Coffee Silverskin as a Functional Ingredient in Vegan Biscuits: Physicochemical and Sensory Properties and In Vitro Bioaccessibility of Bioactive Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Biscuits Ingredients
2.3. Biscuits Formulation and Preparation
2.4. Physicochemical Analyses
2.5. Structural Analyses
2.6. Consumer Acceptance Evaluation
2.7. Determination of Total Phenolic Content
2.8. Determination of Radical Scavenging Activity
2.9. In Vitro Simulated Gastrointestinal Digestion
2.10. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterization
3.2. Structural Characterization
3.3. Consumer Acceptance Evaluation
3.4. Total Phenolic Content and Radical Scavenging Activity
3.5. Bioaccessibility of Bioactive Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoseini, M.; Cocco, S.; Casucci, C.; Cardelli, V.; Corti, G. Coffee by-products derived resources. A review. Biomass Bioenergy 2021, 148, 106009. [Google Scholar] [CrossRef]
- Bresciani, L.; Calani, L.; Bruni, R.; Brighenti, F.; Del Rio, D. Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin. Food Res. Int. 2014, 61, 196–201. [Google Scholar] [CrossRef]
- Borrelli, R.C.; Esposito, F.; Napolitano, A.; Ritieni, A.; Fogliano, V. Characterization of a New Potential Functional Ingredient: Coffee Silverskin. J. Agric. Food Chem. 2004, 52, 1338–1343. [Google Scholar] [CrossRef]
- Behrouzian, F.; Amini, A.M.; Alghooneh, A.; Razavi, S.M.A. Characterization of dietary fiber from coffee silverskin: An optimization study using response surface methodology. Bioact. Carbohydr. Diet. Fibre 2016, 8, 58–64. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef] [Green Version]
- Gottstein, V.; Bernhardt, M.; Dilger, E.; Keller, J.; Breitling-Utzmann, C.M.; Schwarz, S.; Kuballa, T.; Lachenmeier, D.W.; Bunzel, M. Coffee silver skin: Chemical characterization with special consideration of dietary fiber and heat-induced contaminants. Foods 2021, 10, 1705. [Google Scholar] [CrossRef] [PubMed]
- Narita, Y.; Inouye, K. Review on utilization and composition of coffee silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, R.; Mohan Rao, L.J. An Outlook on Chlorogenic Acids-Occurrence, Chemistry, Technology, and Biological Activities. Crit. Rev. Food Sci. Nutr. 2013, 53, 968–984. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Zamora, A.; Pastoriza, S.; Rufián-Henares, J.A. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT Food Sci. Technol. 2015, 61, 12–18. [Google Scholar] [CrossRef]
- Mesías, M.; Navarro, M.; Martínez-Saez, N.; Ullate, M.; Del Castillo, M.D.; Morales, F.J. Antiglycative and carbonyl trapping properties of the water soluble fraction of coffee silverskin. Food Res. Int. 2014, 62, 1120–1126. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.; Wianowska, D. Chlorogenic acids—Their properties, occurrence and analysis. Ann. Univ. Mariae Curie Sklodowska Sect. AA Chem. 2017, 72, 61. [Google Scholar] [CrossRef]
- Silván, J.M.; Morales, F.J.; Saura-Calixto, F. Conceptual Study on Maillardized Dietary Fiber in Coffee. J. Agric. Food Chem. 2010, 58, 12244–12249. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Ritieni, A. In Vitro Bioaccessibility and Antioxidant Activity of Coffee Silverskin Polyphenolic Extract and Characterization of Bioactive Compounds Using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 2132. [Google Scholar] [CrossRef]
- De La Cruz, S.T.; Iriondo-DeHond, A.; Herrera, T.; Lopez-Tofiño, Y.; Galvez-Robleño, C.; Prodanov, M.; Velazquez-Escobar, F.; Abalo, R.; Del Castillo, M.D. An assessment of the bioactivity of coffee silverskin melanoidins. Foods 2019, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Gomez, B.; Lezama, A.; Amigo-Benavent, M.; Ullate, M.; Herrero, M.; Martín, M.Á.; Mesa, M.D.; Del Castillo, M.D. Insights on the health benefits of the bioactive compounds of coffee silverskin extract. J. Funct. Foods 2016, 25, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Velderrain-Rodríguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C.-Y.O.; Robles-Sánchez, M.; Astiazaran-García, H.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Phenolic compounds: Their journey after intake. Food Funct. 2014, 5, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Ramalakshmi, K.; Raghavan, B. Caffeine in Coffee: Its Removal. Why and how? Crit. Rev. Food Sci. Nutr. 1999, 39, 441–456. [Google Scholar] [CrossRef] [PubMed]
- Directive 1999/4/EC of the European Parliament and of the Council of 22 February 1999 Relating to Coffee Extracts and Chicory Extracts. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1999L0004:20081211:EN:PDF (accessed on 27 January 2021).
