Effect of Salt Reduction on the Quality of Boneless Dry-Cured Ham from Iberian and White Commercially Crossed Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dry-Cured Ham Preparation and Sample Collection
2.2. Physicochemical and Microbial Analyses
2.3. Determination of Instrumental Color and Texture Profile Analysis (TPA)
2.4. Sensory Analyses (Consumers’ Test)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Processing Stage and Breed on Physicochemical Parameters, Salt Content, Microbial Analyses, and Mineral Composition
3.2. Free Amino Acids
3.3. Instrumental Color and Texture Profile
3.4. Consumer Sensory Acceptability and Preference
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Martín-Gómez, A.; Arroyo-Manzanares, N.; Rodríguez-Estévez, V.; Arce, L. Use of a non-destructive sampling method for characterization of Iberian cured ham breed and feeding regime using GC-IMS. Meat Sci. 2019, 152, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Strazzullo, P.; D’Elia, L.; Kandala, N.-B.; Cappuccio, F.P. Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. BMJ 2009, 339, b4567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, M.E.; Glass, K.A. Sodium reduction and its effect on food safety, food quality, and human health. Compr. Rev. Food Sci. Food Saf. 2010, 9, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Inguglia, E.S.; Zhang, Z.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products–A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Desmond, E. Reducing salt: A challenge for the meat industry. Meat Sci. 2006, 74, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Etherington, D.J. Examination of cathepsins B, D, H and L activities in dry-cured hams. Meat Sci. 1988, 23, 1–7. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, C.; Tang, C.; Dai, C.; Bai, Y.; Yu, X.; Li, C.; Xu, X.; Zhou, G.; Cao, J. Label-free proteomics reveals the mechanism of bitterness and adhesiveness in Jinhua ham. Food Chem. 2019, 297, 125012. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, C.; Cai, J.; Bai, Y.; Yu, X.; Li, C.; Xu, X.; Zhou, G.; Cao, J. Evaluating the effect of protein modifications and water distribution on bitterness and adhesiveness of Jinhua ham. Food Chem. 2019, 293, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Liao, R.; Xia, Q.; Zhou, C.; Geng, F.; Wang, Y.; Sun, Y.; He, J.; Pan, D.; Cao, J. LC-MS/MS-based metabolomics and sensory evaluation characterize metabolites and texture of normal and spoiled dry-cured hams. Food Chem. 2022, 371, 131156. [Google Scholar] [CrossRef]
- Frye, C.B.; Hand, L.W.; Calkins, C.R.; Mandigo, R.W. Reduction or Replacement of sodium chloride in a tumbled ham product. J. Food Sci. 1986, 51, 836–837. [Google Scholar] [CrossRef]
- Armenteros, M.; Aristoy, M.C.; Toldrá, F. Evolution of nitrate and nitrite during the processing of dry-cured ham with partial replacement of NaCl by other chloride salts. Meat Sci. 2012, 91, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Armenteros, M.; Aristoy, M.C.; Barat, J.M.; Toldrá, F. Biochemical and sensory changes in dry-cured ham salted with partial replacements of NaCl by other chloride salts. Meat Sci. 2012, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Hand, L.W.; Terreall, R.N.; Smith, G.C. Effects of complete or partial replacement of osodium chloride on processing and sensory properties of hams. J. Food Sci. 1982, 47, 1776–1778. [Google Scholar] [CrossRef]
- Barat, J.M.; Pérez-Esteve, E.; Aristoy, M.C.; Toldrá, F. Partial replacement of sodium in meat and fish products by using magnesium salts. A review. Plant Soil 2013, 368, 179–188. [Google Scholar] [CrossRef]
- Seong, P.N.; Seo, H.W.; Cho, S.H.; Kim, Y.S.; Kang, S.M.; Kim, J.H.; Hang, G.H.; Park, B.Y.; Moon, S.S.; Hoa, V.B. Potential use of glasswort poder as a salt replacer for the production of healthier dry-cured ham products. Czech J. Food Sci. 2017, 35, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Santos, B.; Campagnol, P.; Morgano, M.; Pollonio, M. Monosodium glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the sensor quality of fermented cooked sausages with 50% and 75% replacement of NaCl with KCl. Meat Sci. 2014, 96, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Barretto, T.L.; Rodrigues, M.A.; Telis-Romero, J.; da Silva, A.C. Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction. Meat Sci. 2018, 145, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi-Mehr, A.; Lautenschlaeger, R.; Drusch, S. Sensory, physicochemical and microbiological properties of dry-cured formed ham: Comparison of four different binding systems. Eur. Food Res. Technol. 2016, 242, 1379–1391. [Google Scholar] [CrossRef]
- Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made On Foods, (OJ L 404, 30.12.2006, p. 9). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006R1924-20141213 (accessed on 1 December 2021).
