Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives
Abstract
:1. Introduction
Category | Biogenic Amines (mg/kg) | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PUT | CAD | HIS | SPD | SPM | TYR | PHE | TRYP | |||
Raw meat | Beef | 6.6–90.9 | <0.5–295.6 | <0.5 | 11.1–65.5 | Rosinská and Lehotay, 2014 [20] | ||||
Pork | 12.7–131.5 | 13.6–440.2 | <0.5 | 34.4–55.2 | ||||||
Poultry | <0.5–382.7 | <0.5–764.2 | <0.5–180.5 | <0.5–171.2 | ||||||
Beef | tr-1.9 | nd-1.9 | 0.3–1.8 | 0.2–4.1 | 0.2–3.9 | 0.1–0.5 | Jasim and Sdkhan, 2015 [21] | |||
Beef liver | 1.5–26.1 | nd-42.1 | tr-136.7 | 5.0–10.4 | 4.6–12.5 | Eldaly et al., 2016 [22] | ||||
Different kinds of meat * | nq-124.0 | nq-124.0 | nq-55.0 | nq-229.0 | nq-261.0 | nq-199.0 | Molognoni et al., 2018 [23] | |||
Pork leg | 0.6–14.6 | nd-16.2 | nd | 2.6–3.9 | 25.2–27.6 | 0.7–16.6 | nd-1.7 | nd-6.6 | Triki et al., 2018 [12] | |
Lamb leg | 1.2–10.1 | nd-5.1 | nd | 8.1–12.0 | 31.4–40.9 | 0.1–10.7 | 0.8–9.1 | nd | ||
Turkey leg | 1.2–68.7 | nd-13.3 | nd | 7.3–18.3 | 32.6–49.2 | nd-6.9 | 0.2–15.1 | nd | ||
Chicken breast | 1.2–52.0 | nd-14.3 | 0.5–2.1 | 6.2–9.8 | 41.9–53.6 | nd-35.2 | nd-16.9 | 0.4–15.8 | ||
Beef leg | 1.3–7.4 | nd | nd-0.5 | 2.3–5.4 | 25.1–33.0 | 0.3–1.6 | 0.5–2.6 | nd | ||
Camel and offals | 0.4–0.8 | 0.2–0.7 | nd-0.3 | 0.1–0.5 | 0.2–0.6 | Tang et al., 2019 [24] | ||||
Chicken breast muscle | 1.0–1.8 | <LOQ-10.5 | 1.4–4.3 | <LOQ-4.2 | Wojnowski et al., 2019 [25] | |||||
Imported meat ** | 1.2–3.0 | nd-4.3 | 0.6–1.4 | 1.6–6.3 | 2.6–11.1 | 0.3–2.0 | nd-0.1 | tr | Algahtani et al., 2020 [26] | |
Broiler chicken (breast and thigh) | tr | tr | 0.1–0.4 | tr-0.6 | tr | Saewan et al., 2021 [27] | ||||
Minced beef | 4.0–60.1 | 26.0–116.2 | 27.2–90.1 | nd-60.4 | Mahmoud et al., 2021 [28] | |||||
Pork belly | 0.6–63.3 | 0–98.3 | 0–1.5 | 3.0–3.5 | 5.2–76.7 | Cho et al., 2021 [29] | ||||
Pork belly, marinated | 0.4–21.1 | 0–58.3 | 0–1.1 | 3.1–3.5 | 5.2–68.1 | |||||
Processed meat products | Fermented sausages | 0–505.0 | 0–690.0 | 0–515.0 | 0–510.0 | Papavergou et al., 2012 [30] | ||||
Dry fermented meat | nd-225.1 | nd-16.8 | nd-151.8 | nd-228.1 | nd-42.7 | Buňka et al., 2012 [31] | ||||
Greek sausages | 0–491.7 | 0–1014.1 | 0–375.8 | 1.5–19.5 | 13.4–60.1 | 3.7–381.4 | 0–56.4 | 0–60.5 | Papavergou, 2011 [32] | |
North European sausages | 0.4–229.0 | nd-246.8 | nd-131.0 | 1.0–6.6 | nd-12.0 | 1.3–302.9 | nd-54.4 | nd-109.7 | De Mey et al., 2014 [14] | |
South European sausages | 0.3–316.4 | nd-641.4 | nd-131.0 | nd-13.3 | nd-21.1 | nd-410.8 | nd-57.1 | nd-109.7 | ||
Fermented sausages | nd-564.5 | 9.9–654.7 | nd-177.4 | 100.6–328.6 | 19.2–502.8 | nd-4.3 | nd-32.8 | Xie et al., 2015 [33] | ||
Fermented beef sausages | 1.0–15.8 | 0.5–9.0 | 0.3–19.6 | nd-103.3 | 96.4–364.1 | 64.1–275.1 | nd-16.1 | nd-32.8 | Çiçek, 2016 [34] | |
Chinese Sichuan-style sausages | 19.1–376.5 | 114.0–327.4 | 88.8–285.9 | Sun et al., 2016 [35] | ||||||
Portuguese sausages | 11.6–265.4 | nd-364.8 | nd-28.9 | nd-11.5 | nd-41.0 | nd-150.3 | nd-38.6 | nd-67.1 | Laranjo et al., 2017 [36] | |
Belgian sausages | 0.3–316.0 | 0–641.0 | 0–131.0 | 0–411.0 | Lorenzo et al., 2017 [37] | |||||
Turkish style sausages | 1.0–24.6 | 72.2–320.0 | 5.2–99.9 | 34.4–68.7 | 2.7–20.0 | 69.4–162.4 | 2.3–7.6 | 20.0–40.9 | Ekici and Omer, 2018 [38] | |
Dry-fermented sausages | nd-212.0 | nd-30.8 | nd-9.7 | nd-147.0 | nd-36.0 | nd | Ikonic et al., 2019 [39] | |||
Chinese sausages | nd-277.1 | nd-670.9 | nd-209.6 | 2.4–23.5 | 7.5–36.5 | nd-209.6 | nd-8.2 | nd-22.5 | Li et al., 2019 [40] | |
Brazilian commercial salamis | 91.5–818.5 | 37.9–166.4 | nd-500.2 | 51.2–55.8 | 96.7–151.9 | 91.3–346.9 | nd-375.9 | nd-123.9 | Roselino et al., 2020 [41] | |
Italian commercial salamis | nd-381.2 | nd-215.9 | nd-240.9 | nd-99.7 | 102.8–141.2 | nd-270.0 | nd-316.4 | nd-297.1 | ||
