Chemical Analysis of Commercial White Wines and Its Relationship with Consumer Acceptability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples
2.3. Solid-Phase Extraction (SPE)
2.4. HPLC-Analysis
2.5. Organic Acids and Nonvolatiles Analysis Using an Automatic Analyzer
2.6. Headspace Solid-Phase Microextraction (HS-SPME) and GC-MS Analysis
2.7. Sensory Analysis
2.8. Data Analysis
3. Results
3.1. Nonvolatile Compounds of White Wine Samples
3.1.1. Phenolic Compounds
3.1.2. Organic Acids
3.1.3. Sugars and Other Nonvolatile Compounds
3.2. Volatile Compounds of White Wine Samples
3.3. Consumers’ Overall Preferences
4. Discussion
4.1. Nonvolatile Compounds of White Wine
4.2. Volatile Compounds of White Wine
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Thorngate, J.H. The physiology of human sensory response to wine: A review. Am. J. Enol. Vitic. 1997, 48, 271–279. [Google Scholar]
- Vidal, S.; Williams, P.; Doco, T.; Moutounet, M.; Pellerin, P. The polysaccharides of red wine: Total fractionation and characterization. Carbohydr. Polym. 2003, 54, 439–447. [Google Scholar] [CrossRef]
- Waters, E.J.; Shirley, N.J.; Williams, P.J. Nuisance proteins of wine are grape pathogenesis-related proteins. J. Agric. Food Chem. 1996, 44, 3–5. [Google Scholar] [CrossRef]
- Jones, P.R.; Gawel, R.; Francis, I.L.; Waters, E.J. The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Qual. Prefer. 2008, 19, 596–607. [Google Scholar] [CrossRef]
- Rapp, A. Natural flavours of wine: Correlation between instrumental analysis and sensory perception. Fresenius’ J. Anal. Chem. 1990, 337, 777–785. [Google Scholar] [CrossRef]
- Wang, J.; Capone, D.L.; Wilkinson, K.L.; Jeffery, D.W. Chemical and sensory profiles of rosé wines from Australia. Food Chem. 2016, 196, 682–693. [Google Scholar] [CrossRef]
- Muñoz-González, C.; Martín-Álvarez, P.J.; Moreno-Arribas, M.V.; Pozo-Bayón, M.Á. Impact of the nonvolatile wine matrix composition on the in vivo aroma release from wines. J. Agric. Food Chem. 2014, 62, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Laguna, L.; Sarkar, A.; Bryant, M.G.; Beadling, A.R.; Bartolomé, B.; Moreno-Arribas, M.V. Exploring mouthfeel in model wines: Sensory-to-instrumental approaches. Food Res. Int. 2017, 102, 478–486. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.; Câmara, J.S. Madeira wine volatile profile. A platform to establish madeira wine aroma descriptors. Molecules 2019, 24, 3028. [Google Scholar] [CrossRef] [Green Version]
- Sáenz-Navajas, M.P.; Fernández-Zurbano, P.; Ferreira, V. Contribution of nonvolatile composition to wine flavor. Food Rev. Int. 2012, 28, 389–411. [Google Scholar] [CrossRef] [Green Version]
- Zamora, M.C.; Goldner, M.C.; Galmarini, M.V. Sourness–sweetness interactions in different media: White wine, ethanol and water. J. Sens. Stud. 2006, 21, 601–611. [Google Scholar] [CrossRef]
- Shehadeh, A.; Kechagia, D.; Evangelou, A.; Tataridis, P.; Shehadeh, F. Effect of ethanol, glycerol, glucose and tartaric acid on the viscosity of model aqueous solutions and wine samples. Food Chem. 2019, 300, 125191. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento Silva, F.L.; Schmidt, E.M.; Messias, C.L.; Eberlin, M.N.; Sawaya, A.C.H.F. Quantitation of organic acids in wine and grapes by direct infusion electrospray ionization mass spectrometry. Anal. Methods 2015, 7, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Tasev, K.; Stefova, M.; Ivanova, V. HPLC method validation and application for organic acid analysis in wine after solid-phase extraction. Maced. J. Chem. Chem. Eng. 2016, 35, 225–233. [Google Scholar] [CrossRef]
- Ali, K.; Maltese, F.; Choi, Y.H.; Verpoorte, R. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 2010, 9, 357–378. [Google Scholar] [CrossRef] [Green Version]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Tian, Y.; Liu, D.; Li, Z.; Zhang, X.X.; Li, J.M.; Pan, Q.H. Evolution of phenolic compounds and sensory in bottled red wines and their co-development. Food Chem. 2015, 172, 565–574. [Google Scholar] [CrossRef]
- Preys, S.; Mazerolles, G.; Courcoux, P.; Samson, A.; Fischer, U.; Hanafi, M.; Cheynier, V. Relationship between polyphenolic composition and some sensory properties in red wines using multiway analyses. Anal. Chim. Acta 2006, 563, 126–136. [Google Scholar] [CrossRef]
- Nurgel, C.; Pickering, G. Contribution of glycerol, ethanol and sugar to the perception of viscosity and density elicited by model white wines. J. Texture Stud. 2005, 36, 303–323. [Google Scholar] [CrossRef]
- De Villiers, A.; Lynen, F.; Crouch, A.; Sandra, P. Development of a solid-phase extraction procedure for the simultaneous determination of polyphenols, organic acids and sugars in wine. Chromatographia 2004, 59, 403–409. [Google Scholar] [CrossRef]
