Inhibition of Several Bacterial Species Isolated from Squid and Shrimp Skewers by Different Natural Edible Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological Characterisation of Squids and Shrimps Skewers
2.2. Selection of Isolates
2.3. Identification of Selected Isolates by 16S rRNA Sequencing
2.4. Study of Antimicrobial Activity of Several Natural Products
2.4.1. Preparation of the Inoculum
2.4.2. Preparation of Natural Products
Ethanolic Propolis Extracts (EPE)
Chitosan Solutions
Carvacrol and Limonene Solutions
Olive Leaf Extract Solution
Citrox® Solution
2.4.3. Antimicrobial Activity Screening of Each Natural Solution
2.4.4. Minimum Inhibitory and Bactericidal Concentrations of Effective Natural Compounds
3. Results
4. Discussion
4.1. Microbiological Characterisation of Squid and Shrimp Skewers
4.2. Identification of Selected Isolates by 16S rRNA Sequencing
4.3. Antimicrobial Activity Screening of Each Natural Compound
4.4. Minimum Inhibitory and Bactericidal Concentrations of Citrox®
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, L.; Pu, H.; Sun, D.W. Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trend Food Sci. Technol. 2019, 83, 259–273. [Google Scholar] [CrossRef]
- Møretrø, T.; Moen, B.; Heir, E.; Hansen, A.; Langsrud, S. Contamination of salmon fillets and processing plants with spoilage bacteria. Int. J. Food Microbiol. 2016, 237, 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidalgo, L.G.; Lemos, Á.T.; Delgadillo, I.; Saraiva, J.A. Microbial and physicochemical evolution during hyperbaric storage at room temperature of fresh Atlantic salmon (Salmo salar). Innov. Food Sci. Emerg. Technol. 2018, 45, 264–272. [Google Scholar] [CrossRef]
- Giarratana, F.; Muscolino, D.; Beninati, C.; Ziino, G.; Giuffrida, A.; Panebianco, A. Activity of R(+) limonene on the maximum growth rate of fish spoilage organisms and related effects on shelf-life prolongation of fresh gilthead sea bream fillets. Int. J. Food Microbiol. 2016, 237, 109–113. [Google Scholar] [CrossRef]
- Boziaris, I.S.; Parlapani, F.F. Specific Spoilage Organisms (SSOs) in Fish. In The Microbiological Quality of Food: Foodborne Spoilers, 1st ed.; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 61–98. [Google Scholar] [CrossRef]
- Leroi, F.; Joffraud, J. Microbial Degradation of Seafood. In Aquaculture Microbiology and Biotechnology, 1st ed.; Montet, D., Ray, R.C., Eds.; Science Publishers: Enfield, NH, USA, 2009; Volume 1, pp. 47–57. [Google Scholar]
- Bolívar, A.; Costa, J.; Posada, G.; Pérez-Rodríguez, F.; Bascón Villeas, I.; Valero, A. Characterization of Foodborne Pathogens and Spoilage Bacteria in Mediterranean Fish Species and Seafood Products. In Food Borne Pathogens and Antibiotic Resistance, 1st ed.; Singh, O.V., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2017; Volume 1, pp. 21–34. [Google Scholar]
- Iwamoto, M.; Ayers, T.; Mahon, B.E.; Swerdlow, D.L. Epidemiology of Seafood-Associated Infections in the United States. Clin. Microbiol. Rev. 2010, 23, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Jami, M.; Ghanbari, M.; Zunabovic, M.; Domig, K.J.; Kneifel, W. Listeria monocytogenes in aquatic food products—A review. Comp. Rev. Food Sci. Food Safety 2014, 13, 798–813. [Google Scholar] [CrossRef]
- Costa, R.A. Escherichia coli in seafood: A brief overview. Adv. Biosci. Biotechnol. 2013, 4, 450–454. [Google Scholar] [CrossRef] [Green Version]
- Vongkamjan, K.; Benjakul, S.; Kim, V.H.T.; Vuddhakul, V. Longitudinal monitoring of Listeria monocytogenes and Listeria phages in seafood processing environments in Thailand. Food Microbiol. 2017, 66, 11–19. [Google Scholar] [CrossRef]
- Getu, A.; Misganaw, K. Post-harvesting and Major Related Problems of Fish Production. Fisher. Aquacult. J. 2015, 6, 4. [Google Scholar] [CrossRef]
- Al-Maqtari, Q.A.; Rehman, A.; Mahdi, A.A. Application of essential oils as preservatives in food systems: Challenges and future prospectives—A review. Phytochem. Rev. 2021, Volume, Page. [Google Scholar] [CrossRef]
