Effects of Ultrasound Combined with Preheating Treatment to Improve the Thermal Stability of Coconut Milk by Modifying the Physicochemical Properties of Coconut Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction of Coconut Globulin
2.2.2. Modification of Coconut Globulin and Coconut Milk
2.2.3. Solubility of Coconut Protein
2.2.4. Surface Hydrophobicity of Coconut Protein
2.2.5. SH of Coconut Protein
2.2.6. FTIR Spectroscopy of Coconut Protein
2.2.7. Scanning Electron Microscopy of Coconut Protein
2.2.8. Zeta Potential of Coconut Milk
2.2.9. Particle Size and Size Distribution of Coconut Milk
2.2.10. Rheological Properties of Coconut Milk
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Coconut Protein
3.1.1. Solubility
3.1.2. Surface Hydrophobicity
3.1.3. SH
3.1.4. FTIR and Secondary Structure of Coconut Protein
3.1.5. Scanning Electron Microscopy of Coconut Protein
3.2. Properties of Coconut Milk
3.2.1. Zeta Potential
3.2.2. Particle Size and Size Distribution
3.2.3. Rheological Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Y.; Li, Y.; Zhang, Y.; Zhao, S. Purification, characterization and synthesis of antioxidant peptides from enzymatic hydrolysates of coconut (Cocos nucifera L.) cake protein isolates. RSC Adv. 2016, 6, 54346–54356. [Google Scholar] [CrossRef]
- Prashant, T. Coconut Milk Products Market 2019 Global Growth Analysis, Size, Share, Key Industry Players, Revenue, Competitive Landscape, Regional Forecast to 2027. Available online: https://www.researchgate.net/publication/334670731 (accessed on 2 September 2021).
- Shori, A.B.; Al Zahrani, A.J. Non-dairy plant-based milk products as alternatives to conventional dairy products for delivering probiotics. Food Sci. Technol. 2022, 42, e101321. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Taylor, S.L.; Houben, G.F.; Blom, W.M.; Westerhout, J.; Remington, B.C.; Crevel, R.W.R.; Brooke-Taylor, S.; Baumert, J.L. The population threshold for soy as an allergenic food—Why did the Reference Dose decrease in VITAL 3.0? Trends Food Sci. Technol. 2021, 112, 99–108. [Google Scholar] [CrossRef]
- Patil, U.; Benjakul, S. Coconut Milk and Coconut Oil: Their Manufacture Associated with Protein Functionality. J. Food Sci. 2018, 83, 2019–2027. [Google Scholar] [CrossRef]
- Tangsuphoom, N.; Coupland, J.N. Effect of thermal treatments on the properties of coconut milk emulsions prepared with surface-active stabilizers. Food Hydrocoll. 2009, 23, 1792–1800. [Google Scholar] [CrossRef]
- Lad, V.N.; Murthy, Z.V.P. Enhancing the Stability of Oil-in-Water Emulsions Emulsified by Coconut Milk Protein with the Application of Acoustic Cavitation. Ind. Eng. Chem. Res. 2012, 51, 4222–4229. [Google Scholar] [CrossRef]
- Raghavendra, S.N.; Raghavarao, K.S.M.S. Effect of different treatments for the destabilization of coconut milk emulsion. J. Food Eng. 2010, 97, 341–347. [Google Scholar] [CrossRef]
- Lu, X.; Su, H.; Guo, J.; Tu, J.; Lei, Y.; Zeng, S.; Chen, Y.; Miao, S.; Zheng, B. Rheological properties and structural features of coconut milk emulsions stabilized with maize kernels and starch. Food Hydrocoll. 2019, 96, 385–395. [Google Scholar] [CrossRef]
- Liang, Y.; Patel, H.; Matia-Merino, L.; Ye, A.; Golding, M. Effect of pre- and post-heat treatments on the physicochemical, microstructural and rheological properties of milk protein concentrate-stabilised oil-in-water emulsions. Int. Dairy J. 2013, 32, 184–191. [Google Scholar] [CrossRef]
- Weiss, J.; Kristbergsson, K.; Kjartansson, G.T. Engineering Food Ingredients with High-Intensity Ultrasound. In Ultrasound Technologies for Food and Bioprocessing; Food Engineering Series; Springer: New York, NY, USA, 2011; pp. 239–285. [Google Scholar]
- Jambrak, A.R.E.; Lelas, V.; Mason, T.J.; Krešic, G.; Badanjak, M. Physical properties of ultrasound treated soy proteins. J. Food Eng. 2009, 93, 386–393. [Google Scholar] [CrossRef]