Mortadella di Campotosto | nd-186.8 | nd-15.0 | nd-17.0 | 40.4–79.4 | 51.3–235.9 | Serio et al., 2020 [42] |
2. Trends in Scientific Literature on Biogenic Amines in Meat and Meat Products
3. Biogenic Amines as Markers of Freshness and Safety in Raw Meats
4. Biogenic Amines in Processed Meats
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaguey-Hernández, Y.; Aguilar-Arteaga, K.; Ojeda-Ramirez, D.; Añorve-Morga, J.; González-Olivares, L.G.; Castañeda-Ovando, A. Biogenic amines levels in food processing: Efforts for their control.in foodstuffs. Food Res. Int. 2021, 144, 110341. [Google Scholar] [CrossRef] [PubMed]
- Erdag, D.; Merhan, O.; Yildiz, B. Biochemical and pharmacological properties of biogenic amines. In Biogenic Amines; Proestos, C., Ed.; IntechOpen: London, UK, 2019; pp. 1–14. [Google Scholar]
- Visciano, P.; Schirone, M.; Paparella, A. An overview of histamine and other biogenic amines in fish and fish products. Foods 2020, 9, 1795. [Google Scholar] [CrossRef] [PubMed]
- Durak-Dados, A.; Michalski, M.; Osek, J. Histamine and other biogenic amines in food. J. Vet. Res. 2020, 64, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Lázaro de la Torre, C.A.; Conte-Junior, C.A. Detection of biogenic amines: Quality and toxicity indicators in food of animal origin. In Food Control and Biosecurity; Holban, A.M., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 16, pp. 225–257. [Google Scholar]
- Feddem, V.; Mazzuco, H.; Fonseca, F.N.; de Lima, G.J.M.M. A review on biogenic amines in food and feed: Toxicological aspects, impact on health and control measures. Anim. Prod. Sci. 2019, 59, 608–618. [Google Scholar]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, H.; de Almeida, J.M.M.M.; Matias, A.; Saraiva, C.; Jorge, P.A.S.; Coelho, L.C.C. Detection of biogenic amines in several foods with different sample treatments: An overview. Trends Food Sci. Technol. 2021, 113, 86–96. [Google Scholar] [CrossRef]
- Dabadé, D.S.; Jacxsens, L.; Miclotte, L.; Abatih, E.; Devlieghere, F.; De Meulenaer, B. Survey of multiple biogenic amines and correlation to microbiological quality and free amino acids in foods. Food Control 2021, 120, 107497. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J. Literature update of analytical methods for biogenic amines determination in food and beverages. Trends Anal. Chem. 2018, 98, 128–142. [Google Scholar] [CrossRef] [Green Version]
- Ekici, K.; Omer, A.K. Biogenic amines formation and their importance in fermented foods. BIO Web Conf. 2020, 17, 00232. [Google Scholar] [CrossRef] [Green Version]
- Triki, M.; Herrero, A.M.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage. Foods 2018, 7, 132. [Google Scholar] [CrossRef]
- Siripongpreda, T.; Siralertmukul, K.; Rodthongkum, N. Colorimetric sensor and LDI-MS detection of biogenic amines in food spoilage based on porous PLA and graphene oxide. Food Chem. 2020, 329, 127165. [Google Scholar] [CrossRef] [PubMed]
- De Mey, E.; De Klerck, K.; De Maere, H.; Dewulf, L.; Derdelinckx, G.; Peeters, M.C.; Fraeye, I.; Heyden, Y.V.; Paelinck, H. The occurrence of N-nitrosamines, residual nitrite and biogenic amines in commercial dry fermented sausages and evaluation of their occasional relation. Meat Sci. 2014, 96, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Ashaolu, T.J.; Khalifa, I.; Mesak, M.A.; Lorenzo, J.M.; Farag, M.A. A comprehensive review of the role of microorganisms on texture change, flavor and biogenic amines formation in fermented meat with their action mechanisms and safety. Crit. Rev. Food Sci. Nutr. 2021, 20, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Noguées, M.T.; Vidal-Carou, M.C. Biogenic amine and polyamine contents in meat and meat products. J. Agric Food. Chem. 1997, 45, 2098–2102. [Google Scholar] [CrossRef]
- Silva, C.M.G.; Glória, M.B.A. Bioactive amines in chicken breast and thigh after slaughter and during storage at 4 ± 1 °C and in chicken-based meat products. Food Chem. 2002, 78, 241–248. [Google Scholar] [CrossRef]
- Vinci, G.; Antonelli, M.L. Biogenic amines: Quality index of freshness in red and white meat. Food Control 2002, 13, 519–524. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Rosinská, D.; Lehotay, J. Influence of temperature on production of biogenic amines in pork, beef, and poultry and their HPLC determination after postcolumn derivatization. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 609–619. [Google Scholar] [CrossRef]
- Jasim, A.H.; Sdkhan, A.M. Effect of sodium chloride on some biogenic amines in beef meat. Basrah J. Agric. Sci. 2015, 28, 95–102. [Google Scholar] [CrossRef]
- Eldaly, E.A.; Hussein, M.A.; El-Ghareeb, W.R. Assessment of biogenic amines content in fresh cattle livers during chilling storage and pan-roasting. JPN J. Vet. Res. 2016, 64 (Suppl. S2), S217–S223. [Google Scholar]
- Molognoni, L.; Daguer, H.; de Sá Ploêncio, L.A.; De Dea Lindner, J. A multi-purpose tool for food inspection: Simultaneous determination of various classes of preservatives and biogenic amines in meat and fish products by LC-MS. Talanta 2018, 178, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Darwish, W.S.; El-Ghareeb, W.; Al-Humam, N.A.; Chen, L.; Zhong, R.M.; Xiao, Z.J.; Ma, J.K. Microbial quality and formation of biogenic amines in the meat and edible offal of Camelus dromedaries with a protection trial using gingerol and nisin. Food Sci. Nutr. 2020, 8, 2094–2101. [Google Scholar] [CrossRef] [PubMed]
- Woinowski, W.; Kalinowska, K.; Majchrzak, T.; Płotka-Wasylka, J.; Namieśnik, J. Prediction of the biogenic amines index of poultry meat using an electronic nose. Sensors 2019, 19, 1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algahtani, F.D.; Morshdy, A.E.; Hussein, M.A.; Abouelkeir, E.S.; Adeboye, A.; Valentine, A.; Elabbasy, M.T. Biogenic amines and aflatoxins in some imported meat products: Incidence, occurrence, and public health impacts. J. Food Qual. 2020, 2020, 8718179. [Google Scholar] [CrossRef]
- Saewan, S.A.; Khidhir, Z.K.; Al-Bayati, M.H. The impact of storage duration and conditions on the formation of biogenic amines and microbial content in poultry meat. Iraqi J. Vet. Sci. 2021, 35, 183–188. [Google Scholar] [CrossRef]
- Mahmoud, A.F.A.; Elshopary, N.F.; El-Naby, G.R.H.; El Bayomi, R.M. Reduction of biogenic amines production in chilled minced meat using antimicrobial seasonings. J. Microbiol. Biotechnol. Food Sci. 2021, 10, e3663. [Google Scholar]
- Cho, J.; Kim, H.J.; Kwon, J.S.; Kim, H.J.; Jang, A. Effect of marination with black currant juice on the formation of biogenic amines in pork belly during refrigerated storage. Food Sci. Anim. Resour. 2021, 41, 763–778. [Google Scholar] [CrossRef]
- Papavergou, E.J.; Savvaidis, I.N.; Ambrosiadis, I.A. Levels of biogenic amines in retail market fermented meat products. Food Chem. 2012, 135, 2750–2755. [Google Scholar] [CrossRef]
- Buňka, F.; Zálešáková, L.; Flasarová, R.; Pachlová, V.; Budinský, P.; Buňková, L. Biogenic amines content in selected commercial fermented products of animal origin. J. Microbiol. Biotechnol. Food Sci. 2012, 2, 209–218. [Google Scholar]
- Papavergou, E.J. Biogenic amine levels in dry fermented sausages produced and sold in Greece. Procedia Food Sci. 2011, 1, 1126–1131. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Wang, H.H.; Nie, X.K.; Chen, L.; Deng, S.L.; Xu, X.L. Reduction of biogenic amine concentration in fermented sausage by selected starter cultures. CyTA-J. Food 2015, 13, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Çiçek, Ü. Biogenic amine level of Bez Sucuks—A type of fermented beef sausages. J. Agric. Fac. Gaziosmanpasa Univ. 2016, 33, 142–149. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, K.; Gong, Y.; Zhang, N.; Yang, M.; Qing, D.; Li, Y.; Lu, J.; Li, J.; Feng, C.; et al. Determination of biogenic amines in Sichuan-style spontaneously fermented sausages. Food Anal. Method 2016, 9, 2299–2307. [Google Scholar] [CrossRef]
