Compositional and Morphological Characterization of ‘Sorrento’ and ‘Chandler’ Walnuts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sampling
2.3. Nut Biometric Measurements
2.4. Determination of Moisture Content
2.5. Lipid Extraction
2.6. Fatty Acid Composition
2.7. Determination of γ-tocopherol
2.8. Determination of Total Phenolic Content (TPC)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Walnut Size and Shape
3.2. Moisture and Lipid Content
3.3. Fatty Acid Profile
3.4. Total Polyphenol Content (TPC)
3.5. γ-Tocopherol Content
3.6. PCA
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Nut and Dried Fruit Foundation. Nuts and Dried Fruits Global Statistical Review 2019–2020; INC: Reus, Spain, 2020. [Google Scholar]
- FAO. FAOSTAT Data; Food and Agriculture Organization: Rome, Italy, 2021; Available online: http://www.fao.org/faostat/ (accessed on 4 March 2022).
- Di Vaio, C.; Minotta, G. Indagine sulla coltivazione del noce da legno in Campania. For. J. Silvic. For. Ecol. 2005, 2, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Foroni, I.; Woeste, K.; Monti, L.M.; Rao, R. Identification of ‘Sorrento’walnut using simple sequence repeats (SSRs). Genet. Resour. Crop Evol. 2007, 54, 1081–1094. [Google Scholar] [CrossRef]
- Di Pierro, E.A.; Ziller, L.; Tonon, A.; Bianco, L.; Franceschi, P.; Troggio, M.; Camin, F. Characterization and valorisation of the Italian walnut (Juglans regia L.): A first application of stable isotope ratio analysis to determine walnut geographical origin. In The 2nd Isotope Ratio MS Day; Società Chimica Italiana: Messina, Italy, 2018. [Google Scholar]
- Byerley, L.O.; Samuelson, D.; Blanchard IV, E.; Luo, M.; Lorenzen, B.N.; Banks, S.; Ponder, M.A.; Welsh, D.A.; Taylor, C.M. Changes in the gut microbial communities following addition of walnuts to the diet. J. Nutr. Biochem. 2017, 48, 94–102. [Google Scholar] [CrossRef]
- Calcagni, G. Situazione internazionale, prospettive e potenzialità della nocicoltura. In Atti Delle Giornate Tecniche Nazionali: Nocicoltura da Frutto: Innovazione e Sostenibilità; Bologna, Italy, 2019. [Google Scholar]
- Ozkan, G.; Koyuncu, M.A. Physical and chemical composition of some walnut (Juglans regia L.) genotypes grown in Turkey. Grasas Aceites 2005, 56, 141–146. [Google Scholar] [CrossRef]
- Martínez, M.L.; Maestri, D.M. Oil chemical variation in walnut (Juglans regia L.) genotypes grown in Argentina. Eur. J. Lipid Sci. Tech. 2008, 110, 1183–1189. [Google Scholar] [CrossRef]
- Ruggeri, S.; Cappelloni, M.; Gambelli, L.; Nicoli, S.; Carnovale, E. Chemical composition and nutritive value of nuts grown in Italy. Ital. J. Food Sci. 1996, 3, 243–252. [Google Scholar]
- Savage, G.P. Chemical composition of walnuts (Juglans regia L.) grown in New Zealand. Plant Food Hum. Nutr. 2001, 56, 75–82. [Google Scholar] [CrossRef]
