Novel Water–Oil Mixed Frying: Fried Oil Quality and the Formation of Heterocyclic Amines and Trans Fatty Acids in Fried Duck
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples and Frying Method
2.3. Determination of Color, Peroxide Value and Acid Value of the Soybean Oil
2.4. Determination of Color Difference (∆E) and Moisture Content of Duck Meat and Skin
2.5. Determination of Trans Fatty Acids (TFAs)
2.6. Analysis of Heterocyclic Amines
2.7. Statistical Analysis
3. Results and Discussion
3.1. Color, Acid Value and Peroxide Value of the Soybean Oil
3.2. TFAs Contents in the Soybean Oil
3.3. Color Change (∆E) and Moisture Percentage in the Fried Duck Breast Skin and Meat
3.4. TFAs Contents in the Fried Duck Breast Skin and Meat
3.5. Heterocyclic Amines in the Fried Duck Breast Skin and Meat
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ngadi, M.; Adedeji, A.; Kassama, L. Microstructural Changes During Frying of Foods. In Advances in Deep-Fat Frying of Foods, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 169–200. ISBN 9780429138812. [Google Scholar] [CrossRef]
- Wang, Y.; Hui, T.; Zhang, Y.; Liu, B.; Wang, F.; Li, J.; Cui, B.; Guo, X.; Peng, Z. Effects of frying conditions on the formation of heterocyclic amines and trans fatty acids in grass carp (Ctenopharyngodon idellus). Food Chem. 2015, 167, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.J.; Yoon, Y.; Jo, C.; Jeong, J.Y.; Lee, S.Y. Effect of Dietary Red Meat on Colorectal Cancer Risk—A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1812–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer. Some Naturally Occurring and Synthetic Food Components, Furocoumarins and Ultraviolet Radiation; WHO Press: Lyon, France, 1985; Volume 40. [Google Scholar]
- International Agency for Research on Cancer. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. In Apresentado em: IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Some Naturally Occurring Substances: Food Items and Constituents; International Agency for Research on Cancer: Lyon, France, 1992. [Google Scholar]
- Zhang, C.-X.; Xi, J.; Wang, S.-T.; Ma, Y.-X.; Wang, X.-D. Effects of deep fat frying conditions on the formation of heterocyclic aromatic amines in chicken meat. Food Sci. Technol. 2021, 1–10. [Google Scholar] [CrossRef]
- Khan, I.A.; Luo, J.; Shi, H.; Zou, Y.; Khan, A.; Zhu, Z.; Xu, W.; Wang, D.; Huang, M. Mitigation of heterocyclic amines by phenolic compounds in allspice and perilla frutescens seed extract: The correlation between antioxidant capacities and mitigating activities. Food Chem. 2022, 368, 130845. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yang, Y.; Nie, S.; Xie, M.; Chen, F. Analysis and Formation of trans Fatty Acids in Corn Oil During the Heating Process. J. Am. Oil Chem. Soc. 2012, 89, 859–867. [Google Scholar] [CrossRef]
- Oroszvári, B.K.; Sjöholm, I.; Tornberg, E. The mechanisms controlling heat and mass transfer on frying of beefburgers. I. The influence of the composition and comminution of meat raw material. J. Food Eng. 2005, 67, 499–506. [Google Scholar] [CrossRef]
- Bansal, H.S.; Takhar, P.S.; Alvarado, C.Z.; Thompson, L.D. Transport Mechanisms and Quality Changes During Frying of Chicken Nuggets-Hybrid Mixture Theory Based Modeling and Experimental Verification. J. Food Sci. 2015, 80, E2759–E2773. [Google Scholar] [CrossRef]
- Wu, H.; Tassou, S.; Karayiannis, T.; Jouhara, H. Analysis and simulation of continuous food frying processes. Appl. Therm. Eng. 2013, 53, 332–339. [Google Scholar] [CrossRef]
- Mehta, U.; Swinburn, B. A Review of Factors Affecting Fat Absorption in Hot Chips. Crit. Rev. Food Sci. Nutr. 2001, 41, 133–154. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; McClements, D.J.; Chen, L.; Miao, M.; Jin, Z. Effect of New Frying Technology on Starchy Food Quality. Foods 2021, 10, 1852. [Google Scholar] [CrossRef]
- Ma, R.; Gao, T.; Song, L.; Zhang, L.; Jiang, Y.; Li, J.; Zhang, X.; Gao, F.; Zhou, G. Effects of oil-water mixed frying and pure-oil frying on the quality characteristics of soybean oil and chicken chop. Food Sci. Technol. 2016, 36, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Solyakov, A.; Skog, K. Screening for heterocyclic amines in chicken cooked in various ways. Food Chem. Toxicol. 2002, 40, 1205–1211. [Google Scholar] [CrossRef]
- Gross, G.A.; Grüter, A. Quantitation of mutagegnic/carcinogenic heterocyclic aromatic amines in food products. J. Chromatogr. A 1992, 592, 271–278. [Google Scholar] [CrossRef]
- Peng, Y.; Guo, X.; Jamali, M.A.; Zhang, Y. Coupling of Water Activity and Colour Development of Roast Duck Skin under Forced Convection Drying. Processes 2020, 8, 1165. [Google Scholar] [CrossRef]
- Yao, Y.; Peng, Z.; Wan, K.; Shao, B.; Shi, J.; Zhang, Y.; Wang, F.; Hui, T. Determination of heterocyclic amines in braised sauce beef. Food Chem. 2013, 141, 1847–1853. [Google Scholar] [CrossRef]
- Xu, X.-Q. A chromametric method for the rapid assessment of deep frying oil quality. J. Sci. Food Agric. 2003, 83, 1293–1296. [Google Scholar] [CrossRef]
- Serjouie, A.; Tan, C.P.; Mirhosseini, H.; Che Man, Y.B. Effect of vegetable-based oil blends on physicochemical properties of oils during deep-fat frying. Am. J. Food Technol. 2010, 5, 310–323. [Google Scholar] [CrossRef] [Green Version]
- Maskan, M. Change in colour and rheological behaviour of sunflower seed oil during frying and after adsorbent treatment of used oil. Eur. Food Res. Technol. 2003, 218, 20–25. [Google Scholar] [CrossRef]
- Chen, W.A.; Chiu, C.P.; Cheng, W.C.; Hsu, C.K.; Kuo, M.I. Total polar compounds and acid values of repeatedly used frying oils measured by standard and rapid methods. J. Food Drug Anal. 2013, 21, 58–65. [Google Scholar]