- Ventanas, J. Jamón Ibérico y Serrano. Fundamentos de la Elaboración de la Calidad; Mundi-Prensa: Madrid, Spain, 2012. [Google Scholar]
- Phan, V.A.; Yven, C.; Lawrence, G.; Chabanet, C.; Reparet, J.M.; Salles, C. In vivo sodium reléase related to salty perception during eating model cheeses of different textures. Int. Dairy J. 2008, 18, 956–963. [Google Scholar] [CrossRef]
- Ruusunen, M.; Puolanne, E. Reducing sodium intake from meat products. Meat Sci. 2005, 70, 531–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorido, L.; Estévez, M.; Ventanas, J.; Ventanas, S. Comparative study between Serrano and Iberian dry-cured hams in relation to the application of high hydrostatic pressure and temporal sensory perceptions. LWT Food Sci. Technol. 2015, 64, 1234–1242. [Google Scholar] [CrossRef]
- Aliño, M.; Grau, R.; Toldrá, F.; Blesa, E.; Pagán, M.J.; Barat, J.M. Physicochemical properties and microbiology of dry-cured loins obtained by partial sodium replacement with potassium, calcium and magnesium. Meat Sci. 2010, 85, 580–588. [Google Scholar] [CrossRef] [PubMed]
- [ISO] 1442: 1997. Meat and Meat Products. Determination of Moisture Content (Reference Method); International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G. A simple method for the isolation of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 495–509. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. [AOAC] Official Method 920.153. Ash in Meat. In Official Methods of Analysis, Meat and Meat Products, 16th ed.; Cunniff, P., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005; Volume 2. [Google Scholar]
- [ISO] 1841-1: 1996. Meat and Meat Products. Determination of chloride content–Part 1: Volhard Method (Reference Method); International Organization for Standardization: Geneva, Switzerland, 1996. [Google Scholar]
- Association of Official Analytical Chemists [AOAC]. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburgh, MD, USA, 2012. [Google Scholar]
- Harkouss, R.; Mirade, P.S.; Gatellier, P. Development a rapid, specific and efficient procedure for the determination of proteolytic activity in dry-cured ham: Definition of a new proteolysis index. Meat Sci. 2012, 92, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Aaslyng, M.D.; Vestergaard, C.; Koch, A.G. The effect of salt reduction on sensory quality and microbial growth in hotdog sausages, bacon, ham and salami. Meat Sci. 2014, 96, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Tejada, L.; Buendía-Moreno, L.; Álvarez, E.; Palma, A.; Salazar, E.; Muñoz, B.; Abellán, A. Development of an Iberian Chorizo Salted With a Combination of Mineral Salts (Seawater Substitute) and Better Nutritional Profile. Front. Nutr. 2021, 8, 642726. [Google Scholar] [CrossRef] [PubMed]
- Abellán, A.; Cayuela, J.M.; Pino, A.; Martínez-Cachá, A.; Salazar, E.; Tejada, L. Free amino acid content of goat’s milk cheese made with animal rennet and plant coagulant. J. Sci. Food Agric. 2012, 92, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.C. Texture profile analysis. Food Technol. 1978, 32, 62–66. [Google Scholar]
- UNE-ISO 6658:2019. Sensory Analysis. Methodology; General Guidance; Asociación Española de Normalización: Madrid, Spain, 2019. [Google Scholar]
- UNE-ISO 4121:2006. Sensory Analysis–Guidelines for the Use of Quantitative Response Scales (ISO 4121:2003); Asociación Española de Normalización: Madrid, Spain, 2006. [Google Scholar]
- Martín, L.; Córdoba, J.J.; Antequera, T.; Timón, M.L.; Ventanas, J. Effects of salt and temperature on proteolysis during ripening of Iberian ham. Meat Sci. 1998, 49, 145–153. [Google Scholar] [CrossRef]
- Bermúdez, R.; Franco, D.; Carballo, J.; Lorenzo, J.M. Physicochemical changes during manufacture and final sensory characteristics of dry-cured Celta ham. Effect of muscle type. Food Contr. 2014, 43, 263–269. [Google Scholar] [CrossRef]
- Sirtori, F.; Dimauro, C.; Bozzi, R.; Aquilani, C.; Franci, O.; Calamai, L.; Pezzati, A.; Pugliese, C. Evolution of volatile compounds and physical, chemical and sensory characteristics of Toscano PDO ham from fresh to dry-cured product. Eur. Food Res. Technol. 2020, 246, 409–424. [Google Scholar] [CrossRef] [Green Version]
- Guàrdia, M.D.; Guerrero, L.; Gelabert, J.; Gou, P.; Arnau, J. Consumer attitude towards sodium reduction in meat products and acceptability of fermented sausages with reduced sodium content. Meat Sci. 2006, 73, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, C.; Sirtori, F. Quality of meat and meat products produced from southern European pig breeds. Meat Sci. 2012, 90, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Rosell, C.; Toldrá, F. Comparison of Muscle Proteolytic and Lipolytic Enzyme Levels in Raw Hams from Iberian and White Pigs. J. Sci. Food Agric. 1998, 76, 117–122. [Google Scholar] [CrossRef]
- Cordoba, J.J.; Antequera, T.; Garcia, C.; Ventanas, J.; Lopez Bote, C.; Asensio, M.A. Evolution of free amino acids and amines during ripening of Iberian cured ham. J. Agric. Food Chem. 1994, 42, 2296–2301. [Google Scholar] [CrossRef]
- Schivazappa, C.; Virgili, R. Impact of salt levels on the sensory profile and consumer acceptance of Italian dry-cured ham. J. Sci. Food Agric. 2020, 100, 3370–3377. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Palacios, T.; Ruiz, J.; Martín, D.; Barat, J.M.; Antequera, T. Pre-cure Freezing Effect on Physicochemical, Texture and Sensory Characteristics of Iberian Ham. Food Sci. Technol. Int. 2011, 17, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Benedini, R.; Parolari, G.; Toscani, T.; Virgili, R. Sensory and texture properties of Italian typical dry-cured hams as related to maturation time and salt content. Meat Sci. 2012, 90, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Flores, M. The role of muscle proteases and lipases in flavor development during the processing of dry-cured ham. Crit. Rev. Food Sci. Nutr. 1998, 38, 331–352. [Google Scholar] [CrossRef] [PubMed]
- Petričević, S.; Radovčić, N.M.; Lukić, K.; Listeš, E.; Medić, H. Differentiation of dry-cured hams from different processing methods by means of volatile compounds, physico-chemical and sensory analysis. Meat Sci. 2018, 137, 217–227. [Google Scholar] [CrossRef]
- Salazar, E.; Abellán, A.; Cayuela, J.M.; Poto, A.; Girón, F.; Zafrilla, P.; Tejada, L. Effect of processing time on the quality of dry-cured ham obtained from a native pig breed (Chato Murciano). Anim. Prod. Sci. 2014, 55, 113–121. [Google Scholar] [CrossRef]
- ANICE, 2017. Compromiso de Reformulación para la Reducción de Sal y Grasa en los Derivados Cárnicos. Circular 13/17: Propuesta de Reducción de Sal y Grasa en los Derivados Cárnicos el 17/02/2017. Available online: https://www.anice.es/industrias/circulares-ano-2017/circular-1317---propuesta-de-reduccion-de-sal-y-grasa-en-los-derivados-carnicos_20518_228_28252_0_1_in.html (accessed on 1 December 2021).
- Pinna, A.; Saccani, G.; Schivazappa, C.; Simoncini, N.; Virgili, R. Revision of the cold processing phases to obtain a targeted salt reduction in typical Italian dry-cured ham. Meat Sci. 2020, 161, 107994. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No 2073/2005 of the European Parliament and of the Council of 15 November 2005 on Microbiological Criteria for Foodstuffs, (OJ L 338, 22.12.2005, p. 1). Available online: https://eur-lex.europa.eu/eli/reg/2005/2073/oj (accessed on 1 December 2021).
- Jiménez-Colmenero, F.; Ventanas, J.; Toldrá, F. Nutritional composition of dry-cured ham and its role in a healthy diet. Meat Sci. 2010, 84, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Cittadini, A.; Domínguez, R.; Gómez, B.; Pateiro, M.; Pérez-Santaescolástica, C.; López-Fernández, O.; Sarriés, M.V.; Lorenzo, J.M. Effect of NaCl replacement by other chloride salts on physicochemical parameters, proteolysis and lipolysis of dry-cured foal “cecina”. J. Food Sci. Technol. 2020, 57, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Abellán, A.; Salazar, E.; Vázquez, J.; Cayuela, J.M.; Tejada, L. Changes in proteolysis during the dry-cured processing of refrigerated and frozen loin. LWT Food Sci. Technol. 2018, 96, 507–512. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Cittadini, A.; Bermúdez, R.; Munekata, P.E.; Domínguez, R. Influence of partial replacement of NaCl with KCl, CaCl2 and MgCl2 on proteolysis, lipolysis and sensory properties during the manufacture of dry-cured lacón. Food Control 2015, 55, 90–96. [Google Scholar] [CrossRef]
- Krvavica, M.; Lasi´c, D.; Kljusuri´c, J.G.; Ðugum, J.; Janovi´c, Š.; Milovac, S.; Bošnir, J. Chemical Characteristics of Croatian Traditional Istarski pršut (PDO) Produced from Two Different Pig Genotypes. Molecules 2021, 26, 4140. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Bermúdez, R.; Domínguez, R.; Guiotto, A.; Franco, D.; Purriños, L. Physicochemical and microbial changes during the manufacturing process of dry-cured lacón salted with potassium, calcium and magnesium chloride as a partial replacement for sodium chloride. Food Control. 2015, 50, 763–769. [Google Scholar] [CrossRef]
