Identifying Quality Protein Maize Inbred Lines for Improved Nutritional Value of Maize in Southern Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Material and Field Evaluation
2.2. Seed Samples
2.3. Sample Preparation
2.4. Zein
2.5. Amylose Content
2.6. Tryptophan and Starch Content
2.7. Protein and Oil Content, and Quality Index
2.8. Data Analysis
3. Results
Analysis of Variance for Individual and Combined Locations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarika, K.; Hossain, F.; Muthusamy, F.; Zunjare, R.U.; Baveja, A.; Goswami, R.; Bhat, J.S.; Saha, S.; Gupta, H.S. Marker-assisted pyramiding of opaque2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize. Plant Sci. 2018, 272, 142–152. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; De Onis, M.; Ezzati, M.; Grantham-Mcgregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec. 2011, 3, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Ai, Y.; Jane, J.L. Macronutrients in corn and human nutrition. Comp. Rev. Food Sci. Food Safety 2016, 15, 581–598. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.A.; Agrawal, S.B.; Shahi, J.P.; Agrawal, M. Yield and kernel nutritional quality in normal maize and quality protein maize cultivars exposed to ozone. J. Sci. Food Agric. 2019, 99, 2205–2214. [Google Scholar] [CrossRef]
- Salleh, S.N.; Fairus, A.A.H.; Mohd Nizam Zahary, M.N.; Raj, N.B.; Jalil, A.M.M. Unravelling the effects of soluble dietary fibre supplementation on energy intake and perceived satiety in healthy adults: Evidence from systematic review and meta-analysis of randomised-controlled trials. Foods 2019, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krivanek, A.F.; De Groote, H.; Gunaratna, N.; Diallo, A.; Friesen, D. Breeding and disseminating quality protein maize (QPM) for Africa. Afr. J. Biotech. 2007, 6, 312–324. [Google Scholar]
- Sofi, P.A.; Wani, S.A.; Rather, A.G.; Wani, S.H. Quality protein maize (QPM): Genetic manipulation for nutritional fortification of maize. Crop Sci. 2009, 1, 244–253. [Google Scholar]
- Babu, R.; Prasanna, B.M. Molecular Breeding for Quality Protein Maize (QPM). In Genomics of Plant Genetic Resources; Tuberosa, R., Graner, A., Frison, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 490–505. [Google Scholar]
- Teklewold, A.; Wegary, D.; Tadesse, A.; Tadesse, B.; Bantte, K.; Friesen, D.; Prasanna, B.M. Quality Protein (QPM) Maize. A Guide to the Technology and Its Promotion in Ethiopia; Nutritious Maize for Ethiopia (NuME) Project; CIMMYT: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Mbuya, K.; Nkongolo, K.K.; Kalonji-Mbuyi, A. Nutritional analysis of quality protein maize varieties selected for agronomic characteristics in a breeding program. Int. J. Plant Breed. Gen. 2011, 5, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Wegary, D.; Labuschagne, M.T.; Vivek, B.S. Protein quality and endosperm modification of quality protein maize (Zea mays L.) under two contrasting soil nitrogen environments. Field Crops Res. 2011, 121, 408–415. [Google Scholar] [CrossRef]
- Tandzi, L.N.; Mutengwa, C.S.; Ngonkew, E.L.M.; Woïn, N.; Gracen, V. Breeding for quality protein maize (QPM) varieties: A review. Agronomy 2017, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Prasanna, B.M.; Vasal, S.K.; Kasshun, B.; Singh, N.N. Quality protein maize. Curr. Sci. 2001, 81, 1308–1319. [Google Scholar]
- Semagn, K.; Magorokosho, C.; Vivek, B.S.; Makumbi, D.; Beyene, Y.; Mugo, S.; Prasanna, B.M.; Warburton, M.L. Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers. BMC Genom. 2012, 13, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegary, D.; Vivek, B.S.; Labuschagne, M.T. Genetic relationships and heterotic structure of quality protein maize (Zea mays L.) inbred lines adapted to eastern and southern Africa. Euphytica 2018, 214, 1–11. [Google Scholar] [CrossRef]
- Njeri, S.G.; Makumbi, D.; Warburton, M.L.; Diallo, A.; Jumbo, M.B.; Chemining’wa, G. Genetic analysis of tropical quality protein maize (Zea mays L.) germplasm. Euphytica 2017, 213, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sood, A.; Thakur, K.; Sharma, P.N.; Gupta, D.; Singode, A.; Rana, R.; Lata, S. A comprehensive study of variation in selected QPM and Non-QPM maize inbred lines. Agric. Res. 2017, 6, 103–113. [Google Scholar] [CrossRef]
- Chandel, U.; Mankotia, S.B.; Thakur, K. Evaluation of CIMMYT maize (Zea mays L.) germplasm by tropical inbred testers. Bangl. J. Bot. 2014, 43, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Dombrink-Kurtzman, M.A. Examination of opaque mutants of maize by reversed-phase high-performance liquid chromatography and scanning electron microscopy. J. Cer. Sci. 1994, 19, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Gupta, J.; Wilson, B.W.; Vadlan, P.V. Evaluation of green solvents for a sustainable zein extraction from ethanol industry DDGS. Biomass Bioeng. 2016, 85, 313–319. [Google Scholar] [CrossRef]
- O’Kennedy, K.; Fox, G. Zein characterisation of South African maize hybrids and their respective parental lines using MALDI-TOF MS. Food Anal. Meth. 2017, 10, 1661–1668. [Google Scholar] [CrossRef]
- Deja Cruz, N.; Khush, G.S. Rice grain quality evaluation procedures. In Aromatic Rice; Singh, R.K., Singh, U.S., Khush, G.S., Eds.; Oxford and IBA Publishing Co: New Dheli, Calcuta, 2000. [Google Scholar]
- Nurit, E.; Tiessen, A.; Pixley, K.; Palacios-Rojas, N. Reliable and inexpensive colorimetric method for determining protein-bound tryptophan in maize kernels. J. Agric. Food Chem. 2009, 57, 7233–7238. [Google Scholar] [CrossRef]
- Caprita, R.; Caprita, A.; Cretescu, I. Effective extraction of soluble non-starch polysaccharides and viscosity determination of aqueous extracts from wheat and barley. In Proceedings of the World Congress on Engineering and Computer Science II, San Francisco, CA, USA, 19–21 October 2011; Newswood Academic Publishing: Hong Kong, China, 2011; Volume 2, pp. 1–3. [Google Scholar]
- VSN International. Genstat for Windows 17th Edition. 2021. Available online: vsni.co.uk/software/genstat (accessed on 10 January 2022).
- Kaur, N.; Singh, B.; Sharma, S. Comparison of quality protein maize (QPM) and normal maize with respect to properties of instant porridge. LWT Food Sci. Tech. 2019, 99, 291–298. [Google Scholar] [CrossRef]
- Ngaboyisonga, C.; Njoroge, K.; Kirubi, D.; Githiri, S.M. Quality protein maize under low nitrogen and drought environments: Endosperm modification, protein and tryptophan concentration in grain. Agric. J. 2012, 7, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Bello, O.B.; Olawuyi, O.J.; Ige, S.A.; Mahamood, J.; Afalobi, M.S.; Azeez, M.A.; Abdulmaliq, S.Y. Agro-nutritional variations of quality protein maize (Zea mays L.) in Nigeria. J. Agric. Sci. 2014, 59, