Strategic Priorities of the Scientific Plan of the European Research Infrastructure METROFOOD-RI for Promoting Metrology in Food and Nutrition
Abstract
:1. Research Infrastructures in Europe–METROFOOD-RI Evolution
2. Scientific Priorities in the Food and Nutrition Domain from a Metrological Point of View
3. Key Thematic Areas in the METROFOOD-RI Scientific Plan
3.1. Reference Materials
3.1.1. Capacity Building in Production
3.1.2. Capacity Building in Characterisation
3.1.3. Perspective
3.2. Food Authenticity and Traceability
3.2.1. Toward an Anti-Fraud Scientific Alliance
3.2.2. State-of-the-Art Analytical Tools
3.2.3. Perspective
3.3. Food Safety
3.3.1. A matter of Societal Importance
3.3.2. Capacity Building in Assessing Chemical Hazards
3.3.3. Capacity Building in Assessing Biological Hazards
3.3.4. Perspective
3.4. Food Quality
3.4.1. What and How We ‘Measure’ It
3.4.2. Perspective
3.5. Nutritive Quality and Functional Properties
3.5.1. Nutrients and Beyond
3.5.2. State-of-the-Art Analytical Tools
3.5.3. Perspective
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ESFRI Strategy Report on Research Infrastructures. Part 1. Contents. Available online: http://roadmap2018.esfri.eu/ (accessed on 2 December 2021).
- ESFRI Strategy Report on Research Infrastructures. Part 3. Projects and Landmarks. Available online: http://roadmap2018.esfri.eu/projects-and-landmarks (accessed on 2 December 2021).
- EURAMET. Strategic Research Agenda for Metrology in Europe; EURAMET e.V.: Braunschweig, Germany, 2016. [Google Scholar]
- Metrofood Infrastructure for Promoting Metrology in Food and Nutrition. Home Page. Available online: www.metrofood.eu (accessed on 2 December 2021).
- Rychlik, M.; Zappa, G.; Añorga, L.; Belc, N.; Castanheira, I.; Donard, O.F.X.; Kourimská, L.; Ogrinc, N.; Ocké, M.C.; Presser, K.; et al. Ensuring food integrity by metrology and FAIR data principles. Front. Chem. 2018, 6, 49. [Google Scholar] [CrossRef] [Green Version]
- European Commission, Food 2030. Research and Innovation Policy to Make Our Food Systems Ready for the Future. Main Aims, Focus Areas under Horizon Europe, Timeline and Publications. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/environment/bioeconomy/food-systems/food-2030_en (accessed on 18 November 2021).
- ISO Guide 30:2015; Reference Materials—Selected Terms and Definitions. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 17034:2016; General Requirements for the Competence of Reference Material Producers. International Organization for Standardization: Geneva, Switzerland, 2016.
- Zappa, G.; Anorga, L.; Belc, N.; Castanheira, I.; Donard, O.F.X.; Kourimska, L.; Kukovecz, A.; Iatco, I.; Najdenkoska, A.; Nieminen, J.; et al. METROFOOD-RI: A new reality to develop Reference Materials for the agrifood sector. J. Phys. Conf. Ser. 2018, 1065, 232006. [Google Scholar] [CrossRef]
- Zoani, C.; Anorga, L.; Belc, N.; Castanheira, I.; Donard, O.F.X.; Kourimska, L.; Kukovecz, A.; Iatco, I.; Najdenkoska, A.; Ogrinc, N.; et al. Feasibility studies for new food matrix-Reference Materials. J. Phys. Conf. Ser. 2018, 1065, 232005. [Google Scholar] [CrossRef] [Green Version]
- European Commission JRC Science Areas. Available online: https://ec.europa.eu/jrc/en/science-areas (accessed on 2 December 2021).