- Gómez, I.; Janardhanan, R.; Ibañez, F.C.; Beriain, M.J. The Effects of Processing and Preservation Technologies on Meat Quality: Sensory and Nutritional Aspects. Foods 2020, 9, 1416. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Pando, G.; Fischer, E.; Allen, P.; Kerry, J.P.; O’Sullivan, M.G.; Hamill, R.M. Salt content and minimum acceptable levels in whole-muscle cured meat products. Meat Sci. 2018, 139, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Affentranger, P.; Gerwig, C.; Seewer, G.J.F.; Schwiirer, D.; Kiinzi, N. Growth and carcass characteristics as well as meat and fat quality of three types of pigs under different feeding regimens. Lives. Prod. Sci. 1996, 45, 187–196. [Google Scholar] [CrossRef]
- Ventanas, S.; Ruiz, J.; García, C.; Ventanas, J. Preference and juiciness of Iberian dry-cured loin as affected by intramuscular fat content, crossbreeding and rearing system. Meat Sci. 2007, 77, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Salazar, E.; Cayuela, J.M.; Abellán, A.; Poto, A.; Peinado, B.; Tejada, L. A comparison of the quality of dry-cured loins obtained from the native pig breed (Chato Murciano) and from a modern crossbreed pig. Anim. Prod. Sci. 2013, 53, 352–359. [Google Scholar] [CrossRef]
Processing Stage | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | Processing Stage | Breed | Interaction | ||
Moisture | RIB | 53.12 ± 1.31 a | 52.82 ± 1.77 a | 47.12 ± 2.11 a | 37.35 ± 1.83 b | 31.59 ± 1.26 b | 0.000 | 0.000 | 0.000 |
RWC | 57.82 ± 6.93 a | 56.65 ± 1.58 a | 53.49 ± 1.71 a | 52.08 ± 1.29 a | 51.46 ± 0.64 a | ||||
Fat | RIB | 25.00 ± 1.43 bc | 21.10 ± 2.32 abc | 22.77 ± 2.37 abc | 27.42 ± 2.00 cd | 33.87 ± 1.94 d | 0.028 | 0.000 | 0.007 |
RWC | 17.34 ± 4.54 abc | 16.18 ± 1.00 ab | 17.61 ± 1.43 ab | 16.72 ± 1.01 ab | 15.99 ± 0.46 a | ||||
Protein | RIB | 15.00 ± 0.35 b | 16.48 ± 0.90 ab | 19.53 ± 0.30 ac | 22.32 ± 0.73 c | 22.13 ± 1.19 c | 0.000 | 0.000 | 0.001 |
RWC | 16.10 ± 1.53 ab | 17.92 ± 0.10 ab | 20.43 ± 0.50 ac | 28.31 ± 0.55 d | 29.68 ± 0.52 d | ||||
Total Nitrogen | RIB | 2.40 ± 0.06 b | 2.63 ± 0.14 ab | 3.13 ± 0.05 ac | 3.57 ± 0.12 c | 3.54 ± 0.19 c | 0.000 | 0.000 | 0.001 |
RWC | 2.57 ± 0.25 ab | 2.87 ± 0.02 ab | 3.27 ± 0.08 ac | 4.53 ± 0.09 d | 4.75 ± 0.08 d | ||||
Nonprotein Nitrogen | RIB | 0.25 ± 0.06 a | 0.18 ± 0.07 a | 0.30 ± 0.07 a | 0.48 ± 0.31 ab | 0.74 ± 0.16 bc | 0.000 | 0.000 | 0.001 |
RWC | 0.34 ± 0.09 ab | 0.26 ± 0.11 a | 0.33 ± 0.13 a | 1.25 ± 0.42 d | 1.04 ± 0.18 cd | ||||
Proteolysis Index | RIB | 10.54 ± 0.86 a | 6.73 ± 1.42 a | 9.50 ± 1.10 a | 13.88 ± 3.62 ab | 20.90 ± 1.24 bc | 0.000 | 0.012 | 0.071 |