- Vitzthum, O.G. Decaffeination. In Espresso Coffee, The Science of Quality; Illy, A., Viani, R., Eds.; Elsevier Academic Press: London, UK, 2005; pp. 142–148. [Google Scholar]
- Iriondo-DeHond, A.; Aparicio García, N.; Fernandez-Gomez, B.; Guisantes-Batan, E.; Velázquez Escobar, F.; Blanch, G.P.; San Andres, M.I.; Sanchez-Fortun, S.; Del Castillo, M.D. Validation of coffee by-products as novel food ingredients. Innov. Food Sci. Emerg. Technol. 2019, 51, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Saez, N.; Ullate, M.; Martin-Cabrejas, M.A.; Martorell, P.; Genovés, S.; Ramon, D.; del Castillo, M.D. A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chem. 2014, 150, 227–234. [Google Scholar] [CrossRef]
- Guglielmetti, A.; Fernandez-Gomez, B.; Zeppa, G.; Del Castillo, M.D. Nutritional quality, potential health promoting properties and sensory perception of an improved gluten-free bread formulation containing inulin, rice protein and bioactive compounds extracted from coffee byproducts. Pol. J. Food Nutr. Sci. 2019, 69, 157–166. [Google Scholar] [CrossRef]
- Pourfarzad, A.; Mahdavian-Mehr, H.; Sedaghat, N. Coffee silverskin as a source of dietary fiber in bread-making: Optimization of chemical treatment using response surface methodology. LWT Food Sci. Technol. 2013, 50, 599–606. [Google Scholar] [CrossRef]
- Garcia-Serna, E.; Martinez-Saez, N.; Mesias, M.; Morales, F.J.; Del Castillo, M.D. Use of coffee silverskin and stevia to improve the formulation of biscuits. Pol. J. Food Nutr. Sci. 2014, 64, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Gocmen, D.; Sahan, Y.; Yildiz, E.; Coskun, M.; Aroufai, İ.A. Use of coffee silverskin to improve the functional properties of cookies. J. Food Sci. Technol. 2019, 56, 2979–2988. [Google Scholar] [CrossRef] [PubMed]
- Ateş, G.; Elmacı, Y. Physical, chemical and sensory characteristics of fiber-enriched cakes prepared with coffee silverskin as wheat flour substitution. J. Food Meas. Charact. 2019, 13, 755–763. [Google Scholar] [CrossRef]
- Bertolino, M.; Barbosa-Pereira, L.; Ghirardello, D.; Botta, C.; Rolle, L.; Guglielmetti, A.; Borotto Dalla Vecchia, S.; Zeppa, G. Coffee silverskin as nutraceutical ingredient in yogurt: Its effect on functional properties and its bioaccessibility. J. Sci. Food Agric. 2019, 99, 4267–4275. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Mateus-Reguengo, L.; Bertolino, M.; Stévigny, C.; Zeppa, G. Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients 2019, 11, 867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Orden, D.; Stévigny, C.; Zeppa, G.; Bertolino, M. Physical Properties and Consumer Evaluation of Cocoa Bean Shell-Functionalized Biscuits Adapted for Diabetic Consumers by the Replacement of Sucrose with Tagatose. Foods 2020, 9, 814. [Google Scholar] [CrossRef] [PubMed]
- Lim, J. Hedonic scaling: A review of methods and theory. Food Qual. Prefer. 2011, 22, 733–747. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Červenka, L.; Brožková, I.; Vytřasová, J. Effects of the principal ingredients of biscuits upon water activity. J. Food Nutr. Res. 2006, 45, 39–43. [Google Scholar]
