using molecular fine structure to identify optimal methods of extracting starch. Starch-Stärke 2020, 72, 1900214. [Google Scholar] [CrossRef]
- Mohapatra, D.; Bal, S. Cooking quality and instrumental textural attributes of cooked rice for different milling fractions. J. Food Eng. 2006, 73, 253–259. [Google Scholar] [CrossRef]
- Meullenet, J.-F.; Champagne, E.T.; Bett, K.L.; McClung, A.M.; Kauffmann, D. Instrumental assessment of cooked rice texture characteristics: A method for breeders. Cereal Chem. 2000, 77, 512–517. [Google Scholar] [CrossRef]
- Vilaplana, F.; Gilbert, R.G. Characterization of branched polysaccharides using multiple-detection size separation techniques. J. Sep. Sci. 2010, 33, 3537–3554. [Google Scholar] [CrossRef] [PubMed]
- Cave, R.A.; Seabrook, S.A.; Gidley, M.J.; Gilbert, R.G. Characterization of starch by size-exclusion chromatography: The limitations imposed by shear scission. Biomacromolecules 2009, 10, 2245–2253. [Google Scholar] [CrossRef]
- Wu, A.C.; Li, E.; Gilbert, R.G. Exploring extraction/dissolution procedures for analysis of starch chain-length distributions. Carbohydr. Polym. 2014, 114, 36–42. [Google Scholar] [CrossRef]
- Setyaningsih, W.; Majchrzak, T.; Dymerski, T.; Namieśnik, J.; Palma, M. Key-marker volatile compounds in aromatic rice (Oryza Sativa) Grains: An HS-SPME extraction method combined with GC× GC-TOFMS. Molecules 2019, 24, 4180. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, X.; Zhang, C.h.; Wang, J.z.; Tang, C.h.; Chen, L.l. Flavor compounds and sensory profiles of a novel Chinese marinated chicken. J. Sci. Food Agric. 2016, 96, 1618–1626. [Google Scholar] [CrossRef]
- Li, H.; Dhital, S.; Gidley, M.J.; Gilbert, R.G. A more general approach to fitting digestion kinetics of starch in food. Carbohydr. Polym. 2019, 225, 115244. [Google Scholar] [CrossRef]
- Yu, W.; Tao, K.; Gilbert, R.G. Improved methodology for analyzing relations between starch digestion kinetics and molecular structure. Food Chem. 2018, 264, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Syahariza, Z.A.; Li, E.; Hasjim, J. Extraction and dissolution of starch from rice and sorghum grains for accurate structural analysis. Carbohydr. Polym. 2010, 82, 14–20. [Google Scholar] [CrossRef]
- Hasjim, J.; Li, E.P.; Dhital, S. Milling of rice grains: Effects of starch/flour structures on gelatinization and pasting properties. Carbohydr. Polym. 2013, 92, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lu, L.; Guo, Z.; Zhu, Z. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci. Technol. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Van Gemert, L. Compilations of Odour Threshold Values in Air, Water and Other Media; Boelens Aroma Chemical Information Service: Huizen, The Netherlands, 2003. [Google Scholar]