RWC | 13.45 ± 2.24 abc | 9.01 ± 1.87 a | 10.07 ± 1.97 a | 27.85 ± 5.82 c | 22.02 ± 1.59 bc | ||||
NaCl | RIB | 0.51 ± 0.27 d | 1.96 ± 0.69 a | 1.99 ± 0.17 a | 2.79 ± 0.14 abc | 2.86 ± 0.21 abc | 0.000 | 0.016 | 0.176 |
RWC | 0.16 ± 0.02 d | 2.33 ± 0.08 ab | 2.43 ± 0.13 ab | 3.64 ± 0.18 bc | 3.77 ± 0.20 c | ||||
Ash | RIB | 2.21 ± 0.51 c | 5.58 ± 1.65 abc | 5.59 ± 0.68º abc | 5.44 ± 0.48 ab | 5.68 ± 0.85 ab | 0.000 | 0.000 | 0.012 |
RWC | 2.39 ± 0.44 bc | 8.81 ± 0.88 ad | 6.84 ± 0.61 ad | 10.92 ± 0.85 d | 10.41 ± 0.40 d |
Processing Stage | p-Value | RDA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | Processing Stage | Breed | Interaction | |||
Na 1 | RIB | 0.23 ± 0.08 a | 0.83 ± 0.32 b | 0.81 ± 0.11 b | 1.01 ± 0.11 bc | 1.13 ± 0.14 c | 0.000 | 0.000 | 0.072 | 0.006 |
RWC | 0.15 ± 0.00 a | 1.24 ± 0.14 c | 1.16 ± 0.11 c | 1.75 ± 0.17 de | 1.54 ± 0.08 d | |||||
K 1 | RIB | 0.23 ± 0.04 a | 0.28 ± 0.03 a | 0.30 ± 0.02 a | 0.33 ± 0.03 a | 0.45 ± 0.03 ab | 0.000 | 0.000 | 0.000 | 2000 |
RWC | 0.28 ± 0.05 a | 0.34 ± 0.01 a | 0.39 ± 0.02 a | 0.96 ± 0.04 b | 0.64 ± 0.02 b | |||||
Ca 1 | RIB | 0.02 ± 0.01 a | 0.01 ± 0.00 a | 0.02 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.536 | 0.673 | 0.675 | 800 |
RWC | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.01 a | |||||
Mg 1 | RIB | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.03 ± 0.00 ab | 0.000 | 0.001 | 0.061 | 375 |
RWC | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.03 ± 0.00 a | 0.04 ± 0.00 b | 0.04 ± 0.00 b | |||||
P 1 | RIB | 0.15 ± 0.05 a | 0.16 ± 0.01 a | 0.18 ± 0.01 a | 0.20 ± 0.01 a | 0.23 ± 0.02 a | 0.000 | 0.000 | 0.000 | 700 |
RWC | 0.16 ± 0.03 a | 0.19 ± 0.01 a | 0.23 ± 0.01 a | 0.34 ± 0.01 b | 0.31 ± 0.01 b | |||||
Fe 2 | RIB | 9.66 ± 0.56 a | 6.75 ± 0.80 a | 5.69 ± 1.05 a | 14.13 ± 5.48 a | 11.66 ± 1.03 a | 0.133 | 0.737 | 0.978 | 14 |
RWC | 8.06 ± 1.68 a | 7.75 ± 0.60 a | 8.33 ± 1.60 a | 14.26 ± 2.78 a | 13.02 ± 3.83 a | |||||
Cu 2 | RIB | 1.39 ± 0.57 a | 1.06 ± 0.26 a | 0.70 ± 0.14 a | 3.86 ± 1.96 a | 1.5 ± 0.27 a | 0.577 | 0.537 | 0.509 | 1 |
RWC | 0.32 ± 0.12 a | 1.62 ± 0.69 a | 1.41 ± 0.14 a | 1.24 ± 0.59 a | 1.79 ± 0.23 a | |||||
Mn 2 | RIB | 0.62 ± 0.38 a | 0.15 ± 0.02 a | 0.27 ± 0.04 a | 0.29 ± 0.05 a | 0.10 ± 0.03 a | 0.478 | 0.541 | 0.673 | 2 |