- Kulawik, P.; Tiwari, B.K. Recent advancements in the application of non-thermal plasma technology for the seafood industry. Crit. Rev. Food Sci. Nutrition. 2019, 59, 3199–3210. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Sun, Z.; Chen, W. Antimicrobial Susceptibility and Antibacterial Mechanism of Limonene against Listeria monocytogenes. Molecules 2020, 25, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaei, F.; Shahbazi, Y. Shelf-life extension and quality attributes of sauced silver carp fillet: A comparison among direct addition, edible coating and biodegradable film. LWT Food Sci. Technol. 2018, 87, 122–133. [Google Scholar] [CrossRef]
- Casquete, R.; Castro, S.M.; Jácome, S.; Teixeira, P. Antimicrobial activity of ethanolic extract of propolis in “Alheira”, a fermented meat sausage. Cogent. Food Agric. 2016, 2. [Google Scholar] [CrossRef]
- Himour, S.; Yahia, A.; Belattar, H. Oleuropein and Antibacterial Activities of Olea europaea L. Leaf Extract. Eur. Sci. J. 2017, 13, 342. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Ozogul, Y.; Kuley Boğa, E.; Akyol, I. Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Biosci. 2020, 36. [Google Scholar] [CrossRef]
- Bertuzzi, M.A.; Slavutsky, A.M. Standard and New Processing Techniques Used in the Preparation of Films and Coatings at the Lab Level and Scale-Up. In Edible Films and Coatings: Fundamentals and Applications, 1st ed.; Garcia, M.P.M., Gómez-Guillén, M.C., López-Caballero, M.E., Barbosa-Cánovas, G.V., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 3–10. [Google Scholar]
- Alagawany, M.; Farag, M.R.; Abdelnour, S.A.; Elnesr, S.S. A review on the beneficial effect of thymol on health and production of fish. Rev. Aquacult. 2021, 13, 632–641. [Google Scholar] [CrossRef]
- Iso 4833-1:2013-Microbiology of the Food Chain—Horizontal Method For The Enumeration Of Microorganisms—Part 1: Colony Count At 30 °C By The Pour Plate Technique. 2021. Available online: https://www.iso.org/standard/53728.html (accessed on 5 December 2021).
- ISO 15214:1998-Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration Of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C. 2021. Available online: https://www.iso.org/standard/26853.html (accessed on 5 December 2021).
- ISO 13720:2010-Meat and Meat Products—Enumeration of Presumptive Pseudomonas spp. 2021. Available online: https://www.iso.org/standard/45099.html (accessed on 5 December 2021).
- ISO 21528-2:2017-Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-count technique. 2021. Available online: https://www.iso.org/standard/63504.html (accessed on 5 December 2021).
- ISO 11290-2:2017-Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 2: Enumeration Method. 2021. Available online: https://www.iso.org/standard/60314.html (accessed on 5 December 2021).
- ISO 16649-1:2018-Microbiology of the Food Chain—Horizontal Method for the Enumeration of beta-glucuronidase-positive Escherichia coli—Part 1: Colony-cOunt Technique at 44 °C Using Membranes and 5-bromo-4-chloro-3-indolyl beta-D-glucuronide. 2021. Available online: https://www.iso.org/standard/64951.html (accessed on 5 December 2021).
- Vaz-Moreira, I.; Faria, C.; Lopes, A.R.; Svensson, L.; Falsen, E.; Moore, E.R.; Ferreira, A.C.; Nunes, O.C.; Manaia, C.M. Sphingobium vermicomposti sp. nov., isolated from vermicompost. Int. J. Syst. Evol. Microbiol. 2009, 59, 3145–3149. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. In Nucleic Acids Research; Oxford University Press: Oxford, UK, 1997; Volume 25, pp. 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Casquete, R.; Castro, S.M.; Teixeira, P. Evaluation of the Combined Effect of Chitosan and Lactic Acid Bacteria in Alheira (Fermented Meat Sausage) Paste. J. Food Proc. Preserv. 2017, 41, e12866. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, M.F. Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius. J. Herb. Med. 2016, 6, 88–95. [Google Scholar] [CrossRef]
- Das, S.; Lalitha, K.V.; Thampuran, N.; Surendran, P.K. Isolation and characterization of Listeria monocytogenes from tropical seafood of Kerala, India. Ann. Microbiol. 2012, 63, 1093–1098. [Google Scholar] [CrossRef]