- Laranjo, M.; Gomes, A.; Agulheiro-Santos, A.C.; Potes, M.E.; Cabrita, M.J.; Garcia, R.; Rocha, J.M.; Roseiro, L.C.; Fernandes, M.J.; Fraqueza, M.J.; et al. Impact of salt reduction on biogenic amines, fatty acids, microbiota, texture and sensory profile in traditional blood dry-cured sausages. Food Chem. 2017, 218, 129–136. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Domínguez, R. Role of autochthonous starter cultures in the reduction of biogenic amines in traditional meat products. Curr. Opin. Food Sci. 2017, 14, 61–65. [Google Scholar] [CrossRef]
- Ekici, K.; Omer, A.K. The determination of some biogenic amines in Turkish fermented sausages consumed in Van. Toxicol. Rep. 2018, 5, 639–643. [Google Scholar] [CrossRef]
- Ikonic, P.; Jokanovic, M.; Peulic, T.; Cucevic, N.; Tomicic, Z.; Skaljac, S.; Ivic, M. Evolution of amino acids and biogenic amines in traditional dry-fermented sausage Sjenički sudžuk during processing. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 012021. [Google Scholar] [CrossRef]
- Li, L.; Zou, D.; Ruan, L.; Wen, Z.; Chen, S.; Xu, L.; Wei, X. Evaluation of the biogenic amines and microbial contribution in traditional Chinese sausages. Front. Microbiol. 2019, 10, 872. [Google Scholar] [CrossRef] [Green Version]
- Roselino, M.N.; Maciel, L.F.; Sirocchi, V.; Caviglia, M.; Sagratini, G.; Vittori, S.; Taranto, M.P.; Cavallini, U.; Cardoso, D. Analysis of biogenic amines in probiotic and commercial salamis. J. Food Compos. Anal. 2020, 94, 103649. [Google Scholar] [CrossRef]
- Serio, A.; Laika, J.; Maggio, F.; Sacchetti, G.; D’Alessandro, F.; Rossi, C.; Martuscelli, M.; Chaves-Lόpez, C.; Paparella, A. Casing contribution to proteolytic changes and biogenic amines content in the production of an artisanal naturally fermented dry sausages. Foods 2020, 9, 1286. [Google Scholar] [CrossRef]
- Barger, G. Bases of bio-chemical interest derived from the proteins. Sci. Prog. Twent. Century 1911, 6, 221–242. [Google Scholar]
- Geiger, E.; Courtney, G.; Schakenberg, G. The content and formation of histamine in fish muscle. Arch. Biol. Chem. Biophys. 1944, 3, 311–319. [Google Scholar]
- Ababouch, L.; Afilal, M. Histamine forming bacteria isolated from spoiling sardines. Food Microbiol. 1988, 2, 385–389. [Google Scholar]
- Arnold, S.H.; Brown, W.D. Histamine (?) toxicity from fish products. Adv. Food Res. 1978, 24, 113–154. [Google Scholar]
- Tiecco, G.; Tantillo, G.; Francioso, E.; Paparella, A.; De Natale, G. Ricerca quali-quantitativa di alcune amine biogene in insaccati nel corso della stagionatura. Ind. Alim. 1985, 25, 209–213. [Google Scholar]
- Montel, M.C.; Masson, F.; Talon, R. Comparison of biogenic amine content in traditional and industrial French dry sausages. Sci. Aliment. 1999, 19, 247–254. [Google Scholar]
- Eerola, S.; Roig-Sagués, A.X.; Hirvi, T.K. Biogenic amines in Finnish dry sausages. J. Food Saf. 1998, 18, 127–138. [Google Scholar] [CrossRef]
- Masson, F.; Talon, R.; Montel, M.C. Histamine and tyramine production by bacteria from meat products. Int. J. Food Microbiol. 1996, 32, 199–207. [Google Scholar] [CrossRef]
- Edwards, R.A.; Dainty, R.H.; Hibbard, C.M.; Ramantanis, S.V. Amines in fresh beef of normal pH and the role of bacteria in changes in concentration observed during storage in vacuum packs in chilled temperature. J. Appl. Bacteriol. 1987, 63, 427–434. [Google Scholar]
- Gardini, F.; Özogul, Y.; Suzzi, G.; Tabanelli, G.; Özogul, F. Technological factors affecting biogenic amine content in foods: A review. Front. Microbiol. 2016, 7, 1218. [Google Scholar] [CrossRef] [Green Version]