- Emteborg, H.; Florian, D.; Choquette, S.; Ellison, S.L.R.; Fernandes-Whaley, M.; Mackay, L.; McCarron, P.; Panne, U.; Sander, S.G.; Kim, S.K.; et al. Cooperation in publicly funded reference material production. Accredit. Qual. Assur. 2018, 23, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Wise, S.A.; Phillips, M.M. Evolution of reference materials for the determination of organic nutrients in food and dietary supplements—A critical review. Anal. Bioanal. Chem. 2019, 411, 97–127. [Google Scholar] [CrossRef]
- Recknagel, S.; Koch, M.; Koppen, R.; Buttler, S.; Penk, S.; Mauch, T.; Sommerfeld, T.; Witt, A. Development of certified reference materials for the determination of cadmium and acrylamide in cocoa. Anal. Bioanal. Chem. 2020, 412, 4659–4668. [Google Scholar] [CrossRef]
- de Carvalho Couto, C.; dos Santos, D.G.; Oliveira, E.M.M.; Freitas-Silva, O. Global situation of reference materials to assure coffee, cocoa, and tea quality and safety. TrAC-Trends Anal. Chem. 2021, 143, 116381. [Google Scholar] [CrossRef]
- Mari, L.; Narduzzi, C.; Nordin, G.; Trapmann, S. Foundations of uncertainty in evaluation of nominal properties. Meas. J. Int. Meas. Confed. 2020, 152, 107397. [Google Scholar] [CrossRef]
- ISO Guide 35:2017; Reference Materials—Guidance for Characterization and Assessment of Homogeneity and Stability. International Organization for Standardization: Geneva, Switzerland, 2017.
- Greenberg, R.R.; Bode, P.; De Nadai Fernandes, E.A. Neutron activation analysis: A primary method of measurement. Spectrochim. Acta-Part B At. Spectrosc. 2011, 66, 193–241. [Google Scholar] [CrossRef]
- Bhat, S.; Emslie, K.R. Digital polymerase chain reaction for characterisation of DNA reference materials. Biomol. Detect. Quantif. 2016, 10, 47–49. [Google Scholar] [CrossRef] [Green Version]
- Dunn, P.J.H.; Malinovsky, D.; Achtar, E.; Clarkson, C.; Goenaga-Infante, H. Systematic comparison of post-column isotope dilution using LC-CO-IRMS with qNMR for amino acid purity determination. Anal. Bioanal. Chem. 2019, 411, 7207–7220. [Google Scholar] [CrossRef] [Green Version]
- Food Integrity Project. FoodIntegrity Handbook-A Guide to Food Authenticity Issues and Analytical Solutions; Morin, J.-F., Lees, M., Eds.; Eurofins Analytics France: Nantes, France, 2018; Volume 53, ISBN 978-2-9566303-1-9. [Google Scholar]
- AOAC International Food Authenticity Methods Program. Available online: https://www.aoac.org/scientific-solutions/food-authenticity-fraud/ (accessed on 23 September 2020).
- European Commission Knowledge Centre for Food Fraud and Quality. Available online: https://ec.europa.eu/knowledge4policy/food-fraud-quality_en (accessed on 23 September 2020).