- Dumen, E.; Ekici, G.; Ergin, S.; Bayrakal, G.M. Presence of Foodborne Pathogens in Seafood and Risk Ranking for Pathogens. Foodborne Pathog. Dis. 2020, 17, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Raposo, A.; Pérez, E.; de Faria, C.T.; Ferrús, M.A.; Carrascosa, C. Food Spoilage by Pseudomonas spp.—An Overview. In Foodborne Pathogens and Antibiotic Resistance; Singh, O.V., Ed.; Wiley Blackwell: Hoboken, NJ, USA, 2017; pp. 41–71. [Google Scholar] [CrossRef]
- Don, S.; Xavier, K.A.M.; Devi, S.T.; Nayak, B.B.; Kannuchamy, N. Identification of potential spoilage bacteria in farmed shrimp (Litopenaeus vannamei): Application of Relative Rate of Spoilage models in shelf life-prediction. LWT 2018, 97, 295–301. [Google Scholar] [CrossRef]
- Farajzadeh, F.; Motamedzadegan, A.; Shahidi, S.A.; Hamzeh, S. The effect of chitosan-gelatin coating on the quality of shrimp (Litopenaeus vannamei) under refrigerated condition. Food Control 2016, 67, 163–170. [Google Scholar] [CrossRef]
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-based phylogeny and taxonomy of the “Enterobacteriales”: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef]
- Mahlen, S.D. Serratia infections: From military experiments to current practice. Clin. Microbiol. Rev. 2011, 24, 755–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.; Hu, X.; Aijun, L.; Sun, J. First report on the characterization of pathogenic Rahnella aquatilis KCL-5 from crucian carp: Revealed by genomic and proteomic analyses. J. Fish Dis. 2020, 43, 889–914. [Google Scholar] [CrossRef]
- Singh, L.; Cariappa, M.P.; Kaur, M. Klebsiella oxytoca: An emerging pathogen? Med. J. Armed Forces India 2016, 72, 59–61. [Google Scholar] [CrossRef] [Green Version]
- Nyenje, M.E.; Odjadjare, C.E.; Tanih, N.F.; Green, E.; Ndip, R.N. Foodborne pathogens recovered from ready-to-eat foods from roadside cafeterias and retail outlets in alice, eastern cape province, South Africa: Public health implications. Int. J. Environ. Res. Publ. Health 2012, 9, 2608–2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.C.; Levy, S.B.; Jackson, R.W. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, A.; Maeno, S.; Liu, S.Q. Lactic Acid Bacteria: Leuconostoc spp. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P., McNamara, J., Eds.; Academic Press: Boston, MA, USA, 2022; Volume 4, pp. 226–232. [Google Scholar] [CrossRef]
- Wang, H.Y.; Wen, C.F.; Chiu, Y.H. Leuconostoc mesenteroides Growth in Food Products: Prediction and Sensitivity Analysis by Adaptive-Network-Based Fuzzy Inference Systems. PLoS ONE 2013, 8, e64995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feiner, G. The microbiology of specific bacteria. In Meat Products Handbook, 1st ed.; Feiner, G., Ed.; Woodhead Publishing: Sawston, UK, 2006; pp. 595–615. [Google Scholar] [CrossRef]
- Oliveira, M.; Barbosa, J.; Albano, H.; Teixeira, P. Bacteriocinogenic activity of Leuconostoc lactis RK18 isolated from fermented food. In Fermented Foods: Nutrition and Role in Health and Disease, 1st ed.; Kovalyov, O., Ed.; Nova Science Publishers: New York, NY, USA, 2020; pp. 159–181. [Google Scholar]
- de Paula, A.T.; Jeronymo-Ceneviva, A.B.; Todorov, S.D.; Penna, A.L.B. The Two Faces of Leuconostoc mesenteroides in Food Systems. Food Rev. Int. 2015, 31, 147–171. [Google Scholar] [CrossRef]
- Pinto, A.; Barbosa, J.; Albano, H.; Isidro, J.; Teixeira, P. Screening of bacteriocinogenic lactic acid bacteria and their characterization as potential probiotics. Microorganisms 2020, 8, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, A.M.; Fryer, J.L.; Collins, M.D. Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol. Lett. 1990, 68, 109–113. [Google Scholar] [CrossRef]
- Saraoui, T.; Leroi, F.; Björkroth, J.; Pilet, M.F. Lactococcus piscium: A psychrotrophic lactic acid bacterium with bioprotective or spoilage activity in food—A review. J. Appl. Microbiol. 2016, 121, 907–918. [Google Scholar] [CrossRef] [Green Version]
- Malek, A.; de la Hoz, A.; Gomez-Villegas, S.I.; Nowbakht, C.; Arias, C.A. Lactococcus garvieae, an unusual pathogen in infective endocarditis: Case report and review of the literature. BMC Infect. Dis. 2019, 19, 301. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Wittouck, S.; Salvetti, E. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- García-Díez, J.; Alheiro, J.; Falco, V.; Fraqueza, M.J.; Patarata, L. Chemical characterization and antimicrobial properties of herbs and spices essential oils against pathogens and spoilage bacteria associated to dry-cured meat products. J. Essent. Oil Res. 2016, 29, 117–125. [Google Scholar] [CrossRef]