- Zhao, Q.; Xue, Y.; Shen, Q. Changes in the major aroma-active compounds and taste components of Jasmine rice during storage. Food Res. Int. 2020, 133, 109160. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Zhang, M.; Zhang, Y.; Wang, H.; Chen, K.; Dai, Z.; Shen, Q. Development of a 450 nm laser irradiation desorption method for fast headspace solid-phase microextraction of volatiles from krill oil (Euphausia superba). Eur. J. Lipid Sci. Technol. 2019, 121, 1800446. [Google Scholar] [CrossRef]
- Jia, X.; Zhou, Q.; Wang, J.; Liu, C.; Huang, F.; Huang, Y. Identification of key aroma—active compounds in sesame oil from microwaved seeds using E-nose and HS-SPME-GC× GC-TOF/MS. J. Food Biochem. 2019, 43, e12786. [Google Scholar] [CrossRef]
- Migita, K.; Iiduka, T.; Tsukamoto, K.; Sugiura, S.; Tanaka, G.; Sakamaki, G.; Yamamoto, Y.; Takeshige, Y.; Miyazawa, T.; Kojima, A. Retort beef aroma that gives preferable properties to canned beef products and its aroma components. Anim. Sci. J. 2017, 88, 2050–2056. [Google Scholar] [CrossRef]
- Parmar, K.; Patel, J.; Sheth, N. Flavor nanotechnology: Recent trends and applications. In Flavors for Nutraceutical and Functional Foods; Selvamuthukumaran, M., Pathak, Y.V., Eds.; CRC Press: Boca Raton, FL, USA; New York, NY, USA, 2018; pp. 217–234. [Google Scholar] [CrossRef]
- Feng, T.; Yang, M.; Ma, B.; Zhao, Y.; Zhuang, H.; Zhang, J.; Chen, D. Volatile profiles of two genotype Agaricus bisporus species at different growth stages. Food Res. Int. 2021, 140, 109761. [Google Scholar] [CrossRef]
- Wijit, N.; Prasitwattanaseree, S.; Mahatheeranont, S.; Wolschann, P.; Jiranusornkul, S.; Nimmanpipug, P. Estimation of retention time in GC/MS of volatile metabolites in fragrant rice using principle components of molecular descriptors. Anal. Sci. 2017, 33, 1211–1217. [Google Scholar] [CrossRef] [Green Version]
- Attar, U.; Hinge, V.; Zanan, R.; Adhav, R.; Nadaf, A. Identification of aroma volatiles and understanding 2-acetyl-1-pyrroline biosynthetic mechanism in aromatic mung bean (Vigna radiata (L.) Wilczek). Physiol. Mol. Biol. Plants 2017, 23, 443–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beldarrain, L.R.; Morán, L.; Sentandreu, M.Á.; Barron, L.J.R.; Aldai, N. Effect of ageing time on the volatile compounds from cooked horse meat. Meat Sci. 2022, 184, 108692. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.L.B.; dos Santos, P.; Martínez, J. Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: A review. J. CO2 Util. 2018, 23, 159–178. [Google Scholar] [CrossRef]
- Bu, T.; Zhou, M.; Zheng, J.; Yang, P.; Song, H.; Li, S.; Wu, J. Preparation and characterization of a low-phenylalanine whey hydrolysate using two-step enzymatic hydrolysis and macroporous resin adsorption. LWT—Food Sci. Technol. 2020, 132, 109753. [Google Scholar] [CrossRef]