- Lubbers, S.; Verret, C.; Voilley, A. The effect of glycerol on the perceived aroma of a model wine and a white wine. LWT-Food Sci. Technol. 2001, 34, 262–265. [Google Scholar] [CrossRef]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Rodríguez-Sifuentes, L.; Páez-Lerma, J.B.; Rutiaga-Quiñones, O.M.; Rojas-Contreras, J.A.; Ruiz-Baca, E.; Gutiérrez-Sánchez, G.; Soto-Cruz, N.O. Identification of a yeast strain as a potential stuck wine fermentation restarter: A kinetic characterization. CyTA-J. Food 2014, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Noguerol-Pato, R.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Quantitative determination and characterisation of the main odourants of Mencía monovarietal red wines. Food Chem. 2009, 117, 473–484. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Masa, A.; Oliveira, J.M. Correlation between volatile composition and sensory properties in Spanish Albariño wines. Microchem. J. 2010, 95, 240–246. [Google Scholar] [CrossRef]
- Barros, E.P.; Moreira, N.; Pereira, G.E.; Leite, S.G.F.; Rezende, C.M.; de Pinho, P.G. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines. Talanta 2012, 101, 177–186. [Google Scholar] [CrossRef]
- Ebeler, S.E. Analytical chemistry: Unlocking the secrets of wine flavor. Food Rev. Int. 2001, 17, 45–64. [Google Scholar] [CrossRef]
- Canuti, V.; Conversano, M.; Calzi, M.L.; Heymann, H.; Matthews, M.A.; Ebeler, S.E. Headspace solid-phase microextraction–gas chromatography–mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. J. Chromatogr. A 2009, 1216, 3012–3022. [Google Scholar] [CrossRef]
- Romero, E.G.; Muñoz, G.S.; Alvarez, P.M.; Ibáñez, M.C. Determination of organic acids in grape musts, wines and vinegars by high-performance liquid chromatography. J. Chromatogr. A 1993, 655, 111–117. [Google Scholar] [CrossRef]
- Arellano, M.; Andrianary, J.; Dedieu, F.; Couderc, F.; Puig, P. Method development and validation for the simultaneous determination of organic and inorganic acids by capillary zone electrophoresis. J. Chromatogr. A 1997, 765, 321–328. [Google Scholar] [CrossRef]
- Jeon, S.; Seo, S.; Bartolini, F. Wine Market Segmentation Considering New Consumption Trend: Focusing on Korea Wine Fes-tival Participants. Korean J. Agric. 2019, 60, 153–175. [Google Scholar] [CrossRef]
- Munhwa Broadcasting Corporation. The Growing Wine Market, the Challenge of Domestic Wine. 2017. Available online: http://imnews.imbc.com/replay/2017/nwdesk/article/4213028_21408.html (accessed on 19 December 2021).
- Pérez-Navarro, J.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Chacón-Vozmediano, J.L.; Martinez-Gascueña, J.; Garcia-Romero, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S. Comprehensive chemical and sensory assessment of wines made from white grapes of Vitis vinifera cultivars Albillo Dorado and Montonera del Casar: A comparative study with Airén. Foods 2020, 9, 1282. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Olivares, J.D.; Giménez-Bañón, M.J.; Paladines-Quezada, D.F.; Gómez-Martínez, J.C.; Cebrián-Pérez, A.; Fernández-Fernández, J.I.; Gil-Muñoz, R. Aromatic Characterization of New White Wine Varieties Made from Monastrell Grapes Grown in South-Eastern Spain. Molecules 2020, 25, 3917. [Google Scholar] [CrossRef] [PubMed]
- Amores-Arrocha, A.; Sancho-Galán, P.; Jiménez-Cantizano, A.; Palacios, V. A comparative study on volatile compounds and sensory profile of white and red wines elaborated using bee pollen versus commercial activators. Foods 2021, 10, 1082. [Google Scholar] [CrossRef]
- Peťka, J.; Ferreira, V.; González-Viñas, M.A.; Cacho, J. Sensory and chemical characterization of the aroma of a white wine made with Devín grapes. J. Agric. Food Chem. 2006, 54, 909–915. [Google Scholar] [CrossRef]
- Numes, P.; Muxagata, S.; Correia, A.C.; Nunes, F.M.; Cosme, F.; Jordão, A.M. Effect of oak wood barrel capacity and utilization time on phenolic and sensorial profile evolution of an Encruzado white wine. J. Sci. Food Agric. 2017, 97, 4847–4856. [Google Scholar] [CrossRef]
- Hopfer, H.; Ebeler, S.E.; Heymann, H. The combined effects of storage temperature and packaging type on the sensory and chemical properties of Chardonnay. J. Agric. Food Chem. 2012, 60, 10743–10754. [Google Scholar] [CrossRef]
- Peryam, D.R.; Girardot, N.F. Advanced taste-test method. Food Eng. 1952, 24, 58–61. [Google Scholar]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Cochran, W.G.; Cox, G.M. Experimental Designs, 2nd ed.; Chapter 4; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1992. [Google Scholar]
- FEMA: Flavor and Extract Manufacturers Association (FEMA). Available online: https://www.femaflavor.org/flavor-library/ (accessed on 15 December 2021).
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- TGSC: The Good Scent Company (TGSC). Available online: http://www.thegoodscentscompany.com/ (accessed on 15 December 2021).