- Ulberth, F. Tools to combat food fraud—A gap analysis. Food Chem. 2020, 330, 127044. [Google Scholar] [CrossRef]
- Matthäus, B.; Willenberg, I.; Engert, S.; Steinberg, P. The German National Reference Centre for Authentic Food (NRZ-Authent). OCL-Oilseeds Fats Crop. Lipids 2019, 26, 11. [Google Scholar] [CrossRef]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data fusion methodologies for food and beverage authentication and quality assessment—A review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef]
- Granato, D.; Putnik, P.; Kovačević, D.B.; Santos, J.S.; Calado, V.; Rocha, R.S.; Da Cruz, A.G.; Jarvis, B.; Rodionova, O.Y.; Pomerantsev, A. Trends in chemometrics: Food authentication, microbiology, and effects of processing. Compr. Rev. Food Sci. Food Saf. 2018, 17, 663–677. [Google Scholar] [CrossRef] [Green Version]
- Callao, M.P.; Ruisánchez, I. An overview of multivariate qualitative methods for food fraud detection. Food Control 2018, 86, 283–293. [Google Scholar] [CrossRef]
- Galvez, J.F.; Mejuto, J.C.; Simal-Gandara, J. Future challenges on the use of blockchain for food traceability analysis. Trends Anal. Chem. 2018, 107, 222–232. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment–A review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- Riedl, J.; Esslinger, S.; Fauhl-Hassek, C. Review of validation and reporting of non-targeted fingerprinting approaches for food authentication. Anal. Chim. Acta 2015, 885, 17–32. [Google Scholar] [CrossRef]
- Lo, Y.T.; Shaw, P.C. DNA-based techniques for authentication of processed food and food supplements. Food Chem. 2018, 240, 767–774. [Google Scholar] [CrossRef]
- Hong, E.; Lee, S.Y.; Jeong, J.Y.; Park, J.M.; Kim, B.H.; Kwon, K.; Chun, H.S. Modern analytical methods for the detection of food fraud and adulteration by food category. J. Sci. Food Agric. 2017, 97, 3877–3896. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food authentication: Techniques, trends & emerging approaches. TrAC-Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar]
- Bianchi, F.; Giannetto, M.; Careri, M. Analytical systems and metrological traceability of measurement data in food control assessment. Trends Anal. Chem. 2018, 107, 142–150. [Google Scholar] [CrossRef]
- Tsimidou, M.Z.; Ordoudi, S.A.; Nenadis, N.; Mourtzinos, I. Food fraud. In Encycl. Food Health, 2nd ed.; Caballero, B., Finglas, P., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; Volume 3, pp. 35–42. [Google Scholar]
- Creydt, M.; Fischer, M. Food authentication in real life: How to link nontargeted approaches with routine analytics? Electrophoresis 2020, 41, 1665–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, S.; Perestrelo, R.; Silva, P.; Pereira, J.A.M.; Câmara, J.S. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci. Technol. 2019, 85, 163–176. [Google Scholar] [CrossRef]
- Ellis, D.I.; Muhamadali, H.; Haughey, S.A.; Elliott, C.T.; Goodacre, R. Point-and-shoot: Rapid quantitative detection methods for on-site food fraud analysis—Moving out of the laboratory and into the food supply chain. Anal. Methods 2015, 7, 9401–9414. [Google Scholar] [CrossRef] [Green Version]
- Sobolev, A.P.; Thomas, F.; Donarski, J.; Ingallina, C.; Circi, S.; Cesare Marincola, F.; Capitani, D.; Mannina, L. Use of NMR applications to tackle future food fraud issues. Trends Food Sci. Technol. 2019, 91, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Måge, I.; Schmidt, W.F.; Temiz, H.T.; Li, L.; Kim, H.-Y.; Nilsen, H.; Biancolillo, A.; Aït-Kaddour, A.; Sikorski, M.; et al. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020, 9, 1069. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.M.; Cruz-Tirado, J.P.; Barbin, D.F. Nontargeted analytical methods as a powerful tool for the authentication of spices and herbs: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 670–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böhme, K.; Calo-Mata, P.; Barros-Velázquez, J.; Ortea, I. Review of recent DNA-based methods for main food-authentication topics. J. Agric. Food Chem. 2019, 67, 3854–3864. [Google Scholar] [CrossRef]
- Ruiz Orduna, A.; Husby, E.; Yang, C.T.; Ghosh, D.; Beaudry, F. Detection of meat species adulteration using high-resolution mass spectrometry and a proteogenomics strategy. Food Addit. Contam.-Part A Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 1110–1120. [Google Scholar] [CrossRef]
- Khalil, I.; Hashem, A.; Nath, A.R.; Muhd, N.; Yehye, W.A.; Jeffrey, W. DNA/Nano based advanced genetic detection tools for authentication of species: Strategies, prospects and limitations. Mol. Cell. Probes 2021, 59, 101758. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Report from the European Commission to the European Parliament and the Council on the Implementation of Regulation (EC) No 1185/2009 of the European Parliament and of the Council of 25 November 2009 Concerning Statistics on Pesticides; 2017. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0109&from=en (accessed on 18 November 2021).