- Totani, N.; Tateishi, S.; Chiue, H.; Mori, T. Color and Chemical Properties of Oil Used for Deep Frying on a Large Scale. J. Oleo Sci. 2012, 61, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-M.; Kim, J.-M. Monitoring of Used Frying Oils and Frying Times for Frying Chicken Nuggets Using Peroxide Value and Acid Value. Korean J. Food Sci. Anim. Resour. 2016, 36, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Sunisa, W.; Worapong, U.; Sunisa, S.; Saowaluck, J.; Saowakon, W. Quality changes of chicken frying oil as affected of frying conditions. Int. Food Res. J. 2011, 18, 615–620. [Google Scholar]
- Gunstone, F. Oils and Fats in the Food Industry; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 6. [Google Scholar]
- Sulieman, A.E.R.M.; El-Makhzangy, A.; Ramadan, M.F. Antiradical performance and physicochemical characteristics of vegetable oils upon frying of French fries: A preliminary comparative study. J. Food Lipids 2006, 13, 259–276. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Amer, M.M.A.; Sulieman, A.E.M. Correlation between physicochemical analysis and radical-scavenging activity of vegetable oil blends as affected by frying of French fries. Eur. J. Lipid Sci. Technol. 2006, 108, 670–678. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Cheng, Y.; Liu, Y. Effect of frying oils’ fatty acid profile on quality, free radical and volatiles over deep-frying process: A comparative study using chemometrics. LWT 2019, 101, 331–341. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Vasishtha, A.K. Changes in the characteristics and composition of oils during deep-fat frying. J. Am. Oil Chem. Soc. 1996, 73, 499–506. [Google Scholar] [CrossRef]
- Sébédio, J.L.; Grandgirard, A.; Prevost, J. Linoleic acid isomers in heat treated sunflower oils. J. Am. Oil Chem. Soc. 1988, 65, 362–366. [Google Scholar] [CrossRef]
- Jain, A.; Passi, S.J.; Selvamurthy, W.; Singh, A.; Thakkar, H. Effect of frying temperature/frying cycles on trans fat content of groundnut oil. Plant Arch. 2020, 20, 2565–2568. [Google Scholar]
- Dana, D.; Blumenthal, M.M.; Saguy, I.S. The protective role of water injection on oil quality in deep fat frying conditions. Eur. Food Res. Technol. 2003, 217, 104–109. [Google Scholar] [CrossRef]
- Srivastava, Y.; Semwal, A.D. A study on monitoring of frying performance and oxidative stability of virgin coconut oil (VCO) during continuous/prolonged deep fat frying process using chemical and FTIR spectroscopy. J. Food Sci. Technol. 2015, 52, 984–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.H.; Lu, Y.F.; Inbaraj, B.S.; Chen, B.H. Formation of trans fatty acids in chicken legs during frying. Int. J. Food Sci. Nutr. 2008, 59, 368–382. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Y.; Nie, S.; Xie, M.; Chen, F.; Luo, P.G. Formation of trans fatty acids during the frying of chicken fillet in corn oil. Int. J. Food Sci. Nutr. 2014, 65, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Tres, A.; Nuchi, C.; Magrinyà, N.; Guardiola, F.; Bou, R.; Codony, R. Use of palm-oil by-products in chicken and rabbit feeds: Effect on the fatty acid and tocol composition of meat, liver and plasma. Animal 2012, 6, 1005–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, G.; Wang, G.; Xu, X.; Zhou, G. Effect of cooking methods on the formation of heterocyclic aromatic amines in chicken and duck breast. Meat Sci. 2010, 85, 149–154. [Google Scholar] [CrossRef]
- Zamora, R.; Alcón, E.; Hidalgo, F.J. Effect of lipid oxidation products on the formation of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) in model systems. Food Chem. 2012, 135, 2569–2574. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Y.; Qian, Y.; Peng, Z. Effects of Cooking Cycle Times of Marinating Juice and Reheating on the Formation of Cholesterol Oxidation Products and Heterocyclic Amines in Marinated Pig Hock. Foods 2020, 9, 1104. [Google Scholar] [CrossRef]
- Randel, G.; Balzer, M.; Grupe, S.; Drusch, S.; Kaina, B.; Platt, K.-L.; Schwarz, K. Degradation of heterocyclic aromatic amines in oil under storage and frying conditions and reduction of their mutagenic potential. Food Chem. Toxicol. 2007, 45, 2245–2253. [Google Scholar] [CrossRef]
- Nadeem, H.; Akhtar, S.; Ismail, T.; Sestili, P.; Lorenzo, J.; Ranjha, M.; Jooste, L.; Hano, C.; Aadil, R. Heterocyclic Aromatic Amines in Meat: Formation, Isolation, Risk Assessment, and Inhibitory Effect of Plant Extracts. Foods 2021, 10, 1466. [Google Scholar] [CrossRef]
Number of Cycles | tC18:1 (mg/g) | |
---|---|---|
Traditional Oil Frying | Water–Oil Mixed Frying | |
0 | 1.28 ± 0.03 hi | 1.28 ± 0.03 hi |
10 | 1.36 ± 0.05 g | 1.32 ± 0.01 gh |
20 | 1.46 ± 0.05 f | 1.25 ± 0.02 i |
30 | 1.73 ± 0.05 d | 1.37 ± 0.02 g |
40 | 1.88 ± 0.05 bc | 1.46 ± 0.02 f |
50 | 1.90 ± 0.06 ab | 1.65 ± 0.04 e |
60 | 1.95 ± 0.06 a | 1.83 ± 0.05 c |
Number of Cycles | ∆E (Duck Skin) | ∆E (Duck Breast Meat) | Moisture (Duck Skin) | Moisture (Duck Breast Meat) | ||||
---|---|---|---|---|---|---|---|---|
Traditional Oil Frying | Water–Oil Mixed Frying | Traditional Oil Frying | Water–Oil Mixed Frying | Traditional Oil Frying | Water–Oil Mixed frying | Traditional Oil Frying | Water–Oil Mixed Frying | |
0 | 0.00 ± 0.00 e | 0.00 ± 0.00 e | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 23.15 ± 0.20 g | 24.04 ± 0.20 g | 72.98 ± 0.40 a | 74.06 ± 0.40 a |
1 | 23.81 ± 2.67 d | 26.00 ± 0.59 bcd | 13.19 ± 2.70 bc | 15.56 ± 0.90 ab | 37.01 ± 1.10 abc | 39.48 ± 0.11 a | 62.85 ± 0.04 defg | 61.63 ± 0.78 gh |
10 | 23.58 ± 3.14 d | 29.54 ± 2.17 ab | 12.77 ± 0.44 c | 13.89 ± 0.60 bc | 36.32 ± 0.39 bc | 34.80 ± 0.26 cde | 62.39 ± 0.31 efgh | 61.99 ± 0.48 fgh |
