Polyphenol from Rosaroxburghii Tratt Fruit Ameliorates the Symptoms of Diabetes by Activating the P13K/AKT Insulin Pathway in db/db Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Preparation
2.3. Animal Experiments
2.4. Determination of Serum Insulin Concentration
2.5. Oral Glucose Tolerance Test
2.6. Determination of Antioxidant Enzyme Activities
2.7. Measurement of Hepatic Glycogen Content and Muscle Glycogen Content
2.8. Histopathological Examination
2.9. Activities of GCK, G6PC and PEPCK
2.10. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction
2.11. Western Blot Analysis
2.12. Statistical Analysis
3. Results
3.1. Analysis of Phenolic Profiles in RRT
3.2. Effects of RP and IRP 1–4 on Bodyweight, Food Intake, Water Intake and FBG
3.3. Effects of RP and IRP 1–4 on Glucose Tolerance, Insulin Concentrations and HOMA-IR
3.4. Effects of RP and RP 1–4 on Oxidative Stress
3.5. Effects of RP and IRP 1–4 on Micromorphology of Liver
3.6. Effects of BRD on Hepatic Glycogen Content, Muscle Glycogen Content and Expression of Glycogen Synthesis-Related Proteins
3.7. Effects of RP and IRP 1–4 on Activities of GCK, G6PC, PEPCK and the Expression of the Gluconeogenesis-Related Gene
3.8. Effects of RP and IRP 1–4 on P13K/AKT Insulin Signaling Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsimihodimos, V.; Gonzalez-Villalpando, C.; Meigs, J.B.; Ferrannini, E. Hypertension and Diabetes Mellitus. Hypertension 2018, 71, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, F.-B.; Wu, X.-R.; Zhu, W.; Liao, J.-W.; Jiang, Y.; Zhang, C.; Niu, W.-Y.; Yu, Y.; Duan, H.-Q.; et al. Flavonoid derivatives synthesis and anti-diabetic activities. Bioorg. Chem. 2020, 95, 103501. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wan, J.; Shan, Y.; Song, X.; Jin, J.; Su, Q.; Chen, S.; Lu, X.; Yang, J.; Li, Q.; et al. MicroRNA-185-5p inhibits hepatic gluconeogenesis and reduces fasting blood glucose levels by suppressing G6Pase. Theranostics 2021, 11, 7829–7843. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.; Zhang, W.; Tian, H.; Li, R.; Huang, S.; Li, X.; Qi, G.; Liu, X. EGCG evokes Nrf2 nuclear translocation and dampens PTP1B expression to ameliorate metabolic misalignment under insulin resistance condition. Food Funct. 2018, 9, 1510–1523. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fang, W.; Wang, Z.; Chen, Y. Physicochemical, biological properties, and flavour profile of Rosa roxburghii Tratt, Pyracantha fortuneana, and Rosa laevigata Michx fruits: A comprehensive review. Food Chem. 2022, 366, 130509. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, C.; Huang, Q.; Fu, X. Polysaccharide from Rosa roxburghii Tratt Fruit Attenuates Hyperglycemia and Hyperlipidemia and Regulates Colon Microbiota in Diabetic db/db Mice. J. Agric. Food Chem. 2020, 68, 147–159. [Google Scholar] [CrossRef]
- Wang, L.-T.; Lv, M.-J.; An, J.-Y.; Fan, X.-H.; Dong, M.-Z.; Zhang, S.-D.; Wang, J.-D.; Wang, Y.-Q.; Cai, Z.-H.; Fu, Y.-J. Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: A review. Food Funct. 2021, 12, 1432–1451. [Google Scholar] [CrossRef]
- Da Porto, A.; Cavarape, A.; Colussi, G.; Casarsa, V.; Catena, C.; Sechi, L.A. Polyphenols Rich Diets and Risk of Type 2 Diabetes. Nutrients 2021, 13, 1445. [Google Scholar] [CrossRef]