- European Court of Auditors. Special Report Sustainable Use of Plant Protection Products: Limited Progress in Measuring and Reducing Risks. Available online: https://www.eca.europa.eu/en/Pages/DocItem.aspx?did=53001 (accessed on 18 November 2021).
- European Parliament and Council. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009R1107 (accessed on 18 November 2021).
- WHO Food Safety-Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 2 December 2021).
- European Commission Food Safety. Contaminants. Available online: https://ec.europa.eu/food/safety/chemical-safety/contaminants_en (accessed on 2 December 2021).
- European Commission. The Rapid Alert System for Food and Feed 2017 Annual Report; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- European Commission. The Rapid Alert System for Food and Feed 2018 Annual Report; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Vandermeersch, G.; Lourenço, H.M.; Alvarez-Muñoz, D.; Cunha, S.; Diogène, J.; Cano-Sancho, G.; Sloth, J.J.; Kwadijk, C.; Barcelo, D.; Allegaert, W.; et al. Environmental contaminants of emerging concern in seafood-European database on contaminant levels. Environ. Res. 2015, 143, 29–45. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC-Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Usman, S.; Razis, A.F.A.; Shaari, K.; Amal, M.N.A.; Saad, M.Z.; Isa, N.M.; Nazarudin, M.F.; Zulkifli, S.Z.; Sutra, J.; Ibrahim, M.A. Microplastics pollution as an invisible potential threat to food safety and security, policy challenges and the way forward. Int. J. Environ. Res. Public Health 2020, 17, 9591. [Google Scholar] [CrossRef]
- Steiner, D.; Malachová, A.; Sulyok, M.; Krska, R. Challenges and future directions in LC-MS-based multiclass method development for the quantification of food contaminants. Anal. Bioanal. Chem. 2021, 413, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Rausch, A.-K.; Brockmeyer, R.; Schwerdtle, T. Development, validation, and application of a multi-method for the determination of mycotoxins, plant growth regulators, tropane alkaloids, and pesticides in cereals by two-dimensional liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2021, 413, 3041–3054. [Google Scholar] [CrossRef]
- Ferrer, I.; Thurman, E. Application of LC–MS/MS and LC–TOF-MS for the Identification of Pesticide Residues and Their Metabolites in Environmental Samples. In Mass Spectrometry for the Analysis of Pesticide Residues and Their Metabolites; Tsipi, D., Botitsi, H., Economou, A., Eds.; John Wiley & Sons, Inc.: Hpboken, NJ, USA, 2015; pp. 207–230. ISBN 978-1-118-50017-0. [Google Scholar]
- Rateni, G.; Dario, P.; Cavallo, F. Smartphone-based food diagnostic technologies: A review. Sensors 2017, 17, 1453. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Nelis, J.L.D.; Ross, G.M.S.; Jafari, S.; Guercetti, J.; Kopper, K.; Zhao, Y.; Rafferty, K.; Salvador, J.P.; Migliorelli, D.; et al. Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. TrAC-Trends Anal. Chem. 2019, 121, 115688. [Google Scholar] [CrossRef]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- WHO. Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; WHO Press: Geneva, Switzerland, 2015. [Google Scholar]
- Bosch, A.; Gkogka, E.; Le Guyader, F.S.; Loisy-Hamon, F.; Lee, A.; van Lieshout, L.; Marthi, B.; Myrmel, M.; Sansom, A.; Schultz, A.C.; et al. Foodborne viruses: Detection, risk assessment, and control options in food processing. Int. J. Food Microbiol. 2018, 285, 110–128. [Google Scholar] [CrossRef]
- European Comission Biological Safety-Food Safety. Available online: https://ec.europa.eu/food/safety/biosafety_en (accessed on 2 October 2021).
- U.S. Food & Drug Administration (FDA). New Era of Smarter Food Safety. FDA´s Blueprint for the Future; FDA: Silver Spring, MD, USA, 2020. [Google Scholar]
- ISO 16140:2003; Microbiology of Food and Animal Feeding Stuffs—Protocol for the Validation of Alternative Methods. International Organization for Standardization: Geneva, Switzerland, 2016.