- Bunyan, I.; Aumaima, T.; Abid, H.O. Antibacterial Activity of Carvacrol against Different Types of Bacteria. J. Nat. Sci. Res. 2014, 4, 13–16. [Google Scholar]
- Thielmann, J.; Muranyi, P. Review on the chemical composition of Litsea cubeba essential oils and the bioactivity of its major constituents citral and limonene. J. Essent. Oil Res. 2019, 31, 361–378. [Google Scholar] [CrossRef]
- Nielsen, C.K.; Kjems, J.; Mygind, T.; Snabe, T.; Meyer, R.L. Effects of Tween 80 on Growth and Biofilm Formation in Laboratory Media. Front. Microbiol. 2016, 7, 1878. [Google Scholar] [CrossRef] [PubMed]
- Sahariah, P.; Másson, M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure—Activity Relationship. Biomacromolecules 2017, 18, 3846–3868. [Google Scholar] [CrossRef]
- Haghighi, H.; Licciardello, F.; Fava, P.; Siesler, H.W.; Pulvirenti, A. Recent advances on chitosan-based films for sustainable food packaging applications. Food Pack. Shelf Life 2020, 26. [Google Scholar] [CrossRef]
- Qu, B.; Luo, Y. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors—A review. Int. J. Biol. Macromol. 2020, 152, 437–448. [Google Scholar] [CrossRef]
- Cao, R.; Xue, C.H.; Liu, Q. Changes in microbial flora of Pacific oysters (Crassostrea gigas) during refrigerated storage and its shelf-life extension by chitosan. Int. J. Food Microbiol. 2009, 131, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsiraki, M.I.; Savvaidis, I.N. Citrus extract or natamycin treatments on “Tzatziki”—A traditional Greek salad. Food Chemistry 2014, 142, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Tsiraki, M.I.; Savvaidis, I.N. The effects of citrus extract (Citrox©) on the naturally occurring microflora and inoculated pathogens, Bacillus cereus and Salmonella enterica, in a model food system and the traditional Greek yogurt-based salad Tzatziki. Food Microbiol. 2016, 53, 150–155. [Google Scholar] [CrossRef]
- Tsiraki, M.I.; Yehia, H.M.; Elobeid, T.; Osaili, T.; Sakkas, H.; Savvaidis, I.N. Viability of and Escherichia coli O157:H7 and Listeria monocytogenes in a delicatessen appetizer (yogurt-based) salad as affected by citrus extract (Citrox©) and storage temperature. Food Microbiol. 2018, 69, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Yehia, H.M.; Elkhadragy, M.F.; Al-Masoud, A.H.; Al-Megrin, W.A. Citrox Improves the Quality and Shelf Life of Chicken Fillets Packed under Vacuum and Protects against Some Foodborne Pathogens. Animals 2019, 9, 1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooper, S.J.; Lewis, M.A.O.; Wilson, M.J.; Williams, D.W. Antimicrobial activity of Citrox® bioflavonoid preparations against oral microorganisms. Br. Dent. J. 2011, 210, E22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
log CFU/g | ||||||
---|---|---|---|---|---|---|
Standard Temperature | 11 °C | |||||
Day 0 | Day 2 | Day 5 | Day 0 | Day 2 | Day 5 | |
Listeria monocytogenes | <1.00 ± 0.00 | <1.00 ± 0.00 | <1.00 ± 0.00 | <1.00 ± 0.00 | <1.00 ± 0.00 | <1.00 ± 0.00 |
Escherichia coli | <1.00 ± 0.00 | <1.00 ± 0.00 | <1.00 ± 0.00 | <1.00 ± 0.00 | <1.00 ± 0.00 | <1.00 ± 0.00 |
Total viable counts | 5.49 ± 0.54 | 8.27 ± 0.25 | 9.46 ± 0.17 | 5.90 ± 0.51 | 8.64 ± 0.91 | 9.35 ± 0.11 |
Lactic Acid Bacteria | 3.74 ± 0.15 | 6.13 ± 0.46 | 7.24 ± 0.10 | 4.65 ± <0.01 | 6.84 ± 0.18 | 7.69 ± 0.05 |
Pseudomonas spp. | 6.21 ± 0.20 | 8.24 ± 0.31 | 9.20 ± 0.11 | 6.16 ± 0.18 | 8.42 ± 0.03 | 9.22 ± 0.12 |
Enterobacterales | 4.71 ± 0.21 | 7.18 ± 0.8 | 8.31 ± 0.23 | 4.74 ± 0.01 | 7.42 ± 0.47 | 8.16 ± 0.02 |
PCA | MRS | PAB | RAPID’ Enterobacteriaceae | |
---|---|---|---|---|
Number of isolates | 39 | 22 | 13 | 26 |
Identification | Number of Isolates | 16S rRNA Sequencing Similarity (%) |
---|---|---|
Hafnia alvei | 6 | 99.40–99.90 |
Klebsiella oxytoca | 2 | 99.90–100.00 |
Latilactobacillus sakei | 5 | 99.90–100.00 |
Lactococcus garvieae | 2 | 99.90–100.00 |
Lactococcus piscium | 1 | 99.40–99.90 |
Leuconostoc gelidum | 1 | 99.40–99.90 |
Leuconostoc mesenteroides | 1 | 100.00 |