- Oliveira, W.d.S.; Monsalve, J.O.; Nerin, C.; Padula, M.; Godoy, H.T. Characterization of odorants from baby bottles by headspace solid phase microextraction coupled to gas chromatography-olfactometry-mass spectrometry. Talanta 2020, 207, 120301. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, O. Identification of the characteristic odorants in fresh rhizomes of ginger (Zingiber officinale Roscoe) using aroma extract dilution analysis and modified multidimensional gas chromatography-mass spectroscopy. J. Agric. Food Chem. 1995, 43, 2941–2945. [Google Scholar] [CrossRef]
- Malathi, K.; Ramaiah, S. Ethyl iso-allocholate from a medicinal rice Karungkavuni inhibits dihydropteroate synthase in Escherichia coli: A molecular docking and dynamics study. Indian J. Pharm. Sci. 2017, 78, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Kitta, K.; Ebihara, M.; Iizuka, T.; Yoshikawa, R.; Isshiki, K.; Kawamoto, S. Variations in lipid content and fatty acid composition of major non-glutinous rice cultivars in Japan. J. Food Compos. Anal. 2005, 18, 269–278. [Google Scholar] [CrossRef]
- Yan, W.; Liu, Q.; Wang, Y.; Tao, T.; Liu, B.; Liu, J.; Ding, C. Inhibition of lipid and aroma deterioration in rice bran by infrared heating. Food Bioprocess Technol. 2020, 13, 1677–1687. [Google Scholar] [CrossRef]
- Xie, J.-C.; Sun, B.-G.; Wang, S.-B. Aromatic constituents from Chinese traditional smoke-cured bacon of Mini-pig. Food Sci. Technol. Int. 2008, 14, 329–340. [Google Scholar] [CrossRef]
- Xiao, L.; Lee, J.; Zhang, G.; Ebeler, S.E.; Wickramasinghe, N.; Seiber, J.; Mitchell, A.E. HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chem. 2014, 151, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Effect of high pressure steam on the eating quality of cooked rice. LWT—Food Sci. Technol. 2019, 104, 100–108. [Google Scholar] [CrossRef]
- Morris, W.L.; Shepherd, T.; Verrall, S.R.; McNicol, J.W.; Taylor, M.A. Relationships between volatile and non-volatile metabolites and attributes of processed potato flavour. Phytochemistry 2010, 71, 1765–1773. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Sowndhararajan, K.; Choi, H.J.; Park, S.J.; Kim, S. Olfactory stimulation effect of aldehydes, nonanal, and decanal on the human electroencephalographic activity, according to nostril variation. Biomedicines 2019, 7, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, D.K.; Srivastav, P.P. A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review. Food Res. Int. 2020, 130, 108924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dai, Z.; Fan, X.; Liu, M.; Ma, J.; Shang, W.; Liu, J.; Strappe, P.; Blanchard, C.; Zhou, Z. A study on volatile metabolites screening by HS-SPME-GC-MS and HS-GC-IMS for discrimination and characterization of white and yellowed rice. Cereal Chem. 2020, 97, 496–504. [Google Scholar] [CrossRef]