- Wang, Y.; Salazar, J.K. Culture-Independent Rapid Detection Methods for Bacterial Pathogens and Toxins in Food Matrices. Compr. Rev. Food Sci. Food Saf. 2016, 15, 183–205. [Google Scholar] [CrossRef] [PubMed]
- Baraketi, A.; Salmieri, S.; Lacroix, M. Foodborne pathogens detection: Persevering worldwide challenge. In Biosensing Technologies for the Detection of Pathogens-A Prospective Way for Rapid Analysis; IntechOpen Limited: London, UK, 2018. [Google Scholar]
- EFSA. Panel on Biological Hazards Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J. 2019, 17, 5898. [Google Scholar]
- Lombard, B.; Leclercq, A. The Role of Standardization Bodies in the Harmonization of Analytical Methods in Food Microbiology. In Global Issues in Food Science and Technology; Elsevier Academic Press: Burlington, UK, 2009; pp. 177–197. ISBN 9780123741240. [Google Scholar]
- Lüth, S.; Kleta, S.; Al Dahouk, S. Whole genome sequencing as a typing tool for foodborne pathogens like Listeria monocytogenes–The way towards global harmonisation and data exchange. Trends Food Sci. Technol. 2018, 73, 67–75. [Google Scholar] [CrossRef]
- European Commission. Standing Committee on Plants Animals Food and Feed. Vision Paper on the Development of Data Bases for Molecular Testing of Foodborne Pathogens in View of Outbreak Preparedness. Available online: https://ec.europa.eu/food/safety/biological-safety/crisis-preparedness-management_el (accessed on 2 October 2021).
- Perrotta, G.; Donini, M.; Demurtas, O.C.; Mengoni, A. Integration of multi-omics data for biomarker identification of food safety and quality. In Science within Food: Up-to-Date Advances on Research and Educational Ideas; Formatex Research Center: Badajoz, Spain, 2017; pp. 152–163. [Google Scholar]
- Moreno, D.; Ilic, N. Functional and Bioactive Properties of Food: The Challenges Ahead. Foods 2018, 7, 139. [Google Scholar] [CrossRef] [Green Version]
- Titus, D.; Samuel, E.J.J.; Roopan, S.M. Importance of Food Science and Technology- Way to future. In Bioorganic Phase in Natural Food: An Overview; Roopan, S.M., Madhumitha, G., Eds.; Springer International Publishing: Cham, Switzerlannd, 2018; pp. 11–23. ISBN 978-3-319-74210-6. [Google Scholar]
- Martínez-Gómez, J.; Ibarra, D.; Villacis, S.; Cuji, P.; Cruz, P.R. Analysis of LPG, electric and induction cookers during cooking typical Ecuadorian dishes into the national efficient cooking program. Food Policy 2016, 59, 88–102. [Google Scholar] [CrossRef]
- Gaspar, M.C.M.P.; Garcia, A.M.; Larrea-Killinger, C. How would you define healthy food? Social representations of Brazilian, French and Spanish dietitians and young laywomen. Appetite 2020, 153, 104728. [Google Scholar] [CrossRef] [PubMed]
- de Boer, A. Fifteen years of regulating Nutrition and Health Claims in Europe: The past, the present and the future. Nutrients 2021, 13, 1725. [Google Scholar] [CrossRef] [PubMed]
- Nolvachai, Y.; Kulsing, C.; Marriott, P.J. Multidimensional gas chromatography in food analysis. TrAC Trends Anal. Chem. 2017, 96, 124–137. [Google Scholar] [CrossRef]
- Guan, Z.W.; Yu, E.Z.; Feng, Q. Soluble dietary fiber, one of the most important nutrients for the gut microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef]
- Bachmann, T.; Maurer, A.; Rychlik, M. Development of a LC-MS/MS method using stable isotope dilution for the quantification of individual B6 vitamers in fruits, vegetables, and cereals. Anal. Bioanal. Chem. 2020, 412, 7237–7252. [Google Scholar] [CrossRef] [PubMed]