- Beyhan, O.; Ozcan, A.; Ozcan, H.; Kafkas, E.; Kafkas, S.; Sutyemez, M.; Ercisli, S. Fat, fatty acids and tocopherol content of several walnut genotypes. Not. Bot. Horti. Agrobot. 2017, 45, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Colaric, M.; Veberic, R.; Solar, A.; Hudina, M.; Stampar, F. Phenolic acids, syringaldehyde, and juglone in fruits of different cultivars of Juglans regia L. J. Agric. Food Chem. 2005, 53, 6390–6396. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Mousavi, S.M.; Hamedi, M.; Khodaiyan, F. Determination and characterization of kernel biochemical composition and functional compounds of Persian walnut oil. J. Food Sci. Technol. 2014, 51, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Aryapak, S.; Ziarati, P. Nutritive value of Persian walnut (Juglans regia L.) Orchards. Am. Eurasian J. Agric. Environ. Sci. 2014, 14, 1228–1235. [Google Scholar] [CrossRef]
- Cosmulescu, S.N.; Baciu, A.; Achim, G.; Mihai, B.O.T.U.; Trandafir, I. Mineral composition of fruits in different walnut (Juglans regia L.) cultivars. Not. Bot. Horti Agrobot. 2009, 37, 156–160. [Google Scholar] [CrossRef]
- Amaral, J.S.; Alves, M.R.; Seabra, R.M.; Oliveira, B.P. Vitamin E composition of walnuts (Juglans regia L.): A 3-year comparative study of different cultivars. J. Agric. Food Chem. 2005, 53, 5467–5472. [Google Scholar] [CrossRef]
- Bujdosó, G.; Tóth-Markus, M.; Daood, H.; Adányi, N.; Szentiványi, P. Fruit quality and composition of Hungarian bred walnut cultivars. Acta Aliment. 2010, 39, 35–47. [Google Scholar] [CrossRef]
- Kafkas, E.; Attar, S.H.; Gundesli, M.A.; Ozcan, A.; Ergun, M. Phenolic and fatty acid profile, and protein content of different walnut vs and genotypes (Juglans regia L.) grown in the USA. Int. J. Fruit Sci. 2020, 20 (Suppl. 3), S1711–S1720. [Google Scholar] [CrossRef]
- Kendall, C.W.C.; Esfahani, A.; Josse, A.R.; Augustin, L.S.A.; Vidgen, E.; Jenkins, D.J.A. The glycemic effect of nut-enriched meals in healthy and diabetic subjects. Nutr. Metab. Cardiovas. 2011, 21, S34–S39. [Google Scholar] [CrossRef]
- Joseph, J.A.; Shukitt-Hale, B.; Willis, L.M. Grape juice, berries, and walnuts affect brain aging and behavior. J. Nutr. 2009, 139, 1813S–1817S. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.; Valacchi, G.; Pagnin, E.; Shao, Q.; Gross, H.B.; Calo, L.; Yokoyama, W. Walnuts reduce aortic ET-1 mRNA levels in hamsters fed a high-fat, atherogenic diet. J. Nutr. 2006, 136, 428–432. [Google Scholar] [CrossRef] [Green Version]
- Ros, E. Nuts and novel biomarkers of cardiovascular disease. Am. J. Clin. Nutr. 2009, 89, 1649S–1656S. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D.; Angove, M.J.; Tucci, J.; Dennis, C. Walnuts (Juglans regia) chemical composition and research in human health. Crit Rev. Food Sci. 2016, 56, 1231–1241. [Google Scholar] [CrossRef]
- Croitoru, A.; Ficai, D.; Craciun, L.; Ficai, A.; Andronescu, E. Evaluation and exploitation of bioactive compounds of walnut, Juglans regia. Curr Pharm. Des. 2019, 25, 119–131. [Google Scholar] [CrossRef]
- Davis, P.A.; Vasu, V.T.; Gohil, K.; Kim, H.; Khan, I.H.; Cross, C.E.; Yokoyama, W. A high-fat diet containing whole walnuts (Juglans regia) reduces tumour size and growth along with plasma insulin-like growth factor 1 in the transgenic adenocarcinoma of the mouse prostate model. Brit. J. Nutr. 2012, 108, 1764–1772. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.L.; Mattea, M.A.; Maestri, D.M. Varietal and crop year effects on lipid composition of walnut (Juglans regia) genotypes. J. Am. Oil Chem. Soc. 2006, 83, 791–796. [Google Scholar] [CrossRef]
- Amaral, J.S.; Casal, S.; Pereira, J.A.; Seabra, R.M.; Oliveira, B.P. Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in Portugal. J. Agric. Food Chem. 2003, 51, 7698–7702. [Google Scholar] [CrossRef] [Green Version]
- Verardo, V.; Bendini, A.; Cerretani, L.; Malaguti, D.; Cozzolino, E.; Caboni, M.F. Capillary gas chromatography analysis of lipid composition and evaluation of phenolic compounds by micellar electrokinetic chromatography in Italian walnut (Juglans regia L.): Irrigation and fertilization influence. J. Food Qual. 2009, 32, 262–281. [Google Scholar] [CrossRef]
- Koyuncu, M.A.; Ekinci, K.; Gun, A. The effects of altitude on fruit quality and compression load for cracking of walnuts (Juglans regia L.). J. Food Qual. 2004, 27, 407–417. [Google Scholar] [CrossRef]
- Khadivi-Khub, A.; Ebrahimi, A.; Mohammadi, A.; Kari, A. Characterization and selection of walnut (Juglans regia L.) genotypes from seedling origin trees. Tree Genet. Genomes 2015, 11, 54. [Google Scholar] [CrossRef]
- Ercisli, S.; Sayinci, B.; Kara, M.; Yildiz, C.; Ozturk, I. Determination of size and shape features of walnut (Juglans regia L.) cultivars using image processing. Sci. Hortic. 2012, 133, 47–55. [Google Scholar] [CrossRef]
- Yarilgaç, T.; Balta, M.F.; Borasan, L.; Bülbül, C. Fruit characteristics of natural walnut (Juglans regia L.) genotypes of Catak and Taspinar Villages (Corum). In II Balkan Symposium on Fruit Growing; International Society for Horticultural Science: Pitesti, Romania, 2011; Volume 981, pp. 135–140. [Google Scholar]
- Slow Food Presidia. 2021. Available online: https://www.fondazioneslowfood.com/en/what-we-do/slow-food-presidia/the-project/ (accessed on 19 January 2022).
- Solar, A.; Štampar, F. Genotypic Differences in Branching Pattern and Fruiting Habit in Common Walnut (Juglans regia L.). Ann. Bot. 2003, 92, 317–325. [Google Scholar] [CrossRef] [Green Version]
- UPOV. Guidelines for the Conduct of Tests for Distinctness, Uniformity, and Stability; (TG/125/5proj5); International Union for the Protection of New Varieties of Plants: Geneva, Switzerland, 2017; pp. 18–22. [Google Scholar]
- Poggetti, L.; Ermacora, P.; Cipriani, G.; Pavan, F.; Testolin, R. Morphological and carpological variability of walnut germplasm (Juglans regia L.) collected in North-Eastern Italy and selection of superior genotypes. Sci. Hortic. 2017, 225, 615–619. [Google Scholar] [CrossRef]
- Romano, R.; Manzo, N.; Montefusco, I.; Romano, A.; Santini, A. Liquid carbon dioxide use in the extraction of extra virgin olive oil from olive paste. J. Food Res. 2014, 3, 119. [Google Scholar] [CrossRef] [Green Version]