20 | 29.96 ± 1.32 a | 27.91 ± 2.86 abc | 13.68 ± 1.48 bc | 14.99 ± 0.92 abc | 35.50 ± 0.94 bcd | 35.94 ± 2.96 bcd | 64.01 ± 0.45 bcd | 62.41 ± 0.22 efgh |
30 | 24.57 ± 1.03 cd | 29.65 ± 0.45 a | 14.86 ± 3.12 abc | 14.94 ± 1.09 abc | 37.38 ± 0.03 ab | 32.44 ± 0.53 ef | 63.07 ± 0.38 cdef | 64.30 ± 0.22 bc |
40 | 26.98 ± 2.21 abcd | 30.15 ± 2.21 a | 12.76 ± 1.93 c | 17.12 ± 3.02 a | 34.71 ± 2.38 cde | 35.49 ± 1.06 bcd | 63.51 ± 0.02 bcde | 64.59 ± 0.05 b |
50 | 28.19 ± 1.69 abc | 24.77 ± 2.84 cd | 13.39 ± 0.63 bc | 15.02 ± 2.01 abc | 36.83 ± 2.02 bc | 32.59 ± 2.63 ef | 62.43 ± 0.25 efgh | 59.94 ± 0.32 i |
60 | 28.58 ± 3.34 ab | 28.72 ± 4.09 ab | 12.91 ± 0.14 bc | 12.73 ± 2.16 c | 31.42 ± 0.18 f | 33.69 ± 2.83 def | 62.26 ± 0.56 efgh | 61.20 ± 1.10 hi |
Sample | Number of Cycles | 9tC16:1 | tC18:1 | ||
---|---|---|---|---|---|
Traditional Oil Frying | Water–Oil Mixed Frying | Traditional Oil Frying | Water–Oil Mixed Frying | ||
Skin | 0 | 0.19 ± 0.01 c | 0.18 ± 0.01 cd | 0.90 ± 0.00 g | 0.92 ± 0.02 fg |
1 | 0.17 ± 0.01 ef | 0.16 ± 0.02 ef | 1.07 ± 0.11 defg | 1.01 ± 0.25 efg | |
10 | 0.17 ± 0.01 de | 0.18 ± 0.00 cd | 1.08 ± 0.05 cdef | 1.11 ± 0.01 bcde | |
20 | 0.17 ± 0.01 ef | 0.18 ± 0.00 cd | 1.07 ± 0.04 def | 1.06 ± 0.04 defg | |
30 | 0.16 ± 0.01 ef | 0.17 ± 0.01 ef | 1.05 ± 0.03 defg | 1.10 ± 0.10 cde | |
40 | 0.18 ± 0.00 cd | 0.16 ± 0.00 f | 1.20 ± 0.07 abcd | 1.20 ± 0.02 abcd | |
50 | 0.20 ± 0.00 b | 0.19 ± 0.02 c | 1.25 ± 0.13 abc | 1.28 ± 0.02 ab | |
60 | 0.22 ± 0.01 a | 0.20 ± 0.00 b | 1.31 ± 0.22 a | 1.29 ± 0.07 a | |
Meat | 0 | ND | ND | 0.07 ± 0.01 g | 0.07 ± 0.01 g |
1 | ND | ND | 0.08 ± 0.01 de | 0.09 ± 0.01 d | |
10 | ND | ND | 0.09 ± 0.00 cd | 0.08 ± 0.01 de | |
20 | ND | ND | 0.07 ± 0.00 fg | 0.08 ± 0.00 def | |
30 | ND | ND | 0.07 ± 0.01 fg | 0.07 ± 0.02 efg | |
40 | ND | ND | 0.10 ± 0.00 bc | 0.11 ± 0.01 ab | |
50 | ND | ND | 0.08 ± 0.00 def | 0.12 ± 0.01 a | |
60 | ND | ND | 0.09 ± 0.00 cd | 0.10 ± 0.01 b |
Sample | No. of Cycles | Norharman | Harman | PhIP | AαC | MeAαC | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Traditional Oil Frying | Water–Oil Mixed Frying | Traditional Oil Frying | Water–Oil Mixed Frying | Traditional Oil Frying | Water–Oil Mixed Frying | Traditional Oil Frying | Water–Oil Mixed Frying | Traditional Oil Frying | Water–Oil Mixed Frying | Traditional Oil Frying | Water–Oil Mixed Frying | ||
Skin | 0 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
1 | 0.25 ± 0.02 f | 0.28 ± 0.01 f | 0.27 ± 0.04 cd | 0.32 ± 0.02 abcd | ND | ND | 0.09 ± 0.00 g | 0.10 ± 0.02 g | ND | ND | 0.61 | 0.70 | |
10 | 0.33 ± 0.01 e | 0.34 ± 0.00 e | 0.28 ± 0.03 cd | 0.30 ± 0.01 abcd | ND | ND | 0.16 ± 0.01 d | 0.08 ± 0.02 g | ND | ND | 0.77 | 0.72 | |
20 | 0.39 ± 0.03 d | 0.42 ± 0.02 bc | 0.30 ± 0.01 abcd | 0.26 ± 0.00 d | ND | ND | 0.13 ± 0.01 ef | 0.15 ± 0.00 de | ND | ND | 0.82 | 0.83 | |