Leuconostoc miyukkimchii | 12 | 99.10–99.90 |
Morganella morganii | 3 | 99.80 |
Obesumbacterium proteus | 1 | 99.90 |
Pantoea brenneri | 1 | 98.50 |
Pseudomonas endophytica | 1 | 99.70 |
Pseudomonas fragi | 2 | 99.70 |
Pseudomonas helleri | 3 | 99.80–100.00 |
Pseudomonas helmanticensis | 1 | 99.80 |
Pseudomonas marginalis | 1 | 100.00 |
Pseudomonas orientalis | 1 | 99.80 |
Pseudomonas paralactis | 6 | 99.80–100.00 |
Pseudomonas psychrophila | 3 | 99.70–99.90 |
Pseudomonas trivialis | 4 | 99.90 |
Pseudomonas weihenstephanensis | 2 | 99.60–99.90 |
Rahnella aquatilis | 4 | 99.60–99.90 |
Rahnella inusitata | 10 | 99.80–99.90 |
Serratia fonticola | 2 | 99.90 |
Serratia liquefaciens | 20 | 99.40–99.90 |
Serratia nematodiphila | 1 | 100.00 |
Weissella fabalis | 3 | 97.10–98.10 |
Weissella beninensis | 1 | 97.60 |
Car. | T80 | OLE | Lim. | C. HMW1 | C. HMW2 | C. MMW | C. LMW | A.A. | EEP 1 | EEP 2 | ETOH | Citrox® | Identified Isolate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 15 (S) | 15 (S) | 14 (S) | 16 (S) | 0 (R) | 0 (R) | 0 (R) | 17 (S) | Pseudomonas endophytica |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 12 (S) | 11 (S) | 15 (S) | 16 (S) | 7 (R) | 8 (R) | 0 (R) | 21 (S) | Pseudomonas fragi |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 12 (S) | 11 (S) | 15 (S) | 16 (S) | 7 (R) | 8 (R) | 0 (R) | 21 (S) | Pseudomonas fragi |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 14 (S) | 14 (S) | 14 (S) | 14 (S) | 7 (R) | 0 (R) | 0 (R) | 23 (S) | Pseudomonas helleri |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 21 (S) | 24 (S) | 27 (S) | 27 (S) | 24 (S) | 9 (R) | 8 (R) | 0 (R) | 31 (S) | Pseudomonas helleri |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 15 (S) | 15 (S) | 16 (S) | 16 (S) | 17 (S) | 0 (R) | 8 (R) | 0 (R) | 24 (S) | Pseudomonas helleri |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 15 (S) | 14 (S) | 16 (S) | 15 (S) | 9 (R) | 0 (R) | 0 (R) | 24 (S) | Pseudomonas helmanticensis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 16 (S) | 16 (S) | 14 (S) | 16 (S) | 20 (S) | 0 (R) | 9 (R) | 0 (R) | 31 (S) | Pseudomonas marginalis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 15 (S) | 14 (S) | 15 (S) | 14 (S) | 0 (R) | 0 (R) | 0 (R) | 25 (S) | Pseudomonas orientalis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 16 (S) | 17 (S) | 17 (S) | 15 (S) | 15 (S) | 7 (R) | 8 (R) | 0 (R) | 22 (S) | Pseudomonas paralactis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 15 (S) | 12 (S) | 16 (S) | 16 (S) | 17 (S) | 8 (R) | 7 (R) | 0 (R) | 23 (S) | Pseudomonas paralactis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 15 (S) | 13 (S) | 15 (S) | 13 (S) | 0 (R) | 7 (R) | 0 (R) | 25 (S) | Pseudomonas paralactis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 20 (S) | 21 (S) | 21 (S) | 22 (S) | 23 (S) | 0 (R) | 8 (R) | 0 (R) | 30 (S) | Pseudomonas paralactis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 17 (S) | 20 (S) | 17 (S) | 20 (S) | 20 (S) | 9 (R) | 0 (R) | 0 (R) | 30 (S) | Pseudomonas paralactis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 15 (S) | 14 (S) | 16 (S) | 18 (S) | 8 (R) | 8 (R) | 7 (R) | 30 (S) | Pseudomonas paralactis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 18 (S) | 15 (S) | 20 (S) | 15 (S) | 16 (S) | 7 (R) | 8 (R) | 0 (R) | 22 (S) | Pseudomonas psychrophila |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 13 (S) | 14 (S) | 16 (S) | 15 (S) | 14 (S) | 7 (R) | 8 (R) | 0 (R) | 22 (S) | Pseudomonas psychrophila |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 12 (S) | 17 (S) | 15 (S) | 18 (S) | 16 (S) | 9 (R) | 8 (R) | 0 (R) | 24 (S) | Pseudomonas psychrophila |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 13 (S) | 10 (S) | 12 (S) | 11 (S) | 7 (R) | 8 (R) | 0 (R) | 23 (S) | Pseudomonas trivialis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 16 (S) | 17 (S) | 15 (S) | 17 (S) | 17 (S) | 0 (R) | 0 (R) | 0 (R) | 23 (S) | Pseudomonas trivialis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 15 (S) | 13 (S) | 15 (S) | 18 (S) | 0 (R) | 8 (R) | 0 (R) | 25 (S) | Pseudomonas trivialis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 15 (S) | 12 (S) | 14 (S) | 15 (S) | 0 (R) | 0 (R) | 7 (R) | 31 (S) | Pseudomonas