- Grilo, E.C.; Costa, P.N.; Gurgel, C.S.S.; Beserra, A.F.D.L.; Almeida, F.N.D.S.; Dimenstein, R. Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Sci. Technol. 2014, 34, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. Identification and quantification of phenolic compounds in kernels, oil and bagasse pellets of common walnut (Juglans regia L.). Food Res. Int. 2015, 67, 255–263. [Google Scholar] [CrossRef]
- Labuckas, D.O.; Maestri, D.M.; Perello, M.; Martínez, M.L.; Lamarque, A.L. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chem. 2008, 107, 607–612. [Google Scholar] [CrossRef]
- Liu, B.; Liang, J.; Zhao, D.; Wang, K.; Jia, M.; Wang, J. Morphological and compositional analysis of two walnut (Juglans regia L.) cultivars growing in China. Plant Food Hum. Nutr. 2020, 75, 116–123. [Google Scholar] [CrossRef]
- Sharma, O.C.; Sharma, S.D. Genetic divergence in seedling trees of Persian walnut (Juglans regia L.) for various metric nut and kernel characters in Himachal Pradesh. Sci. Hortic. 2001, 88, 163–171. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.C.; Bento, A.; Estevinho, L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 2008, 46, 2103–2111. [Google Scholar] [CrossRef]
- Martínez, M.L.; Labuckas, D.O.; Lamarque, A.L.; Maestri, D.M. Walnut (Juglans regia L.): Genetic resources, chemistry, by-products. J. Sci. Food Agric. 2010, 90, 1959–1967. [Google Scholar] [CrossRef]
- Bada, J.C.; León-Camacho, M.; Prieto, M.; Copovi, P.; Alonso, L. Characterization of walnut oils (Juglans regia L.) from Asturias, Spain. J. Am. Oil Chem. Soc. 2010, 87, 1469–1474. [Google Scholar] [CrossRef]
- Zeneli, G.; Kola, H.; Dida, M. Phenotypic variation in native walnut populations of Northern Albania. Sci. Hortic. 2005, 105, 91–100. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Salvador, M.D.; Gómez-Alonso, S.; Fregapane, G. Characterization of virgin walnut oils and their residual cakes produced from different varieties. Food Res. Int 2018, 108, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.I.; Sánchez-Morgado, J.R.; García-Parra, J.; Ramírez, R.; Hernández, T.; González-Gómez, D. Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. J. Food Compos. Anal. 2013, 31, 232–237. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Grilo, F.S.; Wang, S.C. Walnut (Juglans regia L.) Volatile Compounds Indicate Kernel and Oil Oxidation. Foods 2021, 10, 329. [Google Scholar] [CrossRef]
- Copolovici, D.; Bungau, S.; Boscencu, R.; Tit, D.M.; Copolovici, L. The fatty acids composition and antioxidant activity of walnut cold press oil. Rev. Chim 2017, 68, 507–509. [Google Scholar] [CrossRef]
- Torabian, S.; Haddad, E.; Cordero-MacIntyre, Z.; Tanzman, J.; Fernandez, M.L.; Sabate, J. Long-term walnut supplementation without dietary advice induces favorable serum lipid changes in free-living individuals. Eur. J. Clin. Nutr. 2010, 64, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Feldman, E.B. The scientific evidence for a beneficial health relationship between walnuts and coronary heart disease. J. Nutr. 2002, 132, 1062S–1101S. [Google Scholar] [CrossRef]