- Vo Van, L.; Pham, E.C.; Nguyen, C.V.; Duong, N.T.N.; Vi Le Thi, T.; Truong, T.N. In vitro and in vivo antidiabetic activity, isolation of flavonoids, and in silico molecular docking of stem extract of Merremia tridentata (L.). Biomed. Pharmacother. 2022, 146, 112611. [Google Scholar] [CrossRef]
- Luo, D.; Mu, T.; Sun, H. Sweet potato (Ipomoea batatas L.) leaf polyphenols ameliorate hyperglycemia in type 2 diabetes mellitus mice. Food Funct. 2021, 12, 4117–4131. [Google Scholar] [CrossRef]
- Chao, C.; Hua, W.; Sheng, Y.; Shuming, T. Effects of Rosa roxburghii Tratt and its active ingredients on glucose and lipid metabolism in type 2 diabetic mice. Food Sci. 2021. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Zhang, R.; You, L.; Li, T.; Liu, R.H. Whole Grain Brown Rice Extrudate Ameliorates the Symptoms of Diabetes by Activating the IRS1/PI3K/AKT Insulin Pathway in db/db Mice. J. Agric. Food Chem. 2019, 67, 11657–11664. [Google Scholar] [CrossRef] [PubMed]
- Ismail, T.; Calcabrini, C.; Diaz, A.R.; Fimognari, C.; Turrini, E.; Catanzaro, E.; Akhtar, S.; Sestili, P. Ellagitannins in Cancer Chemoprevention and Therapy. Toxins 2016, 8, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, K.; Wei, Y.; Jiang, S.; Xu, F.; Wang, H.; Zhang, X.; Shao, X. Lab Scale Extracted Conditions of Polyphenols from Thinned Peach Fruit Have Antioxidant, Hypoglycemic, and Hypolipidemic Properties. Foods 2022, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Trakooncharoenvit, A.; Hara, H.; Hira, T. Combination of α-Glycosyl-Isoquercitrin and Soybean Fiber Promotes Quercetin Bioavailability and Glucagon-like Peptide-1 Secretion and Improves Glucose Homeostasis in Rats Fed a High-Fat High-Sucrose Diet. J. Agric. Food Chem. 2021, 69, 5907–5916. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Wang, Y.; Yang, L.; Sui, J.; Liu, Y. Hypoglycemic Effects in Alloxan-Induced Diabetic Rats of the Phenolic Extract from Mongolian Oak Cups Enriched in Ellagic Acid, Kaempferol and Their Derivatives. Molecules 2018, 23, 1046. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.-Q.; Li, A.; Yang, Y.; Li, X.-X.; Zhang, L.-N.; Guo, H.-C. The regulation of FOXO1 and its role in disease progression. Life Sci. 2018, 193, 124–131. [Google Scholar] [CrossRef]
- Kakisaka, K.; Sasaki, A.; Umemura, A.; Nikai, H.; Suzuki, Y.; Nishiya, M.; Sugai, T.; Nitta, H.; Takikawa, Y. High frequency and long persistency of ballooning hepatocyte were associated with glucose intolerance in patients with severe obesity. Sci. Rep. 2021, 11, 15392. [Google Scholar] [CrossRef]
- Chen, D.; Sun, J.; Dong, W.; Shen, Y.; Xu, Z. Effects of polysaccharides and polyphenolics fractions of Zijuan tea (Camellia sinensis var. kitamura) on α-glucosidase activity and blood glucose level and glucose tolerance of hyperglycaemic mice. Int. J. Food Sci. Technol. 2018, 53, 2335–2341. [Google Scholar] [CrossRef]
- Khalid, M.; Alkaabi, J.; Khan, M.A.B.; Adem, A. Insulin Signal Transduction Perturbations in Insulin Resistance. Int. J. Mol. Sci. 2021, 22, 8590. [Google Scholar] [CrossRef]