- Mahloko, L.M.; Silungwe, H.; Mashau, M.E.; Kgatla, T.E. Bioactive compounds, antioxidant activity and physical characteristics of wheat-prickly pear and banana biscuits. Heliyon 2019, 5, e02479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agu, H.O.; Okoli, N.A. Physico-chemical, sensory, and microbiological assessments of wheat-based biscuit improved with beniseed and unripe plantain. Food Sci. Nutr. 2014, 2, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Ojha, P.; Thapa, S. Quality Evaluation of Biscuit Incorporated with Mandarin Peel Powder. Sci. Study Res. 2017, 18, 19–30. [Google Scholar]
- Buffo, R.A.; Cardelli-Freire, C. Coffee flavour: An overview. Flavour Fragr. J. 2004, 19, 99–104. [Google Scholar] [CrossRef]
- Ivanišová, E.; Mickowska, B.; Socha, P.; Režová, I.; Kántor, A.; Haris, L.; Tokár, M.; Terentjeva, M.; Kačániová, M. Determination of Biological and Sensory Profiles of Biscuits Enriched with Tea (Camellia sinensis L.) Powder. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2018, 72, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Raymundo, V.G.; Sánchez-Páez, R.; Gutiérrez-Salomón, A.L.; Barajas-Ramírez, J.A. Spent coffee grounds cookies: Sensory and texture characteristics, proximate composition, antioxidant activity, and total phenolic content. J. Food Process. Preserv. 2019, 43, e14223. [Google Scholar] [CrossRef]
- Lester, G.E.; Lewers, K.S.; Medina, M.B.; Saftner, R.A. Comparative analysis of strawberry total phenolics via Fast Blue BB vs. Folin–Ciocalteu: Assay interference by ascorbic acid. J. Food Compos. Anal. 2012, 27, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Cantele, C.; Rojo-Poveda, O.; Bertolino, M.; Ghirardello, D.; Cardenia, V.; Barbosa-Pereira, L.; Zeppa, G. In Vitro Bioaccessibility and Functional Properties of Phenolic Compounds from Enriched Beverages Based on Cocoa Bean Shell. Foods 2020, 9, 715. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Selection of the Solvent and Extraction Conditions for Maximum Recovery of Antioxidant Phenolic Compounds from Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 1322–1332. [Google Scholar] [CrossRef] [Green Version]
- Vignoli, J.A.; Bassoli, D.G.; Benassi, M.T. Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem. 2011, 124, 863–868. [Google Scholar] [CrossRef]
- Kamiyama, M.; Moon, J.K.; Jang, H.W.; Shibamoto, T. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee. J. Agric. Food Chem. 2015, 63, 1996–2005. [Google Scholar] [CrossRef]
- Chen, Y.; Brown, P.H.; Hu, K.; Black, R.M.; Prior, R.L.; Ou, B.; Chu, Y.F. Supercritical CO2 Decaffeination of Unroasted Coffee Beans Produces Melanoidins with Distinct NF-κB Inhibitory Activity. J. Food Sci. 2011, 76, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Bustos, M.C.; Vignola, M.B.; Paesani, C.; León, A.E. Berry fruits-enriched pasta: Effect of processing and in vitro digestion on phenolics and its antioxidant activity, bioaccessibility and potential bioavailability. Int. J. Food Sci. Technol. 2020, 55, 2104–2112. [Google Scholar] [CrossRef]
- Pigni, N.B.; Aranibar, C.; Lucini Mas, A.; Aguirre, A.; Borneo, R.; Wunderlin, D.; Baroni, M.V. Chemical profile and bioaccessibility of polyphenols from wheat pasta supplemented with partially-deoiled chia flour. LWT 2020, 124, 109134. [Google Scholar] [CrossRef]