- Bouabdallah, I.; Bouali, I.; Martínez-Force, E.; Albouchi, A.; Perez Camino, M.D.C.; Boukhchina, S. Composition of fatty acids, triacylglycerols and polar compounds of different walnut varieties (Juglans regia L.) from Tunisia. Nat. Prod. Res. 2014, 28, 1826–1833. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef]
- Christopoulos, M.V.; Tsantili, E. Effects of temperature and packaging atmosphere on total antioxidants and colour of walnut (Juglans regia L.) kernels during storage. Sci. Hortic. 2011, 131, 49–57. [Google Scholar] [CrossRef]
- Kornsteiner, M.; Wagner, K.H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G.; Jankowska, A. Antioxidant properties, profile of polyphenolic compounds and tocopherol content in various walnut (Juglans regia L.) varieties. Eur. Food Res. Technol. 2019, 245, 607–616. [Google Scholar] [CrossRef]
- Fuentealba, C.; Hernández, I.; Saa, S.; Toledo, L.; Burdiles, P.; Chirinos, R.; Campos, D.; Brown, P.; Pedreschi, R. Colour and in vitro quality attributes of walnuts from different growing conditions correlate with key precursors of primary and secondary metabolism. Food Chem. 2017, 232, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Cerit, İ.; SariÇam, A.; Demirkol, O.; Ünver, H.; Sakar, E.; Cosansu, S. Comparative study of functional properties of eight walnut (Juglans regia L.) genotypes. Food Scie Tech. 2017, 37, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Bolling, B.W.; Chen, C.Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [Green Version]
- Lavedrine, F.; Ravel, A.; Poupard, A.; Alary, J. Effect of geographic origin, variety and storage on tocopherol concentrations in walnuts by HPLC. Food Chem. 1997, 58, 135–140. [Google Scholar] [CrossRef]
- Delgado-Zamarreño, M.M.; Bustamante-Rangel, M.; Sánchez-Pérez, A.; Carabias-Martínez, R. Pressurized liquid extraction prior to liquid chromatography with electrochemical detection for the analysis of vitamin E isomers in seeds and nuts. J. Chromatogr A 2004, 1056, 249–252. [Google Scholar] [CrossRef]
- Delgado-Zamarreno, M.M.; Bustamante-Rangel, M.; Sanchez-Perez, A.; Hernandez-Mendez, J. Analysis of vitamin E isomers in seeds and nuts with and without coupled hydrolysis by liquid chromatography and coulometric detection. J. Chromatogr A 2001, 935, 77–86. [Google Scholar] [CrossRef]
- Seppanen, C.M.; Song, Q.; Saari Csallany, A. The antioxidant functions of tocopherol and tocotrienol homologues in oils, fats, and food systems. J. Am. Oil Chem. Soc. 2010, 87, 469–481. [Google Scholar] [CrossRef]
- Li, D.; Saldeen, T.; Romeo, F.; Mehta, J.L. Relative effects of α-and γ-tocopherol on low-density lipoprotein oxidation and superoxide dismutase and nitric oxide synthase activity and protein expression in rats. J. Cardiovasc. Pharm. T 1999, 4, 219–226. [Google Scholar] [CrossRef]