- Jiang, S.; Ding, J.; Andrade, J.; Rababah, T.M.; Almajwal, A.; Abulmeaty, M.M.; Feng, H. Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrason. Sonochem. 2017, 38, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Xiong, W.; Ge, M.; Xia, J.; Li, B.; Chen, Y. Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Res. Int. 2018, 109, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ding, X.; Dai, C.; Ma, H. Changes in the structure and dissociation of soybean protein isolate induced by ultrasound-assisted acid pretreatment. Food Chem. 2017, 232, 727–732. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Y.; Zhang, Z.; Wang, Y.; Mintah, B.K.; Dabbour, M.; Jiang, H.; He, R.; Ma, H. Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrason. Sonochem. 2020, 69, 105240. [Google Scholar] [CrossRef]
- Ryan, K.N.; Vardhanabhuti, B.; Jaramillo, D.P.; van Zanten, J.H.; Coupland, J.N.; Foegeding, E.A. Stability and mechanism of whey protein soluble aggregates thermally treated with salts. Food Hydrocoll. 2012, 27, 411–420. [Google Scholar] [CrossRef]
- Dissanayake, M.; Vasiljevic, T. Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. J. Dairy Sci. 2009, 92, 1387–1397. [Google Scholar] [CrossRef] [Green Version]
- Çakır-Fuller, E. Enhanced heat stability of high protein emulsion systems provided by microparticulated whey proteins. Food Hydrocoll. 2015, 47, 41–50. [Google Scholar] [CrossRef]
- Ma, W.; Wang, T.; Wang, J.; Wu, D.; Wu, C.; Du, M. Enhancing the thermal stability of soy proteins by preheat treatment at lower protein concentration. Food Chem. 2020, 306, 125593. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Ji, Z.; Le, X. Isolation, Purification, and Identification of Coconut Protein through SDS-PAGE, HPLC, and MALDI-TOF/TOF-MS. Food Anal. Methods 2020, 13, 1246–1254. [Google Scholar] [CrossRef]
- Onsaard, E.; Vittayanont, M.; Srigam, S.; Mcclements, D.J. Properties and Stability of Oil-in-Water Emulsions Stabilized byCoconut Skim Milk Proteins. J. Agric. Food Chem. 2005, 53, 5747–5753. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Nakai, S. Hydrophobicity Determined by A Fluorescence Probe Method and Its Correlation with Surface Properties of Proteins. Biochim. Biophys. Acta 1980, 624, 13–20. [Google Scholar] [CrossRef]
- Haskard, C.A.; Lichan, E.C.Y. Hydrophobicity of Bovine Serum Albumin and Ovalbumin Determined Using Uncharged (PRODAN) and Anionic (ANS-) Fluorescent Probes. J. Agric. Food Chem. 1998, 46, 2671–2677. [Google Scholar] [CrossRef]
- Beveridge, T.; Toma, S.J.; Nakai, S. Determmination of SH- and SS- Groups in Some Food Proteins Using Ellman’ s Reagent. J. Food Sci. 1974, 39, 49–51. [Google Scholar] [CrossRef]
- Thaiphanit, S.; Anprung, P. Physicochemical and emulsion properties of edible protein concentrate from coconut (Cocos nucifera L.) processing by-products and the influence of heat treatment. Food Hydrocoll. 2016, 52, 756–765. [Google Scholar] [CrossRef]
- He, S.; Zhao, J.; Cao, X.; Ye, Y.; Wu, Z.; Yue, J.; Yang, L.; Jin, R.; Sun, H. Low pH-shifting treatment would improve functional properties of black turtle bean (Phaseolus vulgaris L.) protein isolate with immunoreactivity reduction. Food Chem. 2020, 330, 127217. [Google Scholar] [CrossRef] [PubMed]
- You, G.; Liu, X.L.; Zhao, M.M. Preparation and characterization of hsian-tsao gum and chitosan complex coacervates. Food Hydrocoll. 2018, 74, 255–266. [Google Scholar] [CrossRef]
- Liu, C.M.; Zhong, J.Z.; Liu, W.; Tu, Z.C.; Wan, J.; Cai, X.F.; Song, X.Y. Relationship between functional properties and aggregation changes of whey protein induced by high pressure microfluidization. J. Food Sci. 2011, 76, E341–E347. [Google Scholar] [CrossRef]
- Erçelebi, E.A.; Ibanoğlu, E. Rheological properties of whey protein isolate stabilized emulsions with pectin and guar gum. Eur. Food Res. Technol. 2009, 229, 281–286. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J.; Li-Chan, E.C.Y.; Zhu, L.; Zhang, F.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocoll. 2013, 30, 647–655. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Y.L.; Chen, J. Role of β-conglycinin and glycinin subunits in the pH-shifting-induced structural and physicochemical changes of soy protein isolate. J. Food Sci. 2011, 76, C293–C302. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, N.; Axelos, M.A.V.; Riaublanc, A. Interfacial properties of fractal and spherical whey protein aggregates. Soft Matter 2011, 7, 7643–7654. [Google Scholar] [CrossRef] [Green Version]
- Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G.O. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocoll. 2014, 39, 301–318. [Google Scholar] [CrossRef]