- Ouyang, X.; Yuan, G.; Ren, J.; Wang, L.; Wang, M.; Li, Y.; Zhu, B. Aromatic compounds and organoleptic features of fermented wolfberry wine: Effects of maceration time. Int. J. Food Prop. 2017, 20, 2234–2248. [Google Scholar] [CrossRef]
- Chemical Book. Available online: https://www.chemicalbook.com/ProductIndex_EN.aspx (accessed on 15 December 2021).
- Haz-Map. Available online: https://haz-map.com/Agents/1179 (accessed on 15 December 2021).
- Chatonnet, P.; Dubourdieu, D.; Boidron, J.N. Incidence des conditions de fermentation et d’élevage des vins blancs secs en barriques sur leur composition en substances cédées par le bois de chêne. Sci. Des Aliment. 1992, 12, 665–685. [Google Scholar]
- De Wet, P. Odour thresholds and their application to wine flavour studies. Proc. SA Oenol. Vitic 1978, 3–4, 28–42. [Google Scholar]
- Amoore, J.E.; Hautala, E. Odor as an ald to chemical safety: Odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J. Appl. Toxicol. 1983, 3, 272–290. [Google Scholar] [CrossRef]
- Meilgaard, M.C. Flavor chemistry of beer. II. Flavor and threshold of 239 aroma volatiles. Tech. Quart. Master. Brew. Assoc. Am. 1975, 12, 151–168. [Google Scholar]
- Buttery, R.G.; Ling, L.C.; Juliano, B.O.; Turnbaugh, J.G. Cooked rice aroma and 2-acetyl-1-pyrroline. J. Agric. Food Chem. 1983, 31, 823–826. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Suomalainen, H.; Nykänen, L. Investigations on the aroma of alcoholic beverages. Naeringsmiddelindustrien 1970, 23, 15–30. [Google Scholar]
- Salo, P.; Nykänen, L.; Suomalainen, H. Odor thresholds and relative intensities of volatile aroma components in an artificial beverage imitating whisky. J. Food Sci. 1972, 37, 394–398. [Google Scholar] [CrossRef]
- Robichaud, J.L.; Noble, A.C. Astringency and bitterness of selected phenolics in wine. J. Sci. Food Agric. 1990, 53, 343–353. [Google Scholar] [CrossRef]
- de Quirós, A.R.B.; Lage-Yusty, M.A.; López-Hernández, J. HPLC-analysis of polyphenolic compounds in Spanish white wines and determination of their antioxidant activity by radical scavenging assay. Food Res. Int. 2009, 42, 1018–1022. [Google Scholar] [CrossRef]
- Fernández-Pachón, M.S.; Villano, D.; Troncoso, A.M.; García-Parrilla, M.C. Determination of the phenolic composition of sherry and table white wines by liquid chromatography and their relation with antioxidant activity. Anal. Chim. Acta 2006, 563, 101–108. [Google Scholar] [CrossRef]
- Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. J. Food Compos. Anal. 2007, 20, 618–626. [Google Scholar] [CrossRef]
- Pereira, V.; Câmara, J.S.; Cacho, J.; Marques, J.C. HPLC-DAD methodology for the quantification of organic acids, furans and polyphenols by direct injection of wine samples. J. Sep. Sci. 2010, 33, 1204–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.; Li, H.; Wang, H.; Han, F.; Jing, S.; Yuan, C.; Xu, Z. Dispersive liquid-liquid microextraction method for HPLC determination of phenolic compounds in wine. Food Anal. Methods 2017, 10, 2383–2397. [Google Scholar] [CrossRef]
- Paixão, N.; Pereira, V.; Marques, J.C.; Câmara, J.S. Quantification of polyphenols with potential antioxidant properties in wines using reverse phase HPLC. J. Sep. Sci. 2008, 31, 2189–2198. [Google Scholar] [CrossRef] [Green Version]
- Jackson, D.I.; Lombard, P.B. Environmental and management practices affecting grape composition and wine quality—A review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: Synergistic effect and modulation by aromas. Food Res. Int. 2014, 62, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Wamhoff, H.; Gribble, G.W. Wine and Heterocycles. Adv. Heterocycl. Chem. 2012, 106, 185–225. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, H.; Xu, J. Application of NMR Spectroscopy for the Characterization of Dietary Polyphenols. In Applications of NMR Spectroscopy; Bentham Science Publishers: Sharjah, United Arab Emirates, 2015; Volume 3, pp. 37–77. [Google Scholar] [CrossRef]
- Coelho, E.M.; da Silva Padilha, C.V.; Miskinis, G.A.; de Sá, A.G.B.; Pereira, G.E.; de Azevêdo, L.C.; dos Santos Lima, M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Compos. Anal. 2008, 66, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Ivanova-Petropulos, V.; Petruševa, D.; Mitrev, S. Rapid and simple method for determination of target organic acids in wine using HPLC-DAD analysis. Food Anal. Methods 2020, 13, 1078–1087. [Google Scholar] [CrossRef]
- Rognså, G.H.; Rathe, M.; Petersen, M.A.; Misje, K.E.; Hersleth, M.; Sivertsvik, M.; Risbo, J. From wine to wine reduction: Sensory and chemical aspects. Int. J. Gastron. Food Sci. 2017, 9, 62–74. [Google Scholar] [CrossRef]
- Gawel, R.; Sluyter, S.V.; Waters, E.J. The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines. Aust. J. Grape Wine Res. 2007, 13, 38–45. [Google Scholar] [CrossRef]
- Nieuwoudt, H.; Prior, B.A.; Pretorius, I.S.; Bauer, F. Glycerol in South African table wines: An assessment of its relationship to wine quality. S. Afr. J. Enol. Vitic. 2002, 23, 22–30. [Google Scholar] [CrossRef]
- Nykänen, L.; Suomalainen, H. Aroma of Beer, Wine and Distilled Alcoholic Beverages; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1983; Volume 3. [Google Scholar]
- Amerine, M.A. Composition of wines. I. Organic constituents. Adv. Food Res. 1954, 5, 353–510. [Google Scholar] [CrossRef] [PubMed]
- Mattick, L.R.; Rice, A.C. Survey of the glycerol content of New York State wines. Am. J. Enol. Vitic. 1970, 21, 213–215. [Google Scholar]
- Ough, C.S.; Amerine, M.A. Methods for Analysis of Musts and Wines; John Wiley & Sons: Hoboken, NJ, USA, 1988. [Google Scholar]
- Rankine, B.C.; Bridson, D.A. Glycerol in Australian wines and factors influencing its formation. Am. J. Enol. Vitic. 1971, 22, 6–12. [Google Scholar]
- Refractive Index. Available online: https://macro.lsu.edu/howto/solvents/refractive%20index.htm (accessed on 17 December 2015).