- Ghasemi, K.; Ghasemi, Y.; Ehteshamnia, A.; Nabavi, S.M.; Nabavi, S.F.; Ebrahimzadeh, M.A.; Pourmorad, F. Influence of environmental factors on antioxidant activity, phenol and flavonoids contents of walnut (Juglans regia L.) green husks. J. Med. Plants Res. 2011, 5, 1128–1133. [Google Scholar] [CrossRef]
- Meisen, S.A.; Smanalieva, J.; Oskonbaeva, Z.; Iskakova, J.; Darr, D.; Wichern, F. Intraspecific variability overlays abiotic site effects on some quality parameters of walnut (Juglans regia L.) fruits from Kyrgyzstan. Eur. Food Res. Technol. 2021, 247, 363–373. [Google Scholar] [CrossRef]
- Büyüksolak, Z.N.; Aşkın, M.A.; Kahramanoğlu, İ.; Okatan, V. Effects of Altitude on the Pomological Characteristics and Chemical Properties of ‘Chandler’ Walnuts: A Case Study in Uşak Province. Acta Agrobot. 2020, 73, 73. [Google Scholar] [CrossRef]
- Urpi-Sarda, M.; Casas, R.; Chiva-Blanch, G.; Romero-Mamani, E.S.; Valderas-Martínez, P.; Arranz, S. Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomarkers related to atherosclerosis. Pharm. Res. 2012, 65, 577–583. [Google Scholar] [CrossRef] [PubMed]
Variety | Location | Altitude (m.a.s.l.) * | Code |
---|---|---|---|
Sorrento | Cicciano (Na) | 50 | SCi |
Sorrento | Vico Equense (Na) | 90 | SVE |
Sorrento | Somma Vesuviana (Na) | 165 | SSV |
Sorrento | Massa Lubrense (Na) | 121 | SML |
Sorrento | Maddaloni (Ce) | 73 | SM |
Sorrento | Capua (Ce) | 25 | SCa |
Chandler | Capua (Ce) | 25 | CCa |
Code | Longitudinal Diameter (mm) | Medium Equatorial Diameter (mm) | Symmetry Index | Shape Index |
---|---|---|---|---|
SCi | 39.14 ± 0.52 bc | 30.31 ± 0.36 bc | 0.927 ± 0.006 a | 0.78 ± 0.01 b |
SVE | 39.01 ± 0.36 bc | 29.28 ± 0.22 c | 0.940 ± 0.005 a | 0.75 ± 0.01 c |
SSV | 39.98 ± 0.33 b | 30.90 ± 0.26 b | 0.953 ± 0.008 a | 0.77 ± 0.01 b |
SML | 40.22 ± 0.43 b | 29.93 ± 0.21 bc | 0.948 ± 0.007 a | 0.75 ± 0.01 c |
SM | 39.22 ± 0.34 bc | 30.73 ± 0.19 b | 0.946 ± 0.004 a | 0.78 ± 0.01 b |
SCa | 38.42 ± 0.34 c | 29.94 ± 0.24 bc | 0.944 ± 0.006 a | 0.78 ± 0.01 b |
CCa | 46.11 ± 0.70 a | 37.75 ± 0.69 a | 0.940 ± 0.006 a | 0.82 ± 0.01 a |
Code | Shell Thickness (mm) | Shell Weight (g) | Kernel Weight (g) | Total Weight (g) | Kernel (%) |
---|---|---|---|---|---|
SCi | 2.95 ± 0.10 b | 7.27 ± 0.23 b | 7.34 ± 0.28 a | 14.61 ± 0.48 a | 49.99 ± 0.65 c |
SVE | 2.81 ± 0.10 b | 6.87 ± 0.14 bc | 6.22 ± 0.26 bc | 13.09 ± 0.33 b | 53.15 ± 1.40 ab |
SSV | 2.64 ± 0.10 b | 6.39 ± 0.11 cd | 5.92 ± 0.15 cd | 12.30 ± 0.24 bc | 52.06 ± 0.60 bc |
SML | 2.88 ± 0.09 b | 6.00 ± 0.11 d | 4.90 ± 0.19 e | 10.90 ± 0.23 d | 55.45 ± 1.08 a |
SM | 2.90 ± 0.10 b | 6.31 ± 0.21 d | 5.44 ± 0.14 de | 11.75 ± 0.25 cd | 53.25 ± 1.48 ab |
SCa | 2.77 ± 0.11 b | 6.25 ± 0.13 d | 5.70 ± 0.16 cd | 11.95 ± 0.26 c | 52.44 ± 0.57 bc |
CCa | 3.25 ± 0.12 a | 8.57 ± 0.27 a | 6.79 ± 0.26 ab | 15.36 ± 0.49 a | 55.92 ± 0.69 a |
Code | Moisture Content (% w/w) | Lipid Content (% w/w) |
---|---|---|
SCi | 4.9 ± 0.12 a | 66 ± 0.33 a |
SVE | 5.0 ± 0.06 a | 64 ± 0.21 b |
SSV | 4.9 ± 0.06 a | 63 ± 0.22 bc |
SML | 3.2 ± 0.06 d | 61 ± 0.13 d |
SM | 3.5 ± 0.05 b | 66 ± 0.30 a |
SCa | 3.4 ± 0.02 c | 66 ± 0.34 a |