trivialis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 14 (S) | 12 (S) | 11 (S) | 11 (S) | 8 (R) | 8 (R) | 0 (R) | 25 (S) | Pseudomonas weihenstephanensis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 19 (S) | 20 (S) | 17 (S) | 21 (S) | 21 (S) | 0 (R) | 0 (R) | 0 (R) | 24 (S) | Pseudomonas weihenstephanensis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 11 (S) | 11 (S) | 11 (S) | 11 (S) | 10 (S) | 0 (R) | 0 (R) | 0 (R) | 16 (S) | Hafnia alvei |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 11 (S) | 12 (S) | 10 (S) | 10 (S) | 11 (S) | 0 (R) | 8 (R) | 0 (R) | 21 (S) | Hafnia alvei |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 13 (S) | 12 (S) | 11 (S) | 12 (S) | 13(S) | 0 (R) | 0 (R) | 0 (R) | 15 (S) | Hafnia alvei |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 13 (S) | 12 (S) | 11 (S) | 12 (S) | 13 (S) | 0 (R) | 0 (R) | 0 (R) | 15 (S) | Hafnia alvei |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 10 (S) | 9 (R) | 10 (S) | 12 (S) | 8 (R) | 0 (R) | 7 (R) | 20 (S) | Hafnia alvei |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 13 (S) | 13 (S) | 12 (S) | 13 (S) | 0 (R) | 8 (R) | 0 (R) | 18 (S) | Hafnia alvei |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 11 (S) | 12 (S) | 10 (S) | 12 (S) | 13 (S) | 0 (R) | 7 (R) | 0 (R) | 19 (S) | Klebsiella oxytoca |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 12 (S) | 14 (S) | 13 (S) | 14 (S) | 15 (S) | 0 (R) | 8 (R) | 0 (R) | 16 (S) | Klebsiella oxytoca |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 15 (S) | 15 (S) | 13 (S) | 15 (S) | 16 (S) | 8 (R) | 0 (R) | 0 (R) | 23 (S) | Morganella morganii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 16 (S) | 14 (S) | 14 (S) | 14 (S) | 15 (S) | 0 (R) | 7 (R) | 0 (R) | 25 (S) | Morganella morganii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 10 (S) | 10 (S) | 10 (S) | 10 (S) | 8 (R) | 8 (R) | 0 (R) | 22 (S) | Morganella morganii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 8 (R) | 8 (R) | 8 (R) | 9 (R) | 7 (R) | 8 (R) | 7 (R) | 0 (R) | 14 (S) | Obesumbacterium proteus |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 11 (S) | 10 (S) | 11 (S) | 11 (S) | 12 (S) | 7 (R) | 7 (R) | 0 (R) | 15 (S) | Pantoea brenneri |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 17 (S) | 16 (S) | 17 (S) | 16 (S) | 18 (S) | 8 (R) | 9 (R) | 0 (R) | 23 (S) | Rahnella aquatilis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 17 (S) | 18 (S) | 16 (S) | 17 (S) | 18 (S) | 0 (R) | 0 (R) | 0 (R) | 21 (S) | Rahnella aquatilis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 16 (S) | 18 (S) | 15 (S) | 16 (S) | 15 (S) | 0 (R) | 8 (R) | 0 (R) | 16 (S) | Rahnella aquatilis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 15 (S) | 14 (S) | 17 (S) | 18 (S) | 0 (R) | 7 (R) | 0 (R) | 23 (S) | Rahnella aquatilis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 15 (S) | Rahnella inusitata |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 13 (S) | 13 (S) | 10 (S) | 10 (S) | 11 (S) | 7 (R) | 9 (R) | 0 (R) | 19 (S) | Rahnella inusitata |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 12 (S) | 12 (S) | 13 (S) | 11 (S) | 11 (S) | 8 (R) | 7 (R) | 0 (R) | 18 (S) | Rahnella inusitata |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 12 (S) | 12 (S) | 12 (S) | 15 (S) | 13 (S) | 7 (R) | 0 (R) | 0 (R) | 17 (S) | Rahnella inusitata |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 13 (S) | 11 (S) | 13 (S) | 13 (S) | 0 (R) | 7 (R) | 0 (R) | 33 (S) | Rahnella inusitata |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 22 (S) | 22 (S) | 24 (S) | 23 (S) | 23 (S) | 9 (R) | 7 (R) | 0 (R) | 20 (S) | Rahnella inusitata |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 11 (S) | 12 (S) | 11 (S) | 12 (S) | 13 (S) | 0 (R) | 8 (R) | 7 (R) | 19 (S) | Rahnella inusitata |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 16 (S) | 17 (S) | 16 (S) | 16 (S) | 17 (S) | 0 (R) | 0 (R) | 0 (R) | 25 (S) | Rahnella inusitata |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 17 (S) | 19 (S) | 19 (S) | 20 (S) | 19 (S) | 9 (R) | 0 (R) | 0 (R) | 22 (S) | Rahnella inusitata |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 15 (S) | 15 (S) | 14 (S) | 14 (S) | 16 (S) | 0 (R) | 7 (R) | 0 (R) | 22 (S) | Rahnella inusitata |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 11 (S) | 14 (S) | 12 (S) | 14 (S) | 14 (S) | 7 (R) | 7 (R) | 0 (R) | 18 (S) | Serratia fonticola |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 12 (S) | 14 (S) | 13 (S) | 12 (S) | 14 (S) | 0 (R) | 8 (R) | 0 (R) | 19 (S) | Serratia fonticola |