- Kunst, L.; Samuels, A.L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 2003, 42, 51–80. [Google Scholar] [CrossRef]
- Hui, Y.H.; Chandan, R.C.; Clark, S.; Cross, N.A.; Dobbs, J.C.; Hurst, W.J.; Nollet, L.M.; Shimoni, E.; Sinha, N.K.; Smith, E.B. Handbook of Food Products Manufacturing: Health, Meat, Milk, Poultry, Seafood, and Vegetables; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 2. [Google Scholar]
- Maraval, I.; Mestres, C.; Pernin, K.; Ribeyre, F.; Boulanger, R.; Guichard, E.; Gunata, Z. Odor-active compounds in cooked rice cultivars from Camargue (France) analyzed by GC−O and GC−MS. J. Agric. Food Chem. 2008, 56, 5291–5298. [Google Scholar] [CrossRef]
- Dias, L.; Duarte, G.; Mariutti, L.; Bragagnolo, N. Aroma profile of rice varieties by a novel SPME method able to maximize 2-acetyl-1-pyrroline and minimize hexanal extraction. Food Res. Int. 2019, 123, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Peanparkdee, M.; Patrawart, J.; Iwamoto, S. Physicochemical stability and in vitro bioaccessibility of phenolic compounds and anthocyanins from Thai rice bran extracts. Food Chem. 2020, 329, 127157. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Takeda, T.; Yoshida, S. Comparison of volatiles in cooked rice with various amylose contents. Food Sci. Technol. Res. 2014, 20, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Hemar, Y.; Zhu, F. Relationships between supramolecular organization and amylopectin fine structure of quinoa starch. Food Hydrocoll. 2021, 117, 106685. [Google Scholar] [CrossRef]
Rice Varieties | Species | Product Details | Country of Origin | Total Starch Content (%) 1 | Total Crude Protein Content (%) 1 | Amylose Content (%) 2 | Minimum Cooking Time (min) |
---|---|---|---|---|---|---|---|
Australian Wild Rice | Wild rice | Harvested by hand from north of Cairns, Queensland (May 2019) | Australia | 78.0 ± 0.2 a,b | 11.9 ± 0.2 b | 24.8 ± 0.4 a | 17 |
Sushi | Japonica | SUNRICE Sushi rice, Japanese style | Australia | 79.1 ± 1.6 a | 10.0 ± 0.0 f | 16.4 ± 0.0 d | 15 |
Doongara | Japonica | SUNRICE Doongara Clever Rice (Low-GI white) | Australia | 79.4 ± 1.1 a | 11.6 ± 0.2 b,c | 22.9 ± 0.2 b | 20 |
Sona Masoori | Indica | KATOOMBA Premium Andhra Sona Masoori rice | India | 78.4 ± 0.2 a,b | 10.5 ± 0.1 e | 24.8 ± 0.5 a | 12 |
Ponni Raw | Indica | PATTU Premium Ponni raw rice | India | 75.9 ± 2.5 b | 13.2 ± 0.2 a | 25.5 ± 0.1 a | 12 |
Paella | Japonica | ARROZ La Marjal, Especial Paellas rice | Spain | 77.8 ± 0.6 a,b | 11.5 ± 0.2 c | 16.1 ± 0.2 d | 17 |
Long grain | Indica | SUNRICE Long Grain, White rice | Thailand | 79.0 ± 0.8 a | 11.1 ± 0.1 d | 25.4 ± 0.0 a | 18 |
Australian medium grain | Japonica | SUNRICE Australian Medium Grain, Calrose rice | Australia | 79.0 ± 1.0 a | 10.6 ± 0.2 e | 17.4 ± 0.5 c | 16 |