- Paparella, A.; Tofalo, R. Fermented sausages: A potential source of biogenic amines. In Biogenic Amines in Food: Analysis, Accurrence and Toxicity; Saal, B., Tofalo, R., Eds.; The Royal Society of Chemistry: Croydon, UK, 2020; pp. 103–118. ISBN 978-1-78801-436-6. [Google Scholar]
- Sirocchi, V.; Caprioli, G.; Cecchini, C.; Coman, M.M.; Cresci, A.; Maggi, F.; Papa, F.; Ricciutelli, M.; Vittori, S.; Sagratini, G. Biogenic amines as freshness index of meat wrapped in a new active packaging system formulated with essential oils of Rosmarinus officinalis. Int. J. Food Sci. Nutr. 2013, 64, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.; Reichert, C.L.; Schmid, M. Biogenic amine detection systems for intelligent packaging concepts: Meat and Meat Products. Food Rev. Int. 2021, 1–25. [Google Scholar] [CrossRef]
- Mercogliano, R.; Felice, A.D.; Murru, N.; Santonicola, S.; Cortesi, M.L. Ozone decontamination of poultry meat and biogenic amines as quality index. J. Food Process. Technol. 2014, 5, 305. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yu, Z.; Zhu, Y.; Cao, Z. Selection of nitrite-degrading and biogenic amine-degrading strains and its involved genes. Food Qual. Saf. 2020, 4, 225–235. [Google Scholar] [CrossRef]
- Biesuz, R.; Magnaghi, L.R. Role of biogenic amines in protein foods sensing: Myths and evidence. In Meat and Nutrition; Ranabhat, C.L., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, 6399. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Department of Economic and Social Affairs, Population Division World Population Prospects 2019: Highlights. ST/ESA/SER.A/423. 2019. Available online: https://population.un.org/wpp/Publications/ (accessed on 28 January 2022).
- Bronzwaer, S.; Geervliet, M.; Hugas, M.; Url, B. EFSA’s expertise supports One Health policy needs. EFSA J. 2021, 19, e190501. [Google Scholar] [CrossRef]
- De Gavelle, E.; Davidenko, O.; Fouillet, H.; Delarue, J.; Darcel, N.; Huneau, J.F.; Mariotti, F. Self-declared attitudes and beliefs regarding protein sources are a good prediction of the degree of transition to a low-meat diet in France. Appetite 2019, 142, 104345. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Red Meat and Processed Meat; International Agency for Research on Cancer: Lyon, France, 2018. [Google Scholar]
- Santeramo, F.G.; Carlucci, D.; De Vitis, B.; Seccia, A.; Stasi, A.; Viscecchia, R.; Nardone, G. Emerging trends in European food, diets and food industry. Food Res. Int. 2018, 104, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Flores, M.; Mora, L.; Reig, M.; Toldrà, F. Risk assessment of chemical substances of safety concern generated in processed meats. Food Sci. Hum. Wellness 2019, 8, 244–251. [Google Scholar] [CrossRef]
- Martuscelli, M.; Pittia, P.; Casamassima, L.M.; Manetta, A.C.; Lupieri, L.; Neri, L. Effect of intensity of smoking treatment on the free amino acids and biogenic amines occurrence in dry cured ham. Food Chem. 2009, 116, 955–962. [Google Scholar] [CrossRef]
- Martuscelli, M.; Esposito, L.; Mastrocola, D. Biogenic Amines’ Content in Safe and Quality Food. Foods 2021, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Doeun, D.; Davaatseren, M.; Chung, M.S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Jairath, G.; Singh, P.J.; Singh Dabur, R.; Rani, M.; Chaudhari, M. Biogenic amines in meat and meat products and its public health significance: A review. J. Food Sci. Technol. 2015, 52, 6835–6846. [Google Scholar] [CrossRef]
- Alessandroni, L.; Caprioli, G.; Faiella, F.; Fiorini, D.; Galli, R.; Huang, X.; Marinelli, G.; Nzekoue, F.; Ricciutelli, M.; Scortichini, S.; et al. A shelf-life study for the evaluation of a new biopackaging to preserve the quality of organic chicken meat. Food Chem. 2022, 371, 131134. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, M.; Roszko, M.; Hać-Szymańczuk, E.; Cegiełka, A.; Adamczaka, L.; Florowski, T.; Pietrzak, D.; Bryła, M.; Świder, O. Changes in the microbiological quality and content of biogenic amines in chicken fillets packed using various techniques and stored under different conditions. Food Microbiol. 2022, 102, 103920. [Google Scholar] [CrossRef]