- Striegel, L.; Chebib, S.; Netzel, M.E.; Rychlik, M. Improved Stable Isotope Dilution Assay for Dietary Folates Using LC-MS/MS and Its Application to Strawberries. Front. Chem. 2018, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Ložnjak Švarc, P.; Oveland, E.; Strandler, H.S.; Kariluoto, S.; Campos-Giménez, E.; Ivarsen, E.; Malaviole, I.; Motta, C.; Rychlik, M.; Striegel, L.; et al. Collaborative study: Quantification of total folate in food using an efficient single-enzyme extraction combined with LC-MS/MS. Food Chem. 2020, 333, 127447. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Asam, S.; Chen, J.; Rychlik, M. Development of stable isotope dilution assays for the analysis of natural forms of vitamin B12 in meat. J. Agric. Food Chem. 2021, 69, 10722–10730. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Lin, L.; Su, G.; Zhao, Q.; Zhao, M. Pitfalls of using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to assess the radical scavenging activity of peptides: Its susceptibility to interference and low reactivity towards peptides. Food Res. Int. 2015, 76, 359–365. [Google Scholar] [CrossRef]
Reference | Identified Gaps and Emerging Topics |
---|---|
[12] | traceable measurements of residues and pathogens (viruses, bacteria, toxins) |
RMs for species identification, embedded nanoparticles microplastics, allergens | |
[13] | additional (C)RMs in the less-populated sectors of the protein-fat-carbohydrate (P/F/C) AOAC (Association of Official Analytical Collaboration, International) triangle |
[14] | RMs with assigned values for vitamin D and its metabolites, vitamin K and folate vitamins |
RMs for arsenic parameters, emerging contaminants, persistent organic pollutants in marine biota, GMOs, alkaloids, mineral oil hydrocarbons, glyphosate in cereals (for which there is a controversy on Maximum Residue Level), food contact materials migration, cocoa | |
[14,15] | RMs for acrylamide in other than infant formula products |
[16] | RMs for sensory analyses, panel tests, authenticity (markers/profiles), identity or other qualitative properties |
Analytical Technique | Principle | Variation | |
---|---|---|---|
Chromatographic | |||
(Ultra) High performance liquid chromatography (U)HPLC | Adsorption and/or partition of target analytes between mobile (liquid or gas) and stationary phase | Separation | Hyphenation to spectrometry MS/MS TOF Triple quadruple |
Gas chromatography (GC) | |||
Multidimensional chromatography (LC x LC, GC x GC, GC x LC, LC x GC) | |||
Spectroscopic | |||
Infrared | Absorption of electromagnetic radiation | Vibration of bonds of molecular functional groups (prerequisite change of dipole moment) | Fourier-Transform-Mid-infrared (FT-MIR) Fourier-Transform-Near-infrared (FT-NIR) |
Raman | Vibration of bonds of molecular functional groups (prerequisite change of polarizability) | Raman Fourier-Transform-Raman (FT-Raman) | |
Ultraviolet–visible (UV–Vis) | Excitation of electrons | ||
Fluorescence | Energy emission after atom excitation to higher energy levels | Synchronous (SyF) Front phase (FP) | |
Nuclear magnetic resonance (NMR) | Absorption of radiofrequency radiation by atomic nuclei with non-zero spins | Resonance | High-resolution NMR Low-resolution NMR Liquid/solid-state |
X-ray | Absorption and scattering of X-ray beams | Image | X-ray fluorescence (XRF) |
Mass spectrometry | Formation of ions with different mass-to-charge ratio | Separation in an electromagnetic field | Isotope Ratio (IR-MS), Inductively Coupled Plasma (ICP-MS) Thermal Ionisation (TI-MS) Proton transfer reaction (PTR-MS) Matrix-assisted laser desorption/ionisation Time-of-Flight (MALDI-TOF) Direct Analysis in Real Time (DART) Liquid Extraction Surface Analysis (LESA) |
Molecular | |||