- Williamson, G.; Sheedy, K. Effects of Polyphenols on Insulin Resistance. Nutrients 2020, 12, 3135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, T.; Wu, X.; Nice, E.C.; Huang, C.; Zhang, Y. Oxidative stress and diabetes: Antioxidative strategies. Front. Med. 2020, 14, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxidative Med. Cell. Longev. 2020, 2020, 8609213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakhri, S.; Abbaszadeh, F.; Moradi, S.Z.; Cao, H.; Khan, H.; Xiao, J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. Oxidative Med. Cell. Longev. 2022, 2022, 8100195. [Google Scholar] [CrossRef]
- Li, R.; Liang, T.; Xu, L.; Li, Y.; Zhang, S.; Duan, X. Protective effect of cinnamon polyphenols against STZ-diabetic mice fed high-sugar, high-fat diet and its underlying mechanism. Food Chem. Toxicol. 2013, 51, 419–425. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Q.; Zhang, J.; Zhou, L.; Zhang, W.; Chua, B.; Chen, Y.; Xu, L.; Li, P. The Protein Phosphatase 1 Complex Is a Direct Target of AKT that Links Insulin Signaling to Hepatic Glycogen Deposition. Cell Rep. 2019, 28, 3406–3422.e7. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Huang, Q.; Zhang, L.; Qiao, X.; Zhang, Y.; Tang, F.; Li, Z. Effect of CAPE-pNO2 against type 2 diabetes mellitus via the AMPK/GLUT4/ GSK3β/PPARα pathway in HFD/STZ-induced diabetic mice. Eur. J. Pharmacol. 2019, 853, 1–10. [Google Scholar] [CrossRef]
- Moharram, F.A.; Marzouk, M.S.; El-Toumy, S.A.A.; Ahmed, A.A.E.; Aboutabl, E.A. Polyphenols of Melaleuca quinquenervia leaves—Pharmacological studies of grandinin. Phytother. Res. 2003, 17, 767–773. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Di, L.-J. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med. Res. Rev. 2022, 42, 946–982. [Google Scholar] [CrossRef]
- Eseberri, I.; Laurens, C.; Miranda, J.; Louche, K.; Lasa, A.; Moro, C.; Portillo, M.P. Effects of Physiological Doses of Resveratrol and Quercetin on Glucose Metabolism in Primary Myotubes. Int. J. Mol. Sci. 2021, 22, 1384. [Google Scholar] [CrossRef]
- McFarland, J.; Seckinger, K.; Rizzo, M. Glucokinase Mediated Glucosensing in Hypothalamic Neurons. Biophys. J. 2017, 112, 443a. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Wu, Y.-B.; Zhou, J.; Kang, D.-M. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem. Biophys. Res. Commun. 2016, 469, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.S.; Chartrand, D.; Vohl, M.-C.; Barbier, O.; Rudkowska, I. Dairy Product Consumption Interacts with Glucokinase (GCK) Gene Polymorphisms Associated with Insulin Resistance. J. Pers. Med. 2017, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, L.; Hou, G.; Zhao, H.; Huang, W.; Song, G.; Ma, H. Long non-coding RNA expression profiling following treatment with resveratrol to improve insulin resistance. Mol. Med. Rep. 2020, 22, 1303–1316. [Google Scholar] [CrossRef]