RWC | 0.31 ± 0.17 a | 0.21 ± 0.08 a | 0.20 ± 0.04 a | 0.12 ± 0.05 a | 0.26 ± 0.011 a | |||||
Zn 2 | RIB | 21.64 ± 1.80 ab | 15.91 ± 7.80 a | 16.56 ± 2.42 a | 21.53 ± 2.70 ab | 24.59 ± 1.74 bc | 0.000 | 0.169 | 0.251 | 10 |
RWC | 16.47 ± 3.22 a | 19.76 ± 2.53 a | 18.83 ± 2.44 a | 26.69 ± 1.58 bc | 29.76 ± 2.90 c | |||||
B 2 | RIB | 0.78 ± 0.53 a | 0.36 ± 0.06 a | 0.18 ± 0.06 a | 0.34 ± 0.06 a | 0.47 ± 0.08 a | 0.882 | 0.538 | 0.598 | Not declared |
RWC | 0.14 ± 0.06 a | 0.21 ± 0.06 a | 0.36 ± 0.01 a | 0.38 ± 0.19 a | 0.51 ± 0.15 a |
FAA | Dry-Cured Ham Type | p-Value | |||
---|---|---|---|---|---|
TIB | RIB | RWC | Processing | Breed | |
Asp | 2.08 ± 0.06 | 2.05 ± 0.54 | 1.94 ± 0.74 | 0.962 | 0.921 |
Glu | 3.98 ± 0.11 | 4.26 ± 1.04 | 4.87 ± 0.92 | 0.809 | 0.706 |
Ser | 1.51 ± 0.05 | 1.34 ± 0.21 | 1.83 ± 0.47 | 0.530 | 0.443 |
His | 0.91 ± 0.02 | 1.00 ± 0.25 | 1.17 ± 0.25 | 0.760 | 0.677 |
Gly | 1.23 ± 0.01 | 1.42 ± 0.40 | 1.79 ± 0.37 | 0.685 | 0.566 |
Thr | 1.45 ± 0.03 | 1.32 ± 0.28 | 1.81 ± 0.30 | 0.685 | 0.352 |
Arg | 1.75 ± 0.16 | 1.06 ± 0.02 | 1.32 ± 0.22 | 0.051 | 0.368 |
Ala | 4.02 ± 0.14 | 4.70 ± 1.06 | 5.67 ± 0.46 | 0.590 | 0.489 |
Tyr | 0.70 ± 0.01 | 0.89 ± 0.16 | 1.44 ± 0.47 | 0.377 | 0.384 |
Cys | nd | nd | nd | - | - |
Val | 2.10 ± 0.05 | 2.22 ± 0.53 | 2.51 ± 0.53 | 0.847 | 0.732 |
Met | 0.53 ± 0.21 | 0.64 ± 0.23 | 0.79 ± 0.01 | 0.764 | 0.580 |
Phe | 1.42 ± 0.15 | 1.56 ± 0.38 | 1.82 ± 0.35 | 0.765 | 0.669 |
Ile | 1.48 ± 0.09 | 1.64 ± 0.44 | 1.90 ± 0.42 | 0.760 | 0.706 |
Leu | 2.43 ± 0.19 | 2.65 ± 0.71 | 3.21 ± 0.79 | 0.786 | 0.654 |
Lys | 3.73 ± 0.10 | 4.13 ± 1.15 | 5.00 ± 1.17 | 0.766 | 0.649 |
Pro | 1.87 ± 0.01 | 1.96 ± 0.40 | 2.18 ± 0.25 | 0.837 | 0.688 |
Total FAA | 31.19 ± 0.38 | 32.84 ± 7.76 | 39.26 ± 7.71 | 0.852 | 0.617 |
Color Parameter | Dry-Cured Hams | p-Value | |||
---|---|---|---|---|---|
TIB | RIB | RWC | Processing | Breed | |
Lightness (L*) | 47.22 ± 4.23 | 53.03 ± 1.79 | 57.88 ± 0.85 | 0.165 | 0.164 |
Redness (a*) | 24.70 ± 2.96 | 23.36 ± 1.62 | 20.72 ± 1.06 | 0.692 | 0.392 |
Yellowness (b*) | 27.34 ± 5.26 | 28.46 ± 1.24 | 31.09 ± 3.19 | 0.758 | 0.363 |
Chroma (C*) | 37.26 ± 4.61 | 37.09 ± 1.30 | 37.47 ± 2.70 | 0.961 | 0.891 |
Hue angle (h◦) | 47.01 ± 6.44 | 50.75 ± 2.52 | 55.99 ± 3.04 | 0.519 | 0.298 |
Texture Parameter | Dry-Cured Hams | p-Value | |||
---|---|---|---|---|---|
TIB | RIB | RWC | Processing | Breed | |