Polymerase chain reaction (PCR) | Amplification of DNA fragments | Separation of DNA fragment sizes by gel-electrophoresis (sequencing), melt curves of DNA fragments | DNA barcoding high-resolution melting (Bar-HRM) Droplet digital PCR (ddPCR), High-resolution melting (HRM), Loop-mediated isothermal amplification (LAMP), Next-generation sequencing (NGS) Polymerase chain reaction (PCR) Real-time quantitative PCR (qPCR), Restriction-fragment-length polymorphism (RFLP) PCR Single-Strand Conformation Polymorphisms (PCR-SSCP) Random amplified polymorphic DNA (RAPD), Peptide Nucleic Acid (PNA) DNA fingerprinting |
Immunological | |||
Ligand binding (LB) | Complex formation between antigen (target protein) and antibody | Production of a detectable signal (usually colour) | Enzyme-linked immunosorbent assay (ELISA) |
Topic | |
---|---|
1 | Exploration of the health benefits of nutrients with enhanced value and structural function, such as phytonutrients. |
2 | Development of new technologies need to be developed for fractionation, isolation, extraction, reformulation (e.g., low salt content), concentration and delivery of health-promoting ingredients. |
3 | Raising the volume of food, feed, and fibre by reducing waste from food processing and by-product recovery. Development of novel processes for production of food products with high-value components (superfoods) and development of new processing technologies to protect and concentrate nutrients such as phytonutrients, vitamins, and flavour/aroma phenols. |
4 | Development and implementation of methods to improve processing and end-product quality and rapid measurement techniques for functionality and nutrient prediction. |
5 | Development of healthy, flavourful, and value-added food products to both maximise health effects and combat nutrition-related diseases. |
6 | Research on new administration techniques for nutrients (e.g., probiotics, nano-emulsions) and development of new processing technologies for the identification, characterisation, stabilisation, and delivery of nutrients |
7 | Development of knowledge and insight into the interaction between bio-metabolism and nutrients/food interactions. |
8 | Fostering quality improvements through research on foods and feed with increased added value, improving the quality of harvested and processed products, the quality of products in controlled atmospheres and reducing quality losses during storage. Establishing post-harvest practices toward optimising food quality through enhanced monitoring. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsimidou, M.Z.; Ordoudi, S.A.; Mantzouridou, F.T.; Nenadis, N.; Stelzl, T.; Rychlik, M.; Belc, N.; Zoani, C. Strategic Priorities of the Scientific Plan of the European Research Infrastructure METROFOOD-RI for Promoting Metrology in Food and Nutrition. Foods 2022, 11, 599. https://doi.org/10.3390/foods11040599
Tsimidou MZ, Ordoudi SA, Mantzouridou FT, Nenadis N, Stelzl T, Rychlik M, Belc N, Zoani C. Strategic Priorities of the Scientific Plan of the European Research Infrastructure METROFOOD-RI for Promoting Metrology in Food and Nutrition. Foods. 2022; 11(4):599. https://doi.org/10.3390/foods11040599
Chicago/Turabian StyleTsimidou, Maria Z., Stella A. Ordoudi, Fani Th. Mantzouridou, Nikolaos Nenadis, Tamara Stelzl, Michael Rychlik, Nastasia Belc, and Claudia Zoani. 2022. "Strategic Priorities of the Scientific Plan of the European Research Infrastructure METROFOOD-RI for Promoting Metrology in Food and Nutrition" Foods 11, no. 4: 599. https://doi.org/10.3390/foods11040599
APA StyleTsimidou, M. Z., Ordoudi, S. A., Mantzouridou, F. T., Nenadis, N., Stelzl, T., Rychlik, M., Belc, N., & Zoani, C. (2022). Strategic Priorities of the Scientific Plan of the European Research Infrastructure METROFOOD-RI for Promoting Metrology in Food and Nutrition. Foods, 11(4), 599. https://doi.org/10.3390/foods11040599