- Verzera, A.; Ziino, M.; Scacco, A.; Lanza, C.M.; Mazzaglia, A.; Romeo, V.; Condurso, C. Volatile compound and sensory analysis for the characterization of an Italian white wine from “Inzolia” grapes. Food Anal. Methods 2008, 1, 144–151. [Google Scholar] [CrossRef]
- Low, J.Y.; McBride, R.L.; Lacy, K.E.; Keast, R.S. Psychophysical evaluation of sweetness functions across multiple sweeteners. Chem. Sens. 2017, 42, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Vilela-Moura, A.; Schuller, D.; Mendes-Faia, A.; Silva, R.D.; Chaves, S.R.; Sousa, M.J.; Côrte-Real, M. The impact of acetate metabolism on yeast fermentative performance and wine quality: Reduction of volatile acidity of grape musts and wines. Appl. Microbial. Biotechnol. 2011, 89, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Vilanova, M.; Escudero, A.; Graña, M.; Cacho, J. Volatile composition and sensory properties of North West Spain white wines. Food Res. Int. 2010, 54, 562–568. [Google Scholar] [CrossRef]
- Villamor, R.R.; Evans, M.A.; Mattinson, D.S.; Ross, C.F. Effects of ethanol, tannin and fructose on the headspace concentration and potential sensory significance of odorants in a model wine. Food Res. Int. 2013, 50, 38–45. [Google Scholar] [CrossRef]
- Hongsoongnern, P.; Chambers, E., IV. A lexicon for green odor or flavor and characteristics of chemicals associated with green. J. Sens. Stud. 2008, 23, 205–221. [Google Scholar] [CrossRef]
- Vara-Ubol, S.; Chambers, E., IV; Chambers, D.H. Sensory characteristics of chemical compounds potentially associated with beany aroma in foods. J Sens. Stud. 2004, 19, 15–26. [Google Scholar] [CrossRef]
- Bott, L.; Chambers, E., IV. Sensory characteristics of combinations of chemicals potentially associated with beany aroma in foods. J. Sens. Stud. 2006, 21, 308–321. [Google Scholar] [CrossRef]
Label | Product Name | Cultivar | Region | Vintage | Alcohol | Sugar Content |
---|---|---|---|---|---|---|
(%) 1 | (Brix) 2 | |||||
W1 | Famille Hugel, Gewurztraminer Classic | Gewurztraminer | France | 2015 | 14 | 8.03 |
W2 | Mouton Cadet White | Sauvignon Blanc, Sémillon, Muscadelle | France | 2017 | 12 | 6.3 |
W3 | Albert Bichot Chablis Primier Cru Les Vaucopins | Chablis | France | 2017 | 13 | 6.63 |
W4 | Kressmann Grand Reserve Bordeaux | Sauvignon Blanc, Muscadelle, Sémillon | France | 2017 | 12.5 | 6.37 |
W5 | Majuang Mosel | Riesling | Germany | 2017 | 8 | 7.83 |
W6 | Schloss Vollrads, Edition/Riseling | Riesling | Germany | 2016 | 12.5 | 7.6 |
W7 | Marchesi Antinori Villa Antinori Bianco | Trebbiano, Malvasia, Chardonnay | Italy | 2017 | 12 | 6.5 |
W8 | LE RIME Banfi | Chardonnay, Pinot Grigio | Italy | 2018 | 12 | 6.83 |
W9 | Cloudy Bay Sauvignon Blanc | Sauvignon Blanc | New Zealand | 2018 | 13 | 7 |
W10 | Torres Vina Sol | Parellada, Garnacha Blanca | Spain | 2017 | 11.5 | 6.2 |
W11 | Kendall Jackson, Grand Reserve Chardonnay 3 | Chardonnay | USA | 2016 | 14.5 | 8.3 |
W12 | Woodbridge Chardonnay 4 | Chardonnay | USA | 2017 | 13.5 | 7.5 |
Phenolic Compounds | Mean Concentration (mg/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | |
Polyphenols 2 | 193.33 (4.92) | 201.67 (18.87) | 162.00 (2.94) | 250.33 (22.87) | 247.33 (13.27) | 235.67 (13.91) | 182.00 (10.03) | 183.67 (17.61) | 176.00 (15.90) | 184.00 (15.12) | 276.67 (16.78) | 261.00 (13.64) |