- Li, S.; Johansson, M.; Vidanarachchi, J.K.; Pickova, J.; Zamaratskaia, G. Determination of biogenic amines in aerobically stored beef using high-performance thin-layer chromatography densitometry. Acta Agric. Scand. A Anim. Sci. 2017, 66, 199–205. [Google Scholar] [CrossRef]
- Motaghifar, A.; Akbari-Adergani, B.; Rokney, N.; Mottalebi, A. Evaluating red meat putrefaction in long term storage in freezing condition based on co-variation of major biogenic amines and total volatile nitrogen. Food Sci. Technol. 2021, 41 (Suppl. S1), 123–128. [Google Scholar] [CrossRef]
- Li, M.; Tian, L.; Zhao, G.; Zhang, Q.; Gao, X.; Huang, X.; Sun, L. Formation of biogenic amines and growth of spoilage-related microorganisms in pork stored under different packaging conditions applying PCA. Meat Sci. 2014, 96, 843–848. [Google Scholar] [CrossRef]
- Cruz-Monterrosa, R.G.; Reséndiz-Cruz, V.; Rayas-Amor, A.A.; López, M.; Miranda-de la Lama, G.C. Bruises in beef cattle at slaughter in Mexico: Implications on quality, safety and shelf life of the meat. Trop. Anim. Health Prod. 2017, 49, 145–152. [Google Scholar] [CrossRef]
- Muñoz-Esparza, N.C.; Latorre-Moratalla, M.L.; Comas-Basté, O.; Toro-Funes, N.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Polyamines in Food. Front. Nutr. 2019, 6, 108. [Google Scholar] [CrossRef]
- Bae, D.H.; Lane, D.J.R.; Jansson, P.J.; Richardson, D.R. The old and new biochemistry of polyamines. Biochim. Biophys. Acta Gen. Subj. 2018, 1863, 2053–2068. [Google Scholar] [CrossRef] [PubMed]
- Taie, H.A.A.; Seif El-Yazal, M.A.; Ahmed, S.M.A.; Rady, M.M. Polyamines modulate growth, antioxidant activity, and genomic DNA in heavy metal–stressed wheat plant. Environ. Sci. Pollut. Res. 2019, 26, 22338–22350. [Google Scholar] [CrossRef] [PubMed]
- Terui, Y.; Yoshida, T.; Sakamoto, A.; Saito, D.; Oshima, T.; Kawazoe, M.; Yokoyama, S.; Igarashi, K.; Kashiwagi, K. Polyamines protect nucleic acids against depurination. Int. J. Biochem. Cell Biol. 2018, 99, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Jastrzębska, A.; Kowalska, S.; Szłyk, E. Studies of levels of biogenic amines in meat samples in relation to the content of additives. Food Addit. Contam. Part A 2015, 33, 27–40. [Google Scholar] [CrossRef]
- Sørensen, K.M.; Aru, V.; Khakimov, B.; Aunskjær, U.; Balling Engelsen, S. Biogenic amines: A key freshness parameter of animal protein products in the coming circular economy. Curr. Opin. Food Sci. 2018, 22, 167–173. [Google Scholar] [CrossRef]
- Bekhit, A.E.-D.A.; Giteru, S.G.; Holman, B.W.B.; Hopkins, D.L. Total volatile basic nitrogen and trimethylamine in muscle foods: Potential formation pathways and effects on human health. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3620–3666. [Google Scholar] [CrossRef]
- Shashank, A.; Gupta, A.K.; Singh, S.; Ranjan, R. Biogenic amines (BAs) in meat products, regulatory policies, and detection methods. Curr. Nutr. Food Sci. 2021, 17, 995–1005. [Google Scholar] [CrossRef]
- Sallam, K.I.; Morgan, S.E.M.; Sayed-Ahmed, M.Z.; Alqahtani, S.S.; Abd-Elghany, S.M. Health hazard from exposure to histamine produced in ready-to-eat Shawarma widely consumed in Egypt. J. Food Compos. Anal. 2021, 97, 103794. [Google Scholar] [CrossRef]
- Wakas, H.; Mohammed, G.I.; Al-Eryani, D.A.; Saigl, Z.M.; Alyuobi, A.O.; Alwael, H.; Bashammakh, A.S.; O’Sullivan, C.K.; El-Shahawi, M.S. Biogenic amines formation mechanism and determination strategies: Future challenges and limitations. Crit. Rev. Anal. Chem. 2020, 50, 485–500. [Google Scholar]