- Podio, N.S.; Baroni, M.V.; Pérez, G.T.; Wunderlin, D.A. Assessment of bioactive compounds and their in vitro bioaccessibility in whole-wheat flour pasta. Food Chem. 2019, 293, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Matić, P. Non-covalent dietary fiber—Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Technol. 2019, 83, 235–247. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef]
- Alminger, M.; Aura, A.-M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T.; et al. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef] [Green Version]
Arabica | Robusta | Decaffeinated | |
---|---|---|---|
Caffeine (g/100 g) | 0.65 ± 0.06 | 1.03 ± 0.08 | 0.03 ± 0.01 |
Protein (g/100 g) | 15.47 ± 0.78 | 20.87 ± 0.91 | 15.57 ± 0.79 |
Fat (g/100 g) | 2.54 ± 0.18 | 1.70 ± 0.13 | 2.39 ± 0.17 |
Carbohydrates (g/100 g) | 14.57 ± 0.28 | 9.45 ± 0.17 | 13.79 ± 0.38 |
Dietary fibre (g/100 g) | 58.32 ± 5.02 | 57.18 ± 4.95 | 58.09 ± 5.00 |
Water (g/100 g) | 2.00 ± 0.01 | 1.26 ± 0.02 | 1.84 ± 0.01 |
Ingredients | 0CS | 2CS | 4CS | 6CS |
---|---|---|---|---|
Wheat flour | 420 | 411.6 | 403.2 | 394.8 |
Silverskin | 0 | 8.4 | 16.8 | 25.2 |
Oat milk | 120 | 120 | 120 | 120 |
Sucrose | 140 | 140 | 140 | 140 |
Margarine | 180 | 180 | 180 | 180 |
Baking powder | 12 | 12 | 12 | 12 |
Salt | 1 | 1 | 1 | 1 |
%CS | CSA | CSR | CSD | Significance | |
---|---|---|---|---|---|
Moisture (%) | 0 | 4.27 ± 0.18 a | 4.27 ± 0.18 a | 4.27 ± 0.18 a | |
2 | 5.44 ± 0.12 bA | 7.19 ± 0.42 cbB | 6.69 ± 0.17 dB | *** | |
4 | 5.61 ± 0.04 bA | 7.38 ± 0.15 cC | 6.34 ± 0.12 cB | *** | |
6 | 6.05 ± 0.03 cB | 6.60 ± 0.06 bC | 5.77 ± 0.08 bA | *** | |
Significance | *** | *** | *** | ||
aw | 0 | 0.31 ± 0.00 a | 0.31 ± 0.00 a | 0.31 ± 0.00 a | |
2 | 0.41 ± 0.00 bA | 0.52 ± 0.00 cC | 0.47 ± 0.01 cB | *** | |
4 | 0.42 ± 0.01cA | 0.52 ± 0.00 cC | 0.46 ± 0.01 bcB | *** | |
6 | 0.44 ± 0.05 dA | 0.49 ± 0.00 bB | 0.45 ± 0.01 bA | *** | |
Significance | *** | *** | *** | ||
L* | 0 | 56.78 ± 0.85 d | 56.78 ± 0.85 d | 56.78 ± 0.85 d | |
2 | 53.57 ± 0.73 cC | 49.25 ± 0.89 cB | 43.17 ± 0.88 cA | *** | |
4 | 50.26 ± 0.52 bC | 42.79 ± 0.75 bB | 35.02 ± 1.20 bA | *** | |
6 | 47.43 ± 0.73 aC | 38.00 ± 0.56 aB | 30.67 ± 0.29 aA | *** | |
Significance | *** | *** | *** | ||
hab | 0 | 70.78 ± 0.44 a | 70.78 ± 0.44 b | 70.78 ± 0.44 d | |
2 | 71.73 ± 0.51 bB | 72.77 ± 0.59 dC | 70.26 ± 0.36 cA | *** | |
4 | 71.31 ± 0.29 bB | 71.95 ± 0.61cC | 67.25 ± 0.27 bA | *** | |
6 | 71.34 ± 0.39 bC | 70.17 ± 0.46 aB | 64.89 ± 0.42 aA | *** | |
Significance | ** | *** | *** | ||
C*ab | 0 | 34.66 ± 0.45 d | 34.66 ± 0.45 d | 34.66 ± 0.45 d | |
2 | 32.03 ± 0.60 cC | 29.77 ± 0.47 cB | 27.11 ± 0.36 cA | *** | |
4 | 31.38 ± 0.17 bC | 27.86 ± 0.60bB | 23.37 ± 0.59 bA | *** | |
6 | 30.04 ± 0.40 aC | 26.74 ± 0.72 aB | 21.29 ± 0.24 aA | *** | |
Significance | *** | *** | *** |
%CS | CSA | CSR | CSD | Significance | |
---|---|---|---|---|---|
Weight loss (g) | 0 | 50.19 ± 3.54 | 50.19 ± 3.54 | 50.19 ± 3.54 | |
2 | 53.62 ± 1.41 | 54.22 ± 1.42 | 51.40 ± 0.00 | ns | |
4 | 51.67 ± 1.04 | 54.60 ± 0.68 | 52.55 ± 0.78 | ns | |
6 | 48.46 ± 0.19 A | 52.34 ± 0.20 B | 54.05 ± 0.21 C | *** | |
Significance | ns | ns | ns | ||
Spread | 0 | 6.49 ± 0.21 b | 6.49 ± 0.21 b | 6.49 ± 0.21 c | |
2 | 5.43 ± 0.18 aB | 4.15 ± 0.12 aA | 4.44 ± 0.18 aA | ** | |
4 | 5.22 ± 0.03 a | 4.25 ± 0.43 a | 4.86 ± 0.02 b | ns | |
6 | 4.85 ± 0.30 a | 4.57 ± 0.18 a | 4.73 ± 0.04 a | ns | |