T-caftaric acid | 15.50 (3.36) | 25.22 (2.78) | 19.45 (1.48) | 24.07 (3.44) | 35.49 (7.23) | 43.47 (8.35) | 28.40 (4.66) | 24.35 (10.92) | 28.89 (2.84) | 19.51 (2.31) | 15.92 (3.13) | 18.17 (2.12) |
Gallic acid | 9.89 (2.47) | 9.20 (1.47) | 6.67 (1.40) | 8.15 (1.66) | 8.60 (1.02) | 8.97 (0.69) | 9.36 (0.87) | 8.45 (0.57) | 5.74 (0.78) | 5.10 (0.97) | 6.76 (0.38) | 6.74 (0.22) |
Protocatechuic acid | 3.37 (1.15) | 7.06 (1.17) | 4.05 (1.84) | 6.16 (1.76) | 5.93 (1.76) | 13.57 (1.60) | 5.76 (1.34) | 7.09 (4.82) | 4.75 (0.51) | 4.10 (1.96) | 7.67 (4.02) | 5.42 (0.38) |
Caffeic acid | 0.96 (0.44) | 1.03 (0.13) | 0.63 (0.47) | 0.52 (0.39) | 1.01 (0.24) | 1.51 (0.22) | 0.57 (0.47) | 0.77 (0.38) | 0.72 (0.10) | 0.48 (0.44) | 1.14 (0.84) | 0.94 (0.46) |
Syringic acid | 21.79 (7.63) | 28.41 (3.97) | 9.63 (4.33) | 17.74 (6.31) | 12.38 (0.86) | 30.09 (4.85) | 16.58 (5.55) | 16.07 (6.02) | 22.58 (6.82) | 20.38 (9.02) | 27.83 (15.95) | 26.41 (6.93) |
P-coumaric acid | 4.36 (1.14) | 4.69 (0.74) | 2.21 (0.29) | 3.43 (0.44) | 1.38 (0.22) | 2.27 (0.25) | 2.23 (0.18) | 1.46 (0.12) | 2.93 (0.41) | 2.71 (0.20) | 2.74 (0.78) | 1.97 (0.16) |
Ferulic acid | 0.80 (0.19) | 0.68 (0.05) | 0.35 (0.01) | 0.51 (0.07) | 0.37 (0.15) | 0.64 (0.26) | 0.53 (0.06) | 0.47 (0.03) | 0.51 (0.05) | 0.55 (0.10) | 0.40 (0.06) | 0.64 (0.19) |
4-hydroxybenzoic acid | 1.00 (0.25) | 0.97 (0.28) | 0.67 (0.33) | 1.73 (0.78) | 0.96 (0.50) | 2.19 (1.37) | 1.45 (0.12) | 1.05 (0.19) | 1.18 (0.32) | 0.85 (0.36) | 1.14 (0.42) | 0.84 (0.90) |
Kaempferol | 0 (0.00) | 0.91 (0.72) | 0 (0.00) | 0.24 (0.18) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0.12 (0.16) | 0.80 (0.68) | 0.23 (0.33) | 0.74 (0.81) |
Catechins 2 | 8.07 (0.29) | 14.17 (0.38) | 5.07 (0.49) | 16.87 (0.21) | 4.33 (0.76) | 10.30 (0.22) | 10.97 (0.82) | 3.57 (0.65) | 11.17 (0.70) | 10.50 (0.57) | 14.37 (0.90) | 16.03 (0.45) |
Compoounds | Mean Concentration | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | |
Organic acids | ||||||||||||
Tartaric acid (g/L) | 1.13 (0.13) | 0.77 (0.13) | 1.79 (0.03) | 0.37 (0.03) | 0.62 (0.02) | 1.49 (0.16) | 0.75 (0.09) | 0.67 (0.14) | 0.74 (0.10) | 1.53 (0.10) | 0.18 (0.06) | 0.36 (0.10) |
Citric acid (g/L) | 0.14 (0.00) | 0.28 (0.02) | 0.09 (0.01) | 0.21 (0.02) | 0.20 (0.01) | 0.16 (0.01) | 0.27 (0.01) | 0.42 (0.02) | 0.31 (0.01) | 0.16 (0.02) | 0.07 (0.01) | 0.37 (0.01) |
Pyruvic acid (mg/L) | 15.00 (0.82) | 17.33 (1.25) | 9.00 (1.63) | 18.00 (2.16) | 18.67 (2.05) | 9.33 (1.89) | 11.67 (1.25) | 9.00 (0.00) | 16.00 (1.63) | 7.33 (1.25) | 9.67 (1.25) | 24.33 (0.94) |
Acetic acid (g/L) | 0.36 (0.01) | 0.25 (0.01) | 0.36 (0.05) | 0.29 (0.00) | 0.14 (0.03) | 0.26 (0.01) | 0.23 (0.01) | 0.17 (0.02) | 0.40 (0.02) | 0.28 (0.03) | 0.61 (0.05) | 0.46 (0.04) |
D-Lactic acid (g/L) | 0.14 (0.03) | 0.13 (0.01) | 0.12 (0.00) | 0.14 (0.02) | 0.10 (0.01) | 0.09 (0.00) | 0.13 (0.00) | 0.16 (0.00) | 0.10 (0.00) | 0.13 (0.00) | 0.26 (0.01) | 0.13 (0.00) |
L-Lactic acid (g/L) | 0 (0.00) | 0.05 (0.01) | 2.21 (0.19) | 0.11 (0.02) | 0.01 (0.01) | 0.08 (0.02) | 0.07 (0.02) | 0.01 (0.01) | 0 (0.00) | 0.17 (0.02) | 1.57 (0.04) | 0.39 (0.03) |
L-Malic acid (g/L) | 0.78 (0.06) | 2.21 (0.04) | 0.13 (0.00) | 1.60 (0.02) | 4.20 (0.07) | 2.78 (0.16) | 1.48 (0.03) | 1.57 (0.05) | 3.81 (0.07) | 0.86 (0.08) | 0.36 (0.04) | 1.82 (0.12) |
Other nonvolatiles | ||||||||||||