C1 Hardness (N) | 6.89 ± 0.95 | 8.61 ± 0.31 | 5.84 ± 0.54 | 0.041 | 0.000 |
C1 Hardness deformation | 2.95 ± 0.07 | 2.97 ± 0.00 | 2.93 ± 0.05 | 0.684 | 0.179 |
C1 Adhesiveness (mJ) | 0.72 ± 0.09 | 1.03 ± 0.39 | 0.57 ± 0.09 | 0.249 | 0.121 |
C2 Cohesiveness | 6.10 ± 0.74 | 7.93 ± 0.38 | 4.99 ± 0.03 | 0.021 | 0.000 |
C2 Recoverable deformation (mm) | 0.53 ± 0.05 | 0.60 ± 0.03 | 0.56 ± 0.02 | 0.091 | 0.152 |
C2 Springiness | 0.95 ± 0.19 | 1.14 ± 0.10 | 1.10 ± 0.01 | 0.122 | 0.558 |
C2 Gumminess (N) | 1.56 ± 0.03 | 2.12 ± 0.08 | 1.81 ± 0.04 | 0.000 | 0.000 |
C2 Chewiness (mJ) | 3.11 ± 0.36 | 5.16 ± 0.39 | 3.59 ± 0.60 | 0.000 | 0.023 |
C2 Hardness (N) | 5.42 ± 0.90 | 10.97 ± 0.87 | 6.03 ± 0.23 | 0.001 | 0.000 |
Dry-Cured Ham Type | p-Value | ||||
---|---|---|---|---|---|
TIB | RIB | RWC | Processing | Breed | |
Appearance | 3.66 ± 0.13 | 4.17 ± 0.15 | 2.62 ± 0.16 | 0.061 | 0.006 |
Color | 3.83 ± 0.12 | 4.13 ± 0.13 | 2.68 ± 0.15 | 0.159 | 0.021 |
Odor | 3.55 ± 0.15 | 3.87 ± 0.13 | 2.89 ± 0.13 | 0.200 | 0.008 |
Texture | 3.81 ± 0.11 | 3.98 ± 0.14 | 2.83 ± 0.13 | 0.232 | 0.013 |
Salty taste | 3.57 ± 0.13 | 3.87 ± 0.13 | 2.87 ± 0.13 | 0.252 | 0.001 |
Global taste | 3.96 ± 0.12 | 4.06 ± 0.10 | 2.81 ± 0.14 | 0.224 | 0.002 |
Global acceptance | 4.00 ± 0.12 | 4.09 ± 0.12 | 2.57 ± 0.123 | 0.220 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Rosique, B.; Salazar, E.; Tapiador, J.; Peinado, B.; Tejada, L. Effect of Salt Reduction on the Quality of Boneless Dry-Cured Ham from Iberian and White Commercially Crossed Pigs. Foods 2022, 11, 812. https://doi.org/10.3390/foods11060812
Muñoz-Rosique B, Salazar E, Tapiador J, Peinado B, Tejada L. Effect of Salt Reduction on the Quality of Boneless Dry-Cured Ham from Iberian and White Commercially Crossed Pigs. Foods. 2022; 11(6):812. https://doi.org/10.3390/foods11060812
Chicago/Turabian StyleMuñoz-Rosique, Beatriz, Eva Salazar, Julio Tapiador, Begoña Peinado, and Luis Tejada. 2022. "Effect of Salt Reduction on the Quality of Boneless Dry-Cured Ham from Iberian and White Commercially Crossed Pigs" Foods 11, no. 6: 812. https://doi.org/10.3390/foods11060812
APA StyleMuñoz-Rosique, B., Salazar, E., Tapiador, J., Peinado, B., & Tejada, L. (2022). Effect of Salt Reduction on the Quality of Boneless Dry-Cured Ham from Iberian and White Commercially Crossed Pigs. Foods, 11(6), 812. https://doi.org/10.3390/foods11060812