- Delgado-Ospina, J.; Di Mattia, C.D.; Paparella, A.; Mastrocola, D.; Martuscelli, M.; Chaves-Lopez, C. Effect of Fermentation, Drying and Roasting on Biogenic Amines and Other Biocompounds in Colombian Criollo Cocoa Beans and Shells. Foods 2020, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Carou, M.C.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.L.; Bover-Cid, S. Biogenic Amines: Risks and control. In Handbook of Fermented Meat and Poultry; Toldrá, F., Hui, Y.H., Astiasarán, I., Sebranek, J.G., Talon, R., Eds.; John and Wiley and Sons Ltd.: Chichester, UK, 2015. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Verma, K.A.; Mehta, N.; Malav, O.P.; Kumar, D.; Sharma, N. Quality, functionality, and shelf life of fermented meat and meat products: A review. Crit. Rev. Food Sci. Nutr. 2015, 57, 2844–2856. [Google Scholar] [CrossRef] [PubMed]
- Martuscelli, M.; Serio, A.; Capezio, O.; Mastrocola, D. Safety, quality and analytical authentication of halal meat products, with particular emphasis on salami: A review. Foods 2020, 9, 1111. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, F.; Kamankesh, M.; Mohammadi, A. Recent development in formation, toxic effects, human health and analytical techniques of food contaminants. Food Rev. Int. 2021. [Google Scholar] [CrossRef]
- Moradi, S.; Shariatifar, N.; Akbari-adergani, B.; Agahee, E.M.; Arbameri, M. Analysis and health risk assessment of nitrosamines in meat products collected from markets, Iran: With the approach of chemometric. J. Environ. Health Sci. Eng. 2021, 19, 1361–1371. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Franco Ruìz, D.J.; Carballo, J. Biogenic amines in fermented meat products. In Fermented Meat Products: Health Aspects, 1st ed.; Zdolec, N., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 450–473. [Google Scholar]
- Bubelová, Z.; Buňka, F.; Taťáková, M.; Štajnochová, K.; Purevdorj, K.; Buňková, L. Effects of temperature, pH and NaCl content on in vitro putrescine and cadaverine production through the growth of Serratia marcescens CCM 303. J. Environ. Sci. Health B 2015, 50, 797–808. [Google Scholar] [CrossRef]
- Lorencová, E.; Buňková, L.; Pleva, P.; Dráb, V.; Kubán, V.; Buňka, F. Selected factors influencing the ability of Bifidobacterium to form biogenic amines. Int. J. Food Sci. Technol. 2014, 49, 1302–1307. [Google Scholar] [CrossRef]
- Gardini, F.; Martuscelli, M.; Crudele, M.A.; Paparella, A.; Suzzi, G. Use of Staphylococcus xylosus as a starter culture in dried sausages: Effect on the biogenic amine content. Meat Sci. 2002, 61, 275–283. [Google Scholar] [CrossRef]
- Casaburri, A.; Piombino, P.; Nychas, G.J.; Villani, F.; Ercolini, D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. Part A 2015, 45, 83–105. [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Comas-Basté, O.; Bover-Cid, S.; Vidal-Carou, M.C. Tyramine and histamine risk assessment related to consumption of dry fermented sausages by the Spanish population. Food Chem. Toxicol. 2017, 99, 78–85. [Google Scholar] [CrossRef]
- Parente, E.; Martuscelli, M.; Gardini, F.; Grieco, S.; Crudele, M.A.; Suzzi, G. Evolution of microbial population and biogenic amine production in dry sausages produced in Southern Italy. J. Appl. Microbiol. 2001, 90, 882–891. [Google Scholar] [CrossRef] [Green Version]
- del Rio, B.; Redruello, B.; Linares, D.M.; Ladero, V.; Fernandez, M.; Martin, M.C.; Ruas-Madiedo, P.; Alvarez, M.A. The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chem. 2017, 218, 249–255. [Google Scholar] [CrossRef] [PubMed]
- del Rio, B.; Redruello, B.; Linares, D.M.; Ladero; Ruas-Madiedo, P.; Fernandez, M.; Martin, M.C.; Alvarez, M.A. The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Sci. Rep. 2019, 9, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halagarda, M.; Wójciak, K.M. Health and safety aspects of traditional European meat products. A review. Meat Sci. 2022, 184, 108623. [Google Scholar] [CrossRef] [PubMed]