Total sulfite (g/L) | 0.13 (0.00) | 0.11 (0.00) | 0.06 (0.00) | 0.14 (0.00) | 0.11 (0.00) | 0.07 (0.00) | 0.11 (0.00) | 0.10 (0.01) | 0.12 (0.00) | 0.08 (0.00) | 0.08 (0.00) | 0.13 (0.01) |
Free sulfite (mg/L) | 0 (0.94) | 0 (0.47) | 0 (0.47) | 0.01 (0.52) | 0.01 (1.87) | 0 (0.47) | 0 (1.32) | 0 (0.94) | 0 (0.85) | 0 (0.52) | 0.01 (1.14) | 0.01 (1.28) |
Glycerol (g/L) | 6.40 (0.33) | 6.17 (0.12) | 5.27 (0.41) | 5.63 (0.76) | 4.32 (0.55) | 5.47 (0.78) | 5.53 (0.52) | 6.43 (0.48) | 5.33 (1.05) | 5.10 (0.64) | 7.83 (0.29) | 5.90 (0.29) |
Sugars | ||||||||||||
D-glucose (g/L) | 1.14 (0.04) | 0.36 (0.03) | 0.37 (0.00) | 0.34 (0.00) | 17.15 (1.49) | 1.54 (0.14) | 0.66 (0.05) | 1.96 (0.03) | 0.62 (0.07) | 0.45 (0.04) | 1.31 (0.08) | 2.07 (0.07) |
D-fructose (g/L) | 9.63 (0.47) | 0.26 (0.02) | 0.71 (0.09) | 0.44 (0.03) | 15.64 (0.89) | 10.39 (0.40) | 2.34 (0.13) | 1.68 (0.07) | 0.69 (0.09) | 2.39 (0.02) | 2.04 (0.12) | 2.78 (0.10) |
No. | Coumpounds | RT 2 | Mean Concentration (μg/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | |||
V0 | Acetaldehyde 3 | 57.00 (0.00) | 44.67 (0.47) | 16.00 (0.82) | 58.33 (0.47) | 30.00 (1.63) | 29.00 (0.82) | 51.33 (1.70) | 37.67 (0.47) | 52.00 (0.82) | 33.67 (1.25) | 17.00 (0.82) | 45.67 (0.47) | |
V1 | 2,3-Butanediol | 5.026 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 4.74 (6.70) | 9.45 (7.61) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
V2 | Ethyl butyrate | 5.304 | 1.88 (2.66) | 1.50 (2.12) | 1.89 (2.67) | 1.45 (2.05) | 3.32 (0.18) | 2.16 (3.06) | 0 (0.00) | 0 (0.00) | 1.97 (2.79) | 0 (0.00) | 4.19 (2.97) | 2.35 (3.33) |
V3 | Ethyl lactate | 5.669 | 0 (0.00) | 0 (0.00) | 27.44 (4.20) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 23.29 (2.12) | 1.88 (1.33) |
V4 | Furfural | 6.098 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 1.20 (0.85) | 1.59 (0.61) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 7.11 (0.21) | 0.39 (0.55) |
V5 | Ethyl isovalerate | 6.587 | 0 (0.00) | 0 (0.00) | 1.46 (0.04) | 1.66 (1.18) | 0 (0.00) | 1.81 (0.05) | 1.00 (0.71) | 0.54 (0.76) | 0 (0.00) | 0 (0.00) | 1.42 (1.01) | 0.49 (0.70) |
V6 | 1-Hexanol | 7.016 | 3.75 (0.17) | 10.13 (0.09) | 7.79 (0.31) | 10.00 (0.31) | 23.88 (0.27) | 12.44 (0.08) | 5.95 (0.17) | 9.12 (0.32) | 9.72 (2.11) | 9.07 (0.61) | 12.46 (0.54) | 14.58 (1.28) |
V7 | Isoamyl acetate | 7.218 | 5.07 (3.58) | 12.91 (9.37) | 8.47 (5.99) | 9.19 (6.90) | 5.78 (4.09) | 1.86 (1.32) | 7.98 (5.94) | 39.7 (28.30) | 14.19 (10.19) | 7.54 (6.02) | 14.94 (10.57) | 21.58 (15.26) |
V8 | 2-Butylfuran | 7.898 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 1.49 (2.11) | 0 (0.00) |
V9 | Benzaldehyde | 9.578 | 1.26 (0.12) | 4.54 (0.09) | 0 (0.00) | 3.36 (0.13) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
V10 | Hexanoic acid | 10.664 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 2.66 (3.76) | 0 (0.00) | 0 (0.00) | 7.92 (2.83) | 0 (0.00) | 6.27 (0.68) | 7.07 (1.49) |
V11 | Hexyl acetate | 11.203 | 1.21 (0.04) | 5.14 (0.57) | 2.33 (0.05) | 2.33 (0.51) | 3.99 (1.13) | 0 (0.00) | 2.21 (0.32) | 10.89 (0.61) | 6.64 (0.51) | 3.34 (1.03) | 0 (0.00) | 5.50 (0.09) |
V12 | Isoamyl lactate | 12.87 | 0 (0.00) | 0 (0.00) | 0.64 (0.91) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