30 | 0.34 ± 0.02 e | 0.31 ± 0.01 e | 0.28 ± 0.12 bcd | 0.28 ± 0.04 cd | 0.12 ± 0.02 e | 0.14 ± 0.03 d | 0.08 ± 0.02 g | 0.11 ± 0.01 f | ND | ND | 0.82 | 0.84 | |
40 | 0.44 ± 0.06 bc | 0.40 ± 0.01 cd | 0.34 ± 0.03 abcd | 0.31 ± 0.02 abcd | 0.15 ± 0.01 cd | 0.17 ± 0.01 ab | 0.11 ± 0.02 f | 0.12 ± 0.01 f | ND | ND | 1.04 | 1.00 | |
50 | 0.45 ± 0.02 b | 0.43 ± 0.01 bc | 0.36 ± 0.02 ab | 0.34 ± 0.04 abc | 0.15 ± 0.01 bcd | 0.16 ± 0.01 abc | 0.20 ± 0.02 b | 0.17 ± 0.01 cd | ND | ND | 1.16 | 1.10 | |
60 | 0.49 ± 0.03 a | 0.43 ± 0.02 bc | 0.37 ± 0.12 a | 0.34 ± 0.04 abcd | 0.15 ± 0.02 cd | 0.17 ± 0.02 a | 0.22 ± 0.02 a | 0.19 ± 0.01 bc | ND | ND | 1.23 | 1.13 | |
Meat | 0 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
1 | 0.47 ± 0.00 h | 0.66 ± 0.02 ef | 0.59 ± 0.01 fg | 0.68 ± 0.08 def | ND | ND | 0.09 ± 0.01 ef | 0.07 ± 0.03 f | ND | ND | 1.15 | 1.41 | |
10 | 0.58 ± 0.05 g | 0.73 ± 0.03 de | 0.63 ± 0.07 ef | 0.70 ± 0.02 def | ND | ND | 0.15 ± 0.01 abcd | 0.10 ± 0.05 ef | ND | ND | 1.36 | 1.53 | |
20 | 0.58 ± 0.04 fg | 0.83 ± 0.06 bc | 0.51 ± 0.10 g | 0.64 ± 0.02 ef | 0.13 ± 0.00 c | 0.17 ± 0.01 a | 0.13 ± 0.00 cde | 0.11 ± 0.02 def | ND | ND | 1.35 | 1.75 | |
30 | 0.77 ± 0.06 cd | 1.00 ± 0.03 a | 0.59 ± 0.00 fg | 0.67 ± 0.05 def | 0.11 ± 0.02 d | 0.15 ± 0.02 ab | 0.15 ± 0.01 bcd | 0.13 ± 0.01 cde | ND | ND | 1.62 | 1.95 | |
40 | 0.87 ± 0.07 b | 0.99 ± 0.13 a | 0.73 ± 0.10 bcde | 0.82 ± 0.14 ab | 0.12 ± 0.00 cd | 0.15 ± 0.01 b | 0.18 ± 0.07 ab | 0.14 ± 0.01 bcde | ND | ND | 1.90 | 2.10 | |
50 | 0.87 ± 0.02 b | 0.98 ± 0.05 a | 0.71 ± 0.02 cde | 0.93 ± 0.14 a | 0.12 ± 0.00 cd | 0.13 ± 0.01 cd | 0.20 ± 0.06 a | 0.15 ± 0.01 abcd | ND | ND | 1.90 | 2.19 | |
60 | 1.01 ± 0.03 a | 0.99 ± 0.05 a | 0.76 ± 0.02 bcd | 0.81 ± 0.06 bc | 0.12 ± 0.00 cd | 0.15 ± 0.01 b | 0.16 ± 0.05 abc | 0.16 ± 0.02 abc | 0.03 ± 0.0 a | ND | 2.08 | 2.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamali, M.A.; Wang, Z.; Zhu, Y.; Zhang, Y. Novel Water–Oil Mixed Frying: Fried Oil Quality and the Formation of Heterocyclic Amines and Trans Fatty Acids in Fried Duck. Foods 2022, 11, 626. https://doi.org/10.3390/foods11050626
Jamali MA, Wang Z, Zhu Y, Zhang Y. Novel Water–Oil Mixed Frying: Fried Oil Quality and the Formation of Heterocyclic Amines and Trans Fatty Acids in Fried Duck. Foods. 2022; 11(5):626. https://doi.org/10.3390/foods11050626
Chicago/Turabian StyleJamali, Muneer Ahmed, Zhen Wang, Yuxia Zhu, and Yawei Zhang. 2022. "Novel Water–Oil Mixed Frying: Fried Oil Quality and the Formation of Heterocyclic Amines and Trans Fatty Acids in Fried Duck" Foods 11, no. 5: 626. https://doi.org/10.3390/foods11050626
APA StyleJamali, M. A., Wang, Z., Zhu, Y., & Zhang, Y. (2022). Novel Water–Oil Mixed Frying: Fried Oil Quality and the Formation of Heterocyclic Amines and Trans Fatty Acids in Fried Duck. Foods, 11(5), 626. https://doi.org/10.3390/foods11050626