Significance | ** | ** | *** | ||
Hardness (N) | 0 | 64.92 ± 8.91 a | 64.92 ± 8.91 | 64.92 ± 8.91 a | |
2 | 82.81 ± 18.88 aB | 75.65 ± 14.78 | 67.05 ± 5.02 a | ns | |
4 | 85.75 ± 10.69 bB | 70.36 ± 7.52 A | 104.76 ± 3.65 bC | *** | |
6 | 67.12 ± 15.40 a | 65.85 ± 11.54 | 86.71 ± 28.15 ab | ns | |
Significance | * | ns | ** |
Attribute | Samples | Sig. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0CS | 2CSA | 4CSA | 6CSA | 2CSR | 4CSR | 6CSR | 2CSD | 4CSD | 6CSD | ||
Appearance | 15,072 d | 14,904 cd | 11,880 abcd | 9184 ab | 10,448 ab | 10,032 ab | 8424 a | 13,024 bcd | 11,672 abcd | 10,800 abc | *** |
Odour | 14,328 cd | 11,080 abcd | 11,280 abcd | 10,920 abc | 10,056 abc | 9432 ab | 7840 a | 15,864 d | 13,480 bcd | 11,160 abcd | *** |
Taste | 14,696 b | 8424 a | 9240 a | 8792 a | 11,720 ab | 11,272 ab | 8952 a | 15,272 b | 14696 b | 12,376 ab | *** |
Flavour | 10,496 abc | 8920 ab | 8360 a | 10,864 abc | 10,176 ab | 11,888 abc | 11,112 abc | 14,904 c | 15,480 c | 13,240 bc | *** |
Texture | 13,032 bc | 9344 ab | 9040 ab | 8072 a | 10,776 abc | 10,256 ab | 11,376 abc | 14,776 bc | 15,480 d | 13,288 bc | *** |
Overall Liking | 14,576 bc | 9096 a | 8632 a | 9352 a | 10,960 ab | 11,472 abc | 9576 a | 15,304 c | 14,576 bc | 11,896 abc | *** |
Purchase Interest | 13,488 bcd | 8736 a | 8472 a | 9720 ab | 11,768 abcd | 11,896 abcd | 10,232 ab | 14,616 cd | 15,368 d | 11,144 abc | *** |
% CS | CSA | CSR | CSD | Significance | |
---|---|---|---|---|---|
TPC (mg GAE/g) | 0 | 0.41 ± 0.02 a | 0.41 ± 0.02 a | 0.41 ± 0.02 a | |
2 | 0.42 ± 0.01 aB | 0.41 ± 0.00 aA | 0.72 ± 0.00 bC | *** | |
4 | 0.47 ± 0.01 bA | 0.44 ± 0.01 bA | 1.03 ± 0.03 cB | *** | |
6 | 0.49 ± 0.01 bA | 0.57 ± 0.01 cB | 1.36 ± 0.01 dC | *** | |
Significance | *** | *** | *** | ||
RSA (μmol TE/g) | 0 | 0.43 ± 0.11 a | 0.43 ± 0.11 b | 0.43 ± 0.11 a | |
2 | 0.93 ± 0.06 bB | 0.21 ± 0.01 aA | 1.13 ± 0.01 bC | *** | |
4 | 1.42 ± 0.05 cB | 0.34 ± 0.02 bA | 2.60 ± 0.01 cC | *** | |
6 | 1.82 ± 0.06 dB | 0.71 ± 0.04 cA | 3.40 ± 0.03 dC | *** | |
Significance | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantele, C.; Tedesco, M.; Ghirardello, D.; Zeppa, G.; Bertolino, M. Coffee Silverskin as a Functional Ingredient in Vegan Biscuits: Physicochemical and Sensory Properties and In Vitro Bioaccessibility of Bioactive Compounds. Foods 2022, 11, 717. https://doi.org/10.3390/foods11050717
Cantele C, Tedesco M, Ghirardello D, Zeppa G, Bertolino M. Coffee Silverskin as a Functional Ingredient in Vegan Biscuits: Physicochemical and Sensory Properties and In Vitro Bioaccessibility of Bioactive Compounds. Foods. 2022; 11(5):717. https://doi.org/10.3390/foods11050717
Chicago/Turabian StyleCantele, Carolina, Martina Tedesco, Daniela Ghirardello, Giuseppe Zeppa, and Marta Bertolino. 2022. "Coffee Silverskin as a Functional Ingredient in Vegan Biscuits: Physicochemical and Sensory Properties and In Vitro Bioaccessibility of Bioactive Compounds" Foods 11, no. 5: 717. https://doi.org/10.3390/foods11050717
APA StyleCantele, C., Tedesco, M., Ghirardello, D., Zeppa, G., & Bertolino, M. (2022). Coffee Silverskin as a Functional Ingredient in Vegan Biscuits: Physicochemical and Sensory Properties and In Vitro Bioaccessibility of Bioactive Compounds. Foods, 11(5), 717. https://doi.org/10.3390/foods11050717