- Damodaran, S. Protein Stabilization of Emulsions and Foams. J. Food Sci. 2005, 70, 54–66. [Google Scholar] [CrossRef]
- Peng, W.; Kong, X.; Chen, Y.; Zhang, C.; Yang, Y.; Hua, Y. Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocoll. 2016, 52, 301–310. [Google Scholar] [CrossRef]
- Marchioni, C.; Riccardi, E.; Spinelli, S.; Dell’Unto, F.; Grimaldi, P.; Bedini, A.; Giliberti, C.; Giuliani, L.; Palomba, R.; Congiu Castellano, A. Structural changes induced in proteins by therapeutic ultrasounds. Ultrasonics 2009, 49, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, B.; Xia, X.; Liu, Q.; Diao, X. Structural changes of the myofibrillar proteins in common carp (Cyprinus carpio) muscle exposed to a hydroxyl radical-generating system. Process Biochem. 2013, 48, 863–870. [Google Scholar] [CrossRef]
- Ellepola, S.W.; Choi, S.M.; Ma, C.Y. Conformational study of globulin from rice (Oryza sativa) seeds by Fourier-transform infrared spectroscopy. Int. J. Biol. Macromol. 2005, 37, 12–20. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y. Study on the binding of propiconazole to protein by molecular modeling and a multispectroscopic method. J. Agric. Food Chem. 2011, 59, 8507–8512. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, Y.; Guo, K.; Zhao, X. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films. J. Agric. Food Chem. 2012, 60, 2219–2223. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S.; Zhang, J.; Chi, Y.; Tian, B.; Li, L.; Jiang, B.; Li, D.; Feng, Z.; Liu, C. Preparation of whey protein isolate nanofibrils by microwave heating and its application as carriers of lipophilic bioactive substances. LWT 2020, 125, 109213. [Google Scholar] [CrossRef]
- Ma, W.; Wang, J.; Wu, D.; Xu, X.; Du, M.; Wu, C. Effects of preheat treatment on the physicochemical and interfacial properties of cod proteins and its relation to the stability of subsequent emulsions. Food Hydrocoll. 2021, 112, 106338. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Zhang, X.; Geng, H.; Xue, W.; Chen, Z. Assembly behavior, structural characterization and rheological properties of legume proteins based amyloid fibrils. Food Hydrocoll. 2021, 111, 106396. [Google Scholar] [CrossRef]
- Zhong, Z.; Xiong, Y.L. Thermosonication-induced structural changes and solution properties of mung bean protein. Ultrason. Sonochem. 2020, 62, 104908. [Google Scholar] [CrossRef] [PubMed]
Sample | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) |
---|---|---|---|---|
control | 20.82 ± 0.45 e | 22.13 ± 0.56 e | 35.74 ± 1.31 a | 21.31 ± 0.40 b |
70 °C | 21.94 ± 0.07 abc | 32.21 ± 0.13 b | 19.99 ± 0.03 cd | 25.86 ± 0.07 a |
80 °C | 22.31 ± 0.07 ab | 30.56 ± 0.67 c | 21.16 ± 0.01 bc | 25.98 ± 0.78 a |
90 °C | 22.65 ± 0.06 a | 29.12 ± 0.12 d | 22.96 ± 0.02 b | 25.29 ± 0.08 a |
70 °C-ultra | 21.43 ± 0.07 cd | 32.26 ± 0.14 b | 20.85 ± 0.30 cd | 25.47 ± 0.09 a |
80 °C-ultra | 21.64 ± 0.08 bcd | 32.60 ± 0.16 ab | 19.62 ± 0.02 cd | 26.15 ± 0.10 a |
90 °C-ultra | 21.53 ± 0.08 bcd | 33.74 ± 0.15 a | 18.97 ± 0.02 d | 25.78 ± 0.09 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Chen, H.; Chen, W.; Zhong, Q.; Zhang, M.; Shen, Y. Effects of Ultrasound Combined with Preheating Treatment to Improve the Thermal Stability of Coconut Milk by Modifying the Physicochemical Properties of Coconut Protein. Foods 2022, 11, 1042. https://doi.org/10.3390/foods11071042
Sun Y, Chen H, Chen W, Zhong Q, Zhang M, Shen Y. Effects of Ultrasound Combined with Preheating Treatment to Improve the Thermal Stability of Coconut Milk by Modifying the Physicochemical Properties of Coconut Protein. Foods. 2022; 11(7):1042. https://doi.org/10.3390/foods11071042
Chicago/Turabian StyleSun, Yizhou, Haiming Chen, Wenxue Chen, Qiuping Zhong, Ming Zhang, and Yan Shen. 2022. "Effects of Ultrasound Combined with Preheating Treatment to Improve the Thermal Stability of Coconut Milk by Modifying the Physicochemical Properties of Coconut Protein" Foods 11, no. 7: 1042. https://doi.org/10.3390/foods11071042
APA StyleSun, Y., Chen, H., Chen, W., Zhong, Q., Zhang, M., & Shen, Y. (2022). Effects of Ultrasound Combined with Preheating Treatment to Improve the Thermal Stability of Coconut Milk by Modifying the Physicochemical Properties of Coconut Protein. Foods, 11(7), 1042. https://doi.org/10.3390/foods11071042