CCa | 3.5 ± 0.02 b | 62 ± 0.32 c |
Fatty Acid | Sorrento | Chandler | |||||
---|---|---|---|---|---|---|---|
SSV (%) | SVE (%) | SML (%) | SM (%) | Sci (%) | SCa (%) | CCa (%) | |
C16:0 | 9 ± 0.04 bc | 10 ± 0.05 a | 9 ± 0.15 bc | 9 ± 0.30 b | 8 ± 0.08 c | 8 ± 0.09 c | 7 ± 0.01 d |
C18:0 | 2 ± 0.01 d | 3 ± 0.04 a | 2 ± 0.02 d | 3 ± 0.06 ab | 3 ± 0.02 c | 3 ± 0.03 b | 3 ± 0.02 c |
C18:1 | 15 ± 0.01 a | 14 ± 0.09 c | 14 ± 0.04 ab | 14 ± 0.02 ab | 13 ± 0.16 d | 14 ±0.02 bc | 13 ± 0.01 d |
C18:2 | 60 ± 0.10 c | 58 ± 0.07 d | 61 ± 0.17 b | 60 ± 0.07 c | 61 ± 0.02 b | 60 ± 0.13 c | 63 ± 0.01 a |
C20:1 | 0.30 ± 0.17 a | 0.24 ± 0.01 a | 0.20 ± 0.01 a | 0.3 ± 0.09 a | 0.3 ± 0.12 a | 0.2 ± 0.02 a | 0.3 ± 0.02 a |
C18:3 | 14 ± 0.12 bc | 15 ± 0.11 a | 14 ± 0.19 cd | 13 ± 0.20 d | 14 ± 0.01 ab | 14 ± 0.03 b | 14 ± 0.02 d |
MUFA | 15 ± 0.01 a | 14 ± 0.09 c | 14 ± 0.04 ab | 14 ± 0.02 ab | 13 ± 0.16 d | 14 ± 0.02 bc | 13 ± 0.01 d |
PUFA | 74 ± 0.22 c | 73 ± 0.18 d | 75 ± 0.02 c | 74 ± 0.13 d | 75 ± 0.02 b | 75 ± 0.16 c | 77 ± 0.01 a |
SFA | 11 ± 0.22 c | 13 ± 0.09 a | 11 ± 0.02 c | 12 ± 0.15 b | 11 ± 0.18 c | 11 ± 0.14 c | 10 ± 0.01 d |
n-6/n-3 | 4 ± 0.03 b | 4 ± 0.02 c | 4 ± 0.07 a | 4 ± 0.07 a | 4 ± 0.01 b | 4 ± 0.01 b | 5 ± 0.01 a |
MUFA/PUFA | 0.2 ± 0.01 a | 0.2 ± 0.01 a | 0.2 ± 0.01 a | 0.2 ± 0.01 a | 0.2 ± 0.01 a | 0.2 ± 0.01 a | 0.2 ± 0.01 a |
MUFA/SFA | 1 ± 0.03 b | 1. ± 0.01 e | 1 ± 0.01 b | 1 ± 0.02 d | 1 ± 0.03 d | 1 ± 0.01 c | 1 ± 0.01 a |
PUFA/SFA | 7 ± 0.15 c | 6 ± 0.10 e | 7 ± 0.01 b | 6 ± 0.10 d | 7 ± 0.11 c | 7 ± 0.10 c | 8 ± 0.01 a |
C18:1/C18:2 | 0.2 ± 0.01 a | 0.2 ± 0.01 a | 0.2 ± 0.01 a | 0.2 ± 0.01 a | 0.2 ± 0.01 b | 0.2 ± 0.01 a | 0.21 ± 0.01 b |
Code | TPC mg GAE/100 g of Kernel | γ-Tocopherol mg/100 g of Kernel |
---|---|---|
SCi | 970 ± 6.09 e | 59.5 ± 6.37 a |
SVE | 1153 ± 2.11 b | 60.9 ± 7.26 a |
SSV | 1230 ± 1.07 a | 48.5 ± 0.89 a |
SML | 1138 ± 2.46 c | 63.9 ± 6.57 a |
SM | 1102 ± 0.72 d | 47.5 ± 3.71 a |
SCa | 910 ± 2.50 f | 62.2 ± 2.18 a |
CCa | 847 ± 4.21 f | 54.1 ± 6.05 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, R.; De Luca, L.; Vanacore, M.; Genovese, A.; Cirillo, C.; Aiello, A.; Sacchi, R. Compositional and Morphological Characterization of ‘Sorrento’ and ‘Chandler’ Walnuts. Foods 2022, 11, 761. https://doi.org/10.3390/foods11050761
Romano R, De Luca L, Vanacore M, Genovese A, Cirillo C, Aiello A, Sacchi R. Compositional and Morphological Characterization of ‘Sorrento’ and ‘Chandler’ Walnuts. Foods. 2022; 11(5):761. https://doi.org/10.3390/foods11050761
Chicago/Turabian StyleRomano, R., L. De Luca, M. Vanacore, A. Genovese, C. Cirillo, A. Aiello, and R. Sacchi. 2022. "Compositional and Morphological Characterization of ‘Sorrento’ and ‘Chandler’ Walnuts" Foods 11, no. 5: 761. https://doi.org/10.3390/foods11050761
APA StyleRomano, R., De Luca, L., Vanacore, M., Genovese, A., Cirillo, C., Aiello, A., & Sacchi, R. (2022). Compositional and Morphological Characterization of ‘Sorrento’ and ‘Chandler’ Walnuts. Foods, 11(5), 761. https://doi.org/10.3390/foods11050761