V13 | 1-Octanol | 12.925 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 1.56 (0.35) | 0 (0.00) | 0 (0.00) | 0.42 (0.59) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0.91 (0.64) |
V14 | 2-Methylbenzaldehyde | 13.201 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0.41 (0.58) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
V15 | Linalool | 13.782 | 0.63 (0.89) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0.39 (0.55) | 0 (0.00) | 0 (0.00) | 2.30 (0.11) | 0 (0.00) | 0.44 (0.62) | 0 (0.00) | 1.78 (0.05) |
V16 | Nonanal | 13.908 | 4.34 (3.94) | 1.29 (0.92) | 0 (0.00) | 1.84 (1.30) | 4.64 (3.28) | 1.76 (2.48) | 2.97 (2.30) | 6.22 (5.99) | 4.83 (3.72) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
V17 | Phenylethyl Alcohol | 14.19 | 16.92 (0.95) | 29.71 (4.44) | 25.91 (0.89) | 77.73 (8.37) | 31.40 (2.82) | 54.64 (5.77) | 35.61 (5.93) | 27.20 (2.76) | 32.25 (12.04) | 20.49 (1.94) | 85.56 (11.58) | 44.65 (3.63) |
V18 | Methyl octanoate | 14.513 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0.36 (0.51) | 1.30 (0.04) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
V19 | Nerol Oxide | 15.399 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 4.96 (0.52) | 6.06 (0.22) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
V20 | Terpinen-4-ol | 16.065 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 1.24 (0.41) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0.77 (1.09) | 0.63 (0.89) | 0.95 (1.34) | 0.98 (1.39) |
V21 | Diethyl succinate | 16.192 | 0 (0.00) | 0 (0.00) | 0.80 (1.13) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0.70 (1.00) | 0 (0.00) | 0 (0.00) | 0.61 (0.86) | 0 (0.00) | 0 (0.00) |
V22 | Octanoic acid | 16.49 | 18.21 (6.03) | 7.61 (10.76) | 15.89 (0.55) | 25.41 (6.01) | 17.85 (1.67) | 14.05 (8.07) | 12.53 (17.72) | 17.44 (12.37) | 15.03 (21.25) | 4.32 (6.10) | 25.00 (2.55) | 21.47 (1.66) |
V23 | Ethyl octanoate | 16.72 | 210.57 (5.33) | 263.72 (32.40) | 179.24 (6.91) | 202.66 (8.95) | 185.03 (28.77) | 202.15 (10.96) | 228.15 (17.28) | 225.42 (33.65) | 298.57 (43.60) | 252.76 (26.02) | 331.53 (23.16) | 225.64 (16.47) |
V24 | 1,3-Di-tert-butylbenzene | 18.232 | 0 (0.00) | 0.48 (0.67) | 1.37 (0.09) | 1.75 (0.04) | 1.28 (0.04) | 1.93 (0.05) | 1.58 (0.03) | 1.34 (0.95) | 1.12 (0.79) | 0.98 (0.70) | 2.28 (0.19) | 1.87 (0.07) |
V25 | Phenethyl acetate | 18.308 | 0.63 (0.89) | 1.88 (1.36) | 0.61 (0.86) | 3.20 (0.44) | 3.03 (0.45) | 0 (0.00) | 2.92 (0.16) | 5.49 (0.28) | 4.09 (1.12) | 0 (0.00) | 4.73 (0.20) | 4.74 (0.15) |
V26 | Diethyl malate | 18.631 | 0 (0.00) | 1.61 (0.37) | 0 (0.00) | 1.67 (0.43) | 2.46 (1.21) | 12.28 (1.85) | 1.89 (0.19) | 0 (0.00) | 4.50 (0.99) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
V27 | .alpha.-Ionone | 18.963 | 1.15 (0.84) | 1.73 (1.41) | 0 (0.00) | 1.35 (1.92) | 5.78 (0.63) | 0 (0.00) | 1.87 (1.33) | 0 (0.00) | 1.43 (2.02) | 1.81 (2.56) | 1.53 (2.17) | 0 (0.00) |
V28 | Decanoic acid | 21.399 | 0.59 (0.84) | 1.86 (1.57) | 0.85 (0.64) | 2.23 (1.21) | 12.78 (2.91) | 10.77 (0.83) | 3.24 (0.36) | 0 (0.00) | 21.89 (14.56) | 9.77 (1.01) | 4.56 (0.65) | 4.84 (0.58) |
V29 | Ethyl 9-decenoate | 21.792 | 0 (0.00) | 3.55 (0.04) | 1.61 (0.28) | 0 (0.00) | 2.03 (0.09) | 0 (0.00) | 3.35 (0.11) | 0 (0.00) | 0.82 (1.16) | 1.58 (1.12) | 2.06 (0.08) | 2.21 (0.10) |
V30 | Ethyl decanoate | 21.997 | 11.60 (0.72) | 43.77 (2.09) | 12.06 (2.39) | 28.21 (4.27) | 56.30 (3.85) | 32.52 (2.53) | 28.96 (2.61) | 26.02 (1.81) | 45.09 (0.83) | 48.34 (5.70) | 142.47 (16.19) | 65.47 (8.63) |