Rice Varieties | Length (mm) | Width (mm) | Length/Width | Color—Raw | Color—Cooked | BG 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Cooked | Raw | Cooked | Raw | Cooked | L* | a* | b* | C* | h° | L* | a* | b* | C* | h° | ||
Australian wild rice | 5.9 ± 0.5 c | 7.6 ± 0.8 e | 1.8 ± 0.2 e | 2.6 ± 0.2 c | 3.4 ± 0.3 b,c | 3.0 ± 0.4 c | 63.8 ± 0.9 e | 5.8 ± 0.2 a | 15.8 ± 0.5 a | 16.5 ± 0.3 a | 69.5 ± 0.5 e | 68.6 ± 1.8 d | 4.4 ± 0.1 a | 9.2 ± 0.5 a | 10.2 ± 0.5 a | 64.4 ± 0.5 e | 45 |
Sushi | 4.7 ± 0.2 f | 7.8 ± 0.5 d,e | 2.4 ± 0.1 b | 3.3 ± 0.4 a | 2.0 ± 0.1 f | 2.4 ± 0.4 e | 68.6 ± 2.2 d | −1.1 ± 0.1 c | 12.7 ± 0.6 c,d | 12.7 ± 0.6 c,d | 95.1 ± 0.4 b | 74.2 ± 1.4 c | −1.4 ± 0.1 c | 7.7 ± 0.3 b | 7.8 ± 0.3 b | 100.4 ± 0.8 c | 2 |
Doongara | 6.5 ± 0.5 b | 8.9 ± 0.7 b | 1.9 ± 0.1 d | 2.7 ± 0.2 c | 3.4 ± 0.2 b | 3.3 ± 0.3 c | 75.9 ± 1.3 a,b | −1.1 ± 0.0 c | 10.7 ± 0.5 e | 10.7 ± 0.5 e | 96.1 ± 0.2 a | 80.1 ± 5.0 b | −1.3 ± 0.1 c | 6.7 ± 0.7 c | 7.1 ± 0.1 c | 101.3 ± 2.0 b,c | 10 |
Sona Masoori | 5.3 ± 0.2 e | 8.7 ± 0.7 b,c | 1.6 ± 0.1 f | 2.2 ± 0.2 d | 3.3 ± 0.2 c | 4.1 ± 0.5 a | 75.6 ± 1.8 a,b | −0.7 ± 0.1 b | 13.5 ± 0.5 b,c | 13.5 ± 0.5 b,c | 93.0 ± 0.2 d | 72.0 ± 1.2 c,d | −1.5 ± 0.1 c | 6.6 ± 0.5 c | 6.8 ± 0.5 c,d | 103.2 ± 1.6 a,b | 1 |
Ponni Raw | 5.3 ± 0.2 e | 8.3 ± 0.7 b,c,d | 1.8 ± 0.1 e | 2.3 ± 0.3 d | 2.9 ± 0.2 d | 3.6 ± 0.6 b | 73.5 ± 1.1 b | −0.9 ± 0.1 b | 11.9 ± 0.3 d | 12.0 ± 0.3 d | 94.1 ± 0.5 c | 84.9 ± 1.1 a | −0.8 ± 0.2 b | 8.3 ± 0.6 b | 8.4 ± 0.6 b | 95.8 ± 1.8 d | 6 |
Paella | 5.7 ± 0.2 c,d | 10.0 ± 1.3 a | 2.8 ± 0.1 a | 3.3 ± 0.4 a | 2.0 ± 0.1 f | 3.1 ± 0.5 c | 77.7 ± 0.8 a | −0.7 ± 0.1 b | 10.7 ± 0.5 e | 10.7 ± 0.5 e | 94.0 ± 0.3 c | 73.1 ± 1.1 c | −1.4 ± 0.0 c | 6.1 ± 0.4 c | 6.3 ± 0.4 d | 102.5 ± 0.9 a,b,c | 7 |
Long grain | 7.3 ± 0.4 a | 10.4 ± 1.4 a | 2.0 ± 0.1 c | 2.7 ± 0.2 c | 3.6 ± 0.2 a | 3.9 ± 0.6 a,b | 71.2 ± 1.1 c | −0.9 ± 0.1 b | 13.3 ± 1.0 b,c | 13.3 ± 1.0 b,c | 93.7 ± 0.2 c | 71.7 ± 1.2 c,d | −1.4 ± 0.0 c | 5.2 ± 0.1 d | 5.3 ± 0.1 e | 105.1 ± 0.7 a | 28 |
Australian medium grain | 5.6 ± 0.3 d | 8.2 ± 0.6 c,d,e | 2.4 ± 0.1 b | 3.1 ± 0.3 b | 2.3 ± 0.2 e | 2.7 ± 0.4 d | 70.9 ± 0.7 c,d | −1.4 ± 0.1 d | 14.1 ± 0.3 b | 14.2 ± 0.3 b | 95.6 ± 0.3 a,b | 74.7 ± 0.5 c | −1.5 ± 0.2 c | 6.7 ± 0.2 c | 6.9 ± 0.2 c,d | 102.8 ± 1.8 a,b,c | 31 |
Attribute | Definition | Sample (n = 8) | Panelist (n = 11) | Replicate (n = 3) | Sample × Panellist | Sample × Replicate | Panellist × Replicate |
---|---|---|---|---|---|---|---|
Aroma | |||||||
Aroma intensity | Overall aroma intensity of sample. | 5 ** | 5 ** | 1 ns | 2 ** | 2 ** | 1 ns |
Texture | |||||||
Fluffiness | Light fluffy nature of sample when moved with a spoon, grains separated and light. | 42 ** | 5 ** | 2 ns | 3 ** | 2 ** | 1 ns |
Cohesiveness | How sample sticks to itself as a cohesive mass. | 49 ** | 7 ** | 1 ns | 2 ** | 3 ** | 1 ns |