- Rabie, M.A.; Peres, C.; Malcata, F.X. Evolution of amino acids and biogenic amines throughout storage in sausages made of horse, beef and turkey meats. Meat Sci. 2014, 96, 82–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, S.P.; Alfaia, C.M.; Škrbić, B.D.; Živančev, J.R.; Fernandes, M.J.; Bessa, R.J.B.; Fraqueza, M.J. Screening chemical hazards of dry fermented sausages from distinct origins: Biogenic amines, polycyclic aromatic hydrocarbons and heavy elements. J. Food Compos. Anal. 2017, 59, 124–131. [Google Scholar] [CrossRef]
- Wang, D.; Hu, G.; Wang, H.; Wang, L.; Zhang, Y.; Zou, Y.; Zhao, L.; Liu, F.; Jin, Y. Effect of mixed starters on proteolysis and formation of biogenic amines in dry fermented mutton sausages. Foods 2021, 10, 2939. [Google Scholar] [CrossRef]
- Alvarez, M.A.; Moreno-Arribas, M.V. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci. Technol. 2014, 39, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Chaves-Lopez, C.; Serio, A.; Montalvo, C.; Ramirez, C.; Peréz Álvarez, J.A.; Paparella, A.; Mastrocola, D.; Martuscelli, M. Effect of nisin on biogenic amines and shelf life of vacuum packaged rainbow trout (Oncorhynchus mykiss) fillets. J. Food Sci. Technol. 2017, 54, 3268–3277. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, J. Effect of diet and gut environment on the gastrointestinal formation of N-nitroso compounds: A review. Nitric Oxide 2018, 73, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Drabik-Markiewicz, G.; Dejaegher, B.; De Meya, E.; Kowalsk, T.; Paelincka, H.; Vander Heyden, Y. Influence of putrescine, cadaverine, spermidine or spermine on the formation of N-nitrosamine in heated cured pork meat. Food Chem. 2011, 126, 1539–1545. [Google Scholar] [CrossRef]
- Long Yan Fong, F.; El-Nazemi, H.; Tung Po Sze, E. Biogenic amines—Precursors of carcinogens in traditional Chinese fermented food. NFS J. 2021, 23, 52–57. [Google Scholar] [CrossRef]
- Martuscelli, M.; Lupieri, l.; Chaves-Lopez, C.; Mastrocola, D.; Pittia, O. Technological approach to reduce NaCl content of traditional smoked dry-cured hams: Effect on quality properties and stability. J. Food Sci. Technol. 2015, 52, 7771–7782. [Google Scholar] [CrossRef] [PubMed]
- Martuscelli, M.; Lupieri, L.; Sacchetti, G.; Mastrocola, D.; Pittia, P. Prediction of the salt content from water activity analysis in dry-cured ham. J. Food Eng. 2017, 200, 29–39. [Google Scholar] [CrossRef]
- Muñoz-Esparza, N.C.; Costa-Catala, J.; Comas-Basté, O.; Toro-Funes, N.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Occurrence of polyamines in foods and the influence of cooking processes. Foods 2021, 10, 1752. [Google Scholar] [CrossRef]
- Czajkowska-Mysłek, A.; Leszczynska, J. Risk assessment related to biogenic amines occurrence in ready-to-eat baby foods. Food Chem. Toxicol. 2017, 105, 82–92. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirone, M.; Esposito, L.; D’Onofrio, F.; Visciano, P.; Martuscelli, M.; Mastrocola, D.; Paparella, A. Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. Foods 2022, 11, 788. https://doi.org/10.3390/foods11060788
Schirone M, Esposito L, D’Onofrio F, Visciano P, Martuscelli M, Mastrocola D, Paparella A. Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. Foods. 2022; 11(6):788. https://doi.org/10.3390/foods11060788
Chicago/Turabian StyleSchirone, Maria, Luigi Esposito, Federica D’Onofrio, Pierina Visciano, Maria Martuscelli, Dino Mastrocola, and Antonello Paparella. 2022. "Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives" Foods 11, no. 6: 788. https://doi.org/10.3390/foods11060788
APA StyleSchirone, M., Esposito, L., D’Onofrio, F., Visciano, P., Martuscelli, M., Mastrocola, D., & Paparella, A. (2022). Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. Foods, 11(6), 788. https://doi.org/10.3390/foods11060788