8 (R) | 10 (S) | 0 (R) | 9 (R) | 15 (S) | 16 (S) | 14 (S) | 17 (S) | 15 (S) | 0 (R) | 0 (R) | 0 (R) | 19 (S) | Serratia liquefaciens |
8 (R) | 11 (S) | 0 (R) | 10 (S) | 11 (S) | 11 (S) | 10 (S) | 9 (R) | 10 (S) | 7 (R) | 8 (R) | 8 (R) | 17 (S) | Serratia liquefaciens |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 11 (S) | 8 (R) | 10 (S) | 8 (R) | 10 (S) | 7 (R) | 0 (R) | 0 (R) | 19 (S) | Serratia liquefaciens |
7 (R) | 9 (R) | 0 (R) | 9 (R) | 14 (S) | 15 (S) | 12 (S) | 14 (S) | 15 (S) | 8 (R) | 8 (R) | 13 (S) | 18 (S) | Serratia liquefaciens |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 8 (R) | 9 (R) | 7 (R) | 9 (R) | 8 (R) | 0 (R) | 7 (R) | 0 (R) | 18 (S) | Serratia liquefaciens |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 12 (S) | 12 (S) | 10 (S) | 12 (S) | 15 (S) | 8 (R) | 0 (R) | 0 (R) | 16 (S) | Serratia liquefaciens |
8 (R) | 8 (R) | 0 (R) | 9 (R) | 12 (S) | 15 (S) | 13 (S) | 13 (S) | 14 (S) | 8 (R) | 7 (R) | 0 (R) | 12 (S) | Serratia liquefaciens |
9 (R) | 10 (S) | 0 (R) | 10 (S) | 15 (S) | 15 (S) | 15 (S) | 13 (S) | 15 (S) | 7 (R) | 8 (R) | 0 (R) | 18 (S) | Serratia liquefaciens |
9 (R) | 9 (R) | 0 (R) | 10 (S) | 15 (S) | 13 (S) | 14 (S) | 14 (S) | 14 (S) | 8 (R) | 7 (R) | 0 (R) | 19 (S) | Serratia liquefaciens |
9 (R) | 11 (S) | 0 (R) | 10 (S) | 10 (S) | 8 (R) | 10 (S) | 10 (S) | 7 (R) | 8 (R) | 7 (R) | 0 (R) | 18 (S) | Serratia liquefaciens |
8 (R) | 9 (R) | 0 (R) | 9 (R) | 9 (R) | 0 (R) | 8 (R) | 8 (R) | 7 (R) | 0 (R) | 0 (R) | 0 (R) | 16 (S) | Serratia liquefaciens |
9 (R) | 9 (R) | 0 (R) | 9 (R) | 12 (S) | 13 (S) | 12 (S) | 12 (S) | 12 (S) | 7 (R) | 7 (R) | 0 (R) | 20 (S) | Serratia liquefaciens |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 16 (S) | 14 (S) | 12 (S) | 18 (S) | 16 (S) | 0 (R) | 8 (R) | 0 (R) | 19 (S) | Serratia liquefaciens |
8 (R) | 8 (R) | 0 (R) | 8 (R) | 0 (R) | 12 (S) | 12 (S) | 12 (S) | 12 (S) | 0 (R) | 8 (R) | 0 (R) | 17 (S) | Serratia liquefaciens |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 20 (S) | 20 (S) | 20 (S) | 20 (S) | 24 (S) | 0 (R) | 0 (R) | 7 (R) | 20 (S) | Serratia liquefaciens |
9 (R) | 10 (S) | 0 (R) | 10 (S) | 24 (S) | 22 (S) | 16 (S) | 20 (S) | 20 (S) | 0 (R) | 0 (R) | 0 (R) | 20 (S) | Serratia liquefaciens |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 21 (S) | 19 (S) | 19 (S) | 19 (S) | 24 (S) | 9 (R) | 8 (R) | 0 (R) | 22 (S) | Serratia liquefaciens |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 14 (S) | 14 (S) | 13 (S) | 15 (S) | 13 (S) | 0 (R) | 7 (R) | 0 (R) | 19 (S) | Serratia liquefaciens |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 11 (S) | 13 (S) | 15 (S) | 14 (S) | 16 (S) | 7 (R) | 0 (R) | 0 (R) | 20 (S) | Serratia liquefaciens |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 18 (S) | Serratia liquefaciens |
7 (R) | 9 (R) | 0 (R) | 7 (R) | 8 (R) | 13 (S) | 11 (S) | 12 (S) | 12 (S) | 0 (R) | 0 (R) | 0 (R) | 17 (S) | Serratia nematodiphila |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 17 (S) | Latilactobacillus sakei |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 15 (S) | Latilactobacillus sakei |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 11 (S) | 0 (R) | 19 (S) | Latilactobacillus sakei |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 12 (S) | 12 (S) | 0 (R) | 30 (S) | Latilactobacillus sakei |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 13 (S) | Latilactobacillus sakei |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 11 (S) | 10 (S) | 0 (R) | 30 (S) | Lactococcus garvieae |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 12 (S) | 10 (S) | 0 (R) | 32 (S) | Lactococcus garvieae |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 18 (S) | 17 (S) | 15 (S) | 16 (S) | 18 (S) | 7 (R) | 8 (R) | 0 (R) | 21 (S) | Lactococcus piscium |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 0 (R) | 15 (S) | Leuconostoc gelidum |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 11 (S) | 0 (R) | 21 (S) | Leuconostoc mesenteroides |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 12 (S) | 18 (S) | 12 (S) | 0 (R) | 40 (S) | Leuconostoc miyukkimchii |