V31 | Ethyl isopentyl succinate | 22.865 | 13.01 (0.15) | 18.52 (1.88) | 24.01 (0.98) | 36.32 (2.04) | 17.99 (2.66) | 60.66 (3.58) | 26.68 (3.75) | 14.65 (1.22) | 19.71 (8.41) | 17.39 (2.48) | 100.02 (6.87) | 31.73 (1.52) |
V32 | 2,4-Di-tert-butylphenol | 24.885 | 0 (0.00) | 2.52 (0.55) | 0 (0.00) | 0 (0.00) | 4.48 (0.36) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 2.09 (0.30) |
No. | Compounds | Descriptor | Thresholds |
---|---|---|---|
V0 | Acetaldehyde | Floral, Green Apple [42] | 0.5 ppm [43] |
V1 | (R,R)-2,3-butanediol | Fruity, buttery, onion, creamy [44] | 150,000 μg/L [45] |
V2 | Ethyl butyrate | Apple, Butter, Cheese, Pineapple, Strawberry [42] | 0.04 ppb [46] |
V3 | Ethyl lactate | Cheese, Floral, Fruit, Pungent, Rubber [42] | 0.2 to 1.66 ppm [47] |
V4 | Furfural | Almond, Baked Potatoes, Bread, Burnt, Spice [42] | 65 ppm [48] |
V5 | Ethyl isovalerate | Apple, Fruit, Pineapple, Sour [42] | 0.01 to 0.4 ppb [46] |
V6 | 1-Hexanol | Banana, Flower, Grass, Herb [42] | 5.3 ppm [49] |
V7 | Isoamyl acetate | Apple, Banana, Glue, Pear [42] | 17 μg/L [50] |
V9 | Benzaldehyde | Bitter Almond, Burnt Sugar, Cherry, Malt, Roasted Pepper [42] | 20 ppm [51] |
V10 | Hexanoic acid | Cheese, Oil, Pungent, Sour [42] | 30 ppm [43] |
V11 | Hexyl acetate | Apple, Banana, Grass, Herb, Pear [42] | 2.9 ppb [52] |
V13 | 1-Octanol | Bitter Almond, Burnt Matches, Fat, Floral [42] | 820 ppb [49] |
V15 | Linalool | Coriander, Floral, Lavender, Lemon, Rose [42] | 6 ppb [53] |
V16 | Nonanal | Fat, Floral, Green, Lemon [42] | 2.8 ppm [54] |
V17 | Methyl octanoate | Fruit, Orange, Wax, Wine [42] | 200 to 870 ppb [46] |
V18 | Phenylethyl Alcohol | Fruit, Honey, Lilac, Rose, Wine [42] | 7.5 ppm [55] |
V20 | 4-Terpineol | Earth, Must, Nutmeg, Wood [42] | 30 ppm [46] |
V21 | Diethyl succinate | Cotton, Fabric, Floral, Fruit, Wine [42] | 10 to 100 ppm [46] |
V22 | Octanoic acid | Cheese, Fat, Grass, Oil [42] | 15 ppm [56] |
V23 | Ethyl octanoate | Apricot, Brandy, Fat, Floral, Pineapple [42] | 5 to 92 ppb [46] |
V25 | Phenethyl acetate | Flower, Honey, Rose [42] | 3 to 5 ppm [46] |
V27 | .alpha.-Ionone | Violet, Wood [42] | 2.6 ppb [51] |
V28 | Decanoic acid | Dust, Fat, Grass [42] | 1.6 ppm [57] |
V30 | Ethyl decanoate | Brandy, Grape, Pear [42] | 510 ppb [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Yang, J.; Choi, K.; Kim, J.; Adhikari, K.; Lee, J. Chemical Analysis of Commercial White Wines and Its Relationship with Consumer Acceptability. Foods 2022, 11, 603. https://doi.org/10.3390/foods11040603
Han S, Yang J, Choi K, Kim J, Adhikari K, Lee J. Chemical Analysis of Commercial White Wines and Its Relationship with Consumer Acceptability. Foods. 2022; 11(4):603. https://doi.org/10.3390/foods11040603
Chicago/Turabian StyleHan, Seongju, Jiyun Yang, Kapseong Choi, Juyoung Kim, Koushik Adhikari, and Jeehyun Lee. 2022. "Chemical Analysis of Commercial White Wines and Its Relationship with Consumer Acceptability" Foods 11, no. 4: 603. https://doi.org/10.3390/foods11040603
APA StyleHan, S., Yang, J., Choi, K., Kim, J., Adhikari, K., & Lee, J. (2022). Chemical Analysis of Commercial White Wines and Its Relationship with Consumer Acceptability. Foods, 11(4), 603. https://doi.org/10.3390/foods11040603