Firmness | Hardness or firmness of sample on first chew. | 14 ** | 2 ns | 2 ns | 2 ** | 1 ns | 1 ns |
Stickiness | Glutinous sensation perceived where sample readily sticks both to itself and to oral surfaces. | 35 ** | 1 ns | 0 ns | 2 ** | 4 ** | 1 ns |
Chewiness | Amount of chewing required to break down sample. | 29 ** | 2 ns | 11 * | 1 ns | 1 ns | 1 ns |
Disintegration | How readily sample breaks down in mouth when chewing, disappearing and disintegrating quickly. | 9 ** | 4 ** | 11 * | 2 ** | 1 ns | 1 ns |
Flavor | |||||||
Flavor intensity | Overall flavor intensity. | 3 ** | 3 ** | 1 ns | 3 ** | 2 ** | 1 ns |
Rice Varieties | h | h,AM | h,Ap |
---|---|---|---|
Australian Wild Rice | 34.9 ± 0.1 c,d | 12.8 ± 0.0 e | 86.2 ± 0.2 c |
Sushi | 38.6 ± 0.0 b,c | 14.1 ± 0.1 b | 98.7 ± 1.5 b |
Doongara | 36.2 ± 2.8 b,c,d | 14.1 ± 0.0 b | 96.2 ± 3.2 b |
Sona Masoori | 38.6 ± 3.5 b,c | 14.1 ± 0.0 b | 100.9 ± 7.3 b |
Ponni Raw | 39.5 ± 2.4 b | 14.2 ± 0.2 b | 117.6 ± 2.3 a |
Paella | 44.9 ± 1.3 a | 13.4 ± 0.1 c | 112.8 ± 2.5 a |
Long grain | 32.9 ± 0.0 d | 13.0 ± 0.0 d | 84.8 ± 0.6 c |
Australian Medium grain | 36.2 ± 2.9 b,c,d | 14.6 ± 0.0 a | 100.4 ± 2.9 b |
Ap CLD Fitting Parameters | Am CLD Fitting Parameters | Branched SEC | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
βAp,i | βAp,ii | βAp,iii | βAp,iv | βAp,v | βAp,vi | hAp,i | hAp,iii | hAp,v | Am content | βAm,1 | βAm,2 | βAm,3 | hAm,1 | hAm,2 | hAm,3 | Rh | Rh,Am | Rh,Ap | ||
Aroma | Aroma intensity | 0.082 | −0.267 | −0.226 | −0.541 | −0.587 | 0.588 | −0.196 | 0.090 | 0.458 | 0.478 | −0.01 | −0.769 * | −0.750 * | 0.147 | 0.451 | 0.454 | −0.200 | −0.641 | −0.304 |
Sulfurous | 0.052 | −0.084 | 0.299 | −0.427 | −0.479 | 0.720 * | 0.152 | 0.340 | 0.262 | 0.104 | 0.281 | −0.756 * | −0.687 | −0.662 | −0.133 | 0.452 | 0.146 | −0.166 | 0.120 | |
Eggy | 0.266 | −0.179 | 0.454 | −0.242 | −0.007 | 0.132 | 0.165 | 0.529 | 0.199 | 0.084 | −0.093 | −0.383 | −0.297 | −0.393 | 0.163 | −0.056 | −0.234 | 0.143 | −0.062 | |
Green vegetable | −0.572 | 0.775 * | −0.066 | 0.286 | 0.027 | 0.616 | 0.525 | 0.523 | 0.097 | −0.638 | 0.697 | −0.089 | −0.072 | −0.591 | −0.725 * | −0.195 | 0.724 * | −0.289 | 0.270 | |
Root vegetables | −0.669 | 0.753 * | −0.045 | 0.132 | −0.096 | 0.632 | 0.629 | 0.354 | −0.012 | −0.610 | 0.578 | −0.103 | −0.115 | −0.415 | −0.715 * | −0.141 | 0.735 * | −0.236 | 0.448 | |
Sweet caramelized | −0.412 | 0.033 | −0.578 | 0.084 | −0.381 | −0.075 | 0.228 | 0.269 | 0.500 | 0.150 | 0.190 | 0.041 | −0.082 | 0.527 | 0.526 | −0.197 | −0.777 * | −0.415 | −0.736 * | |
Brown bread | −0.126 | −0.147 | 0.299 | −0.370 | −0.075 | −0.124 | 0.235 | 0.020 | −0.244 | −0.218 | 0.200 | 0.219 | 0.214 | −0.509 | −0.145 | −0.119 | −0.336 | 0.316 | −0.337 | |
Earthy | −0.544 | 0.555 | −0.226 | 0.109 | −0.386 | 0.812 * | 0.341 | 0.261 | 0.215 | −0.348 | 0.762 * | −0.347 | −0.363 | −0.535 | −0.603 | 0.251 | 0.622 | −0.451 | 0.209 | |