12 (S) | 10 (S) | 7 (R) | 10 (S) | 8 (R) | 8 (R) | 8 (R) | 8 (R) | 0 (R) | 7 (R) | 8 (R) | 0 (R) | 26 (S) | Leuconostoc miyukkimchii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 12 (S) | 12 (S) | 0 (R) | 30 (S) | Leuconostoc miyukkimchii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 8 (R) | 12 (S) | 15 (S) | 0 (R) | 28 (S) | Leuconostoc miyukkimchii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 15 (S) | 12 (S) | 0 (R) | 32 (S) | Leuconostoc miyukkimchii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 13 (S) | 10 (S) | 0 (R) | 30 (S) | Leuconostoc miyukkimchii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 11 (S) | 11 (S) | 10 (S) | 11 (S) | 11 (S) | 8 (R) | 8 (R) | 7 (R) | 20 (S) | Leuconostoc miyukkimchii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 12 (S) | 0 (R) | 19 (S) | Leuconostoc miyukkimchii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 14 (S) | 12 (S) | 0 (R) | 34 (S) | Leuconostoc miyukkimchii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 13 (S) | 16 (S) | 14 (S) | 0 (R) | 38 (S) | Leuconostoc miyukkimchii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 13 (S) | 14 (S) | 0 (R) | 40 (S) | Leuconostoc miyukkimchii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 15 (S) | 15 (S) | 13 (S) | 15 (S) | 15 (S) | 8 (R) | 8 (R) | 0 (R) | 25 (S) | Leuconostoc miyukkimchii |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 0 (R) | 28 (S) | Weissella fabalis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 0 (R) | 26 (S) | Weissella beninensis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 0 (R) | 24 (S) | Weissella fabalis |
0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 0 (R) | 10 (S) | 0 (R) | 20 (S) | Weissella fabalis |
Compounds | % Sensitivity Pseudomonas | % Sensitivity Enterobacterales | % Sensitivity LAB | % Sensitivity Total |
---|---|---|---|---|
0.05% (v/v) Carvacrol | 0.0 | 0.0 | 3.8 | 1.0 |
Polysorbate 80 | 0.0 | 10.0 | 3.8 | 6.0 |
1.5% (w/v) Olive leaf extract | 0.0 | 0.0 | 0.0 | 0.0 |
0.05% (v/v) Limonene | 0.0 | 10.0 | 3.8 | 6.0 |
3% (v/v) Chitosan High Weight 1 | 100.0 | 86.0 | 11.5 | 70.0 |
3% (v/v) Chitosan High Weight 2 | 100.0 | 86.0 | 11.5 | 70.0 |
3% (v/v) Chitosan Medium Weight | 100.0 | 88.0 | 11.5 | 71.0 |
3% (v/v) Chitosan Low Weight | 100.0 | 86.0 | 11.5 | 70.0 |
3% (v/v) Acetic Acid | 100.0 | 88.0 | 46.2 | 80.0 |
10% (w/v) EPE 1 | 0.0 | 0.0 | 46.2 | 12.0 |
10% (w/v) EPE 2 | 0.0 | 0.0 | 73.1 | 19.0 |
70% (v/v) Ethanol | 0.0 | 2.0 | 0.0 | 1.0 |
50% (v/v) Citrox® | 100.0 | 100.0 | 100.0 | 100.0 |
% (v/v) Citrox® | % Sensitivity |
---|---|
50.00 | 100 |
25.00 | 100 |
12.50 | 100 |
6.75 | 100 |
3.38 | 100 |
1.69 | 100 |
0.84 | 53 |
0.42 | 17 |
0.21 | 13 |
0.11 | 8 |
0.06 | 3 |
0.03 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto de Rezende, L.; Barbosa, J.B.; Gomes, A.M.; Silva, A.M.; Correia, D.F.; Teixeira, P. Inhibition of Several Bacterial Species Isolated from Squid and Shrimp Skewers by Different Natural Edible Compounds. Foods 2022, 11, 757. https://doi.org/10.3390/foods11050757
Pinto de Rezende L, Barbosa JB, Gomes AM, Silva AM, Correia DF, Teixeira P. Inhibition of Several Bacterial Species Isolated from Squid and Shrimp Skewers by Different Natural Edible Compounds. Foods. 2022; 11(5):757. https://doi.org/10.3390/foods11050757
Chicago/Turabian StylePinto de Rezende, Lourenço, Joana Bastos Barbosa, Ana Maria Gomes, Ana Machado Silva, Daniela Fonseca Correia, and Paula Teixeira. 2022. "Inhibition of Several Bacterial Species Isolated from Squid and Shrimp Skewers by Different Natural Edible Compounds" Foods 11, no. 5: 757. https://doi.org/10.3390/foods11050757
APA StylePinto de Rezende, L., Barbosa, J. B., Gomes, A. M., Silva, A. M., Correia, D. F., & Teixeira, P. (2022). Inhibition of Several Bacterial Species Isolated from Squid and Shrimp Skewers by Different Natural Edible Compounds. Foods, 11(5), 757. https://doi.org/10.3390/foods11050757