- Cheng, D.M.; Kuhn, P.; Poulev, A.; Rojo, L.E.; Lila, M.A.; Raskin, I. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix. Food Chem. 2012, 135, 2994–3002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, H.; Liu, J. Akt activation: A potential strategy to ameliorate insulin resistance. Diabetes Res. Clin. Pract. 2019, 156, 107092. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, L.; Yu, J.; Cui, L.; Ali, I.; Song, X.; Park, J.H.; Wang, D.; Wang, X. Flavonoid epimers from custard apple leaves, a rapid screening and separation by HSCCC and their antioxidant and hypoglycaemic activities evaluation. Sci. Rep. 2020, 10, 8819. [Google Scholar] [CrossRef]
Gene | Direction | Primer Sequences (5′−3′) |
---|---|---|
GCK | sense | GCTTCACCTTCTCCTTCCCTGTA |
antisense | CACGATGTTGTTCCCTTCTGCT | |
G6PC | sense | CCTGAGGAACGCCTTCTATGTC |
antisense | GAGCTGTTGCTGTAGTAGTCGGT | |
PEPCK | sense | GCAAGACAGTCATCATCACCCA |
antisense | GGCGAGTCTGTCAGTTCAATACC | |
GADPH | sense | CCTCGTCCCGTAGACAAAATG |
antisense | TGAGGTCAATGAAGGGGTCGT |
Group | MDA (Serum) (nmol/mL) | T-SOD (Serum) (U/mL) | T-AOC (Liver) (mM) | CAT (Liver) (U/mgprot) | MDA (Liver) (nmol/mgprot) | T-SOD (Liver) (U/mgprot) |
---|---|---|---|---|---|---|
Control | 7.372 ± 1.049 e | 118.025 ± 2.764 a | 1.122 ± 0.241 a,b | 40.113 ± 2.023 b,c,d | 9.370 ± 2.663 b | 308.717 ± 16.585 a |
Model | 16.993 ± 1.445 a | 88.198 ± 3.994 f | 0.885 ± 0.051 c | 32.052 ± 5.156 e | 20.446 ± 5.335 a | 230.777± 20.503 c |
Positive | 14.137 ± 0.683 b | 99.95 ± 1.387 e | 1.02 ± 0.097 b,c | 35.623 ± 2.314 d,e | 9.361 ± 3.876 b | 256.716 ± 25.589 b |
RP-100 | 12.135 ± 0.695 c | 104.738 ± 5.347 d | 0.878 ± 0.106 c | 37.232 ± 4.823 d,e | 13.847 ± 5.960 b | 247.021 ± 30.589 b,c |
RP-200 | 10.742 ± 0.509 d | 111.673 ± 2.886 b,c | 1.133 ± 0.319 a,b | 45.717 ± 6.786 a,b,c | 13.512 ± 2.748 b | 264.893 ± 13.923 b |
IRP-1 | 10.083 ± 0.437 d | 115.192 ± 2.054 a,b | 1.062 ± 0.132 a,b | 47.187 ± 3.138 a | 9.521 ± 4.473 b | 268.55 ± 17.887 b |
IRP-2 | 13.730 ± 0.657 b | 111.773 ± 5.117 b,c | 1.348 ± 0.316 a | 46.678 ± 7.533 a,b | 9.767 ± 2.473 b | 265.666 ± 28.190 b |
IRP-3 | 14.397 ± 0.671 b | 108.062 ± 1.964 c,d | 1.062 ± 0.238 a,b | 39.447 ± 6.211 c,d | 8.495 ± 2.330 b | 252.766 ± 7.854 b |
IRP-4 | 10.432 ± 0.975 d | 114.802 ± 1.866 a,b | 1.240 ± 0.159 a,b | 39.500 ± 2.235 c,d | 9.428 ± 2.318 b | 248.097 ± 11.144 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Tan, S.; Ren, T.; Wang, H.; Dai, X.; Wang, H. Polyphenol from Rosaroxburghii Tratt Fruit Ameliorates the Symptoms of Diabetes by Activating the P13K/AKT Insulin Pathway in db/db Mice. Foods 2022, 11, 636. https://doi.org/10.3390/foods11050636
Chen C, Tan S, Ren T, Wang H, Dai X, Wang H. Polyphenol from Rosaroxburghii Tratt Fruit Ameliorates the Symptoms of Diabetes by Activating the P13K/AKT Insulin Pathway in db/db Mice. Foods. 2022; 11(5):636. https://doi.org/10.3390/foods11050636
Chicago/Turabian StyleChen, Chao, Shuming Tan, Tingyuan Ren, Hua Wang, Xiaotong Dai, and Hui Wang. 2022. "Polyphenol from Rosaroxburghii Tratt Fruit Ameliorates the Symptoms of Diabetes by Activating the P13K/AKT Insulin Pathway in db/db Mice" Foods 11, no. 5: 636. https://doi.org/10.3390/foods11050636
APA StyleChen, C., Tan, S., Ren, T., Wang, H., Dai, X., & Wang, H. (2022). Polyphenol from Rosaroxburghii Tratt Fruit Ameliorates the Symptoms of Diabetes by Activating the P13K/AKT Insulin Pathway in db/db Mice. Foods, 11(5), 636. https://doi.org/10.3390/foods11050636