Cereal/Porridge | 0.219 | −0.050 | 0.373 | 0.342 | 0.663 | −0.817 * | 0.005 | −0.219 | −0.526 | −0.239 | −0.368 | 0.749 * | 0.754 * | 0.060 | −0.147 | −0.446 | −0.043 | 0.779 * | 0.252 | |
Fragrant rice | 0.737 * | −0.811 * | 0.011 | −0.355 | 0.078 | −0.547 | −0.749 * | −0.560 | −0.069 | 0.746 * | −0.856 ** | −0.036 | −0.013 | 0.734 * | 0.835 ** | 0.218 | −0.581 | 0.096 | −0.261 | |
Resinous | 0.304 | −0.383 | 0.547 | −0.808 * | 0.232 | −0.188 | −0.139 | −0.360 | −0.601 | −0.023 | −0.485 | 0.097 | 0.183 | −0.150 | 0.018 | −0.098 | 0.003 | 0.333 | 0.043 | |
Plastic | 0.379 | −0.216 | 0.088 | −0.210 | 0.168 | −0.023 | −0.531 | −0.678 | −0.404 | 0.204 | −0.433 | −0.037 | 0.015 | 0.225 | −0.076 | 0.334 | 0.519 | 0.045 | 0.484 | |
Raw cookie dough | −0.220 | −0.020 | −0.353 | 0.006 | −0.718 * | 0.566 | 0.108 | 0.413 | 0.701 | 0.246 | 0.584 | −0.579 | −0.626 | −0.261 | 0.186 | 0.421 | −0.368 | −0.508 | −0.482 | |
Cardboard | 0.240 | −0.155 | 0.686 | −0.163 | 0.320 | −0.326 | 0.035 | −0.478 | −0.744 * | −0.210 | −0.311 | 0.334 | 0.378 | −0.357 | −0.470 | 0.044 | 0.376 | 0.832 * | 0.711 * | |
Chemical | 0.212 | −0.274 | −0.326 | −0.182 | 0.012 | −0.189 | −0.466 | −0.441 | −0.014 | 0.392 | −0.462 | 0.002 | −0.016 | 0.747 * | 0.483 | 0.088 | −0.152 | −0.284 | −0.159 | |
Texture | Fluffiness | 0.582 | −0.632 | −0.124 | −0.175 | −0.150 | −0.246 | −0.760 * | −0.831 * | −0.106 | 0.726 * | −0.648 | −0.165 | −0.176 | 0.682 | 0.488 | 0.605 | −0.100 | 0.031 | 0.212 |
Cohesiveness | −0.564 | 0.614 | 0.157 | 0.120 | 0.109 | 0.312 | 0.754 * | 0.825 * | 0.106 | −0.708 * | 0.652 | 0.094 | 0.113 | −0.730 * | −0.506 | −0.546 | 0.139 | −0.041 | −0.172 | |
Firmness | −0.739 * | 0.693 | −0.138 | 0.476 | 0.234 | −0.182 | 0.716 * | 0.241 | −0.186 | −0.703 | 0.378 | 0.638 | 0.543 | 0.012 | −0.490 | −0.636 | 0.166 | 0.175 | 0.137 | |
Stickiness | −0.622 | 0.653 | 0.077 | 0.180 | 0.114 | 0.265 | 0.804 * | 0.886 ** | 0.171 | −0.706 | 0.640 | 0.131 | 0.133 | −0.603 | −0.427 | −0.632 | 0.050 | −0.086 | −0.238 | |
Chewiness | −0.821 * | 0.834 * | −0.023 | 0.474 | 0.223 | 0.012 | 0.903 ** | 0.513 | −0.113 | −0.850 ** | 0.552 | 0.517 | 0.448 | −0.278 | −0.644 | −0.690 | 0.273 | 0.155 | 0.176 | |
Disintegration | 0.654 | −0.623 | −0.063 | −0.382 | −0.233 | 0.167 | −0.755 * | −0.232 | 0.268 | 0.699 | −0.313 | −0.576 | −0.501 | 0.124 | 0.549 | 0.579 | −0.209 | −0.335 | −0.291 | |
Flavor | Flavor intensity | −0.338 | 0.218 | −0.392 | −0.193 | −0.651 | 0.875 ** | 0.084 | 0.140 | 0.446 | 0.126 | 0.432 | −0.696 | −0.718 * | −0.058 | −0.065 | 0.479 | 0.301 | −0.731 * | 0.029 |
Root vegetables | −0.663 | 0.645 | −0.140 | −0.030 | −0.249 | 0.731 * | 0.535 | 0.362 | 0.095 | −0.513 | 0.668 | −0.216 | −0.227 | −0.469 | −0.598 | −0.044 | 0.578 | −0.409 | 0.171 | |
Sweet caramelized | −0.079 | 0.227 | 0.313 | 0.283 | 0.545 | −0.439 | 0.387 | 0.535 | −0.121 | −0.480 | 0.095 | 0.513 | 0.543 | −0.352 | −0.157 | −0.725 * | −0.220 | 0.415 | −0.236 | |
Brown bread | −0.267 | 0.172 | 0.048 | 0.107 | −0.186 | 0.198 | 0.383 | 0.546 | 0.278 | −0.237 | 0.552 | −0.065 | −0.075 | −0.588 | −0.167 | −0.103 | −0.240 | −0.012 | −0.355 | |
Earthy | −0.602 | 0.527 | −0.363 | 0.024 | −0.566 | 0.937 ** | 0.407 | 0.485 | 0.493 | −0.217 | 0.780 * | −0.556 | −0.583 | −0.393 | −0.343 | 0.234 | 0.370 | −0.690 | −0.033 | |
Cereal/Porridge | −0.128 | −0.002 | −0.170 | 0.221 | 0.022 | −0.273 | 0.157 | 0.436 | 0.311 | −0.058 | 0.245 | 0.230 | 0.191 | −0.053 | 0.265 | −0.348 | −0.661 | −0.030 | −0.717 * | |
Fragrant rice | 0.225 | −0.380 | −0.256 | −0.083 | 0.100 | −0.505 | −0.279 | 0.057 | 0.229 | 0.350 | −0.344 | 0.180 | 0.157 | 0.573 | 0.767* | −0.286 | −0.849 ** | −0.144 | −0.801 * | |
Resinous | −0.297 | −0.009 | −0.377 | −0.369 | −0.908 ** | 0.888 ** | 0.058 | 0.090 | 0.531 | 0.304 | 0.459 | −0.814 * | −0.856 ** | −0.109 | 0.093 | 0.665 | −0.001 | −0.703 | −0.155 | |
Plastic | 0.428 | −0.252 | 0.304 | −0.101 | 0.224 | −0.213 | −0.362 | −0.669 | −0.488 | 0.205 | −0.602 | 0.043 | 0.081 | 0.281 | −0.084 | 0.281 | 0.452 | 0.393 | 0.767 * | |
Cardboard | 0.263 | −0.470 | 0.250 | −0.521 | −0.507 | 0.255 | −0.184 | −0.477 | −0.104 | 0.448 | −0.263 | −0.489 | −0.487 | −0.005 | 0.103 | 0.697 | 0.019 | 0.146 | 0.406 | |
Chemical | 0.340 | −0.327 | −0.096 | −0.188 | −0.200 | 0.085 | −0.454 | −0.559 | −0.033 | 0.517 | −0.485 | −0.339 | −0.339 | 0.552 | 0.280 | 0.515 | 0.183 | −0.119 | 0.419 | |
Bitter | 0.380 | −0.346 | 0.118 | −0.522 | −0.147 | 0.264 | −0.473 | −0.532 | −0.202 | 0.369 | −0.391 | −0.413 | −0.350 | 0.139 | 0.088 | 0.514 | 0.355 | −0.136 | 0.352 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Smyth, H.E.; Tao, K.; Henry, R.J.; Gilbert, R.G. Starch Molecular Structural Features and Volatile Compounds Affecting the Sensory Properties of Polished Australian Wild Rice. Foods 2022, 11, 511. https://doi.org/10.3390/foods11040511
Zhao Y, Smyth HE, Tao K, Henry RJ, Gilbert RG. Starch Molecular Structural Features and Volatile Compounds Affecting the Sensory Properties of Polished Australian Wild Rice. Foods. 2022; 11(4):511. https://doi.org/10.3390/foods11040511
Chicago/Turabian StyleZhao, Yingting, Heather E. Smyth, Keyu Tao, Robert J. Henry, and Robert G. Gilbert. 2022. "Starch Molecular Structural Features and Volatile Compounds Affecting the Sensory Properties of Polished Australian Wild Rice" Foods 11, no. 4: 511. https://doi.org/10.3390/foods11040511
APA StyleZhao, Y., Smyth, H. E., Tao, K., Henry, R. J., & Gilbert, R. G. (2022). Starch Molecular Structural Features and Volatile Compounds Affecting the Sensory Properties of Polished Australian Wild Rice. Foods, 11(4), 511. https://doi.org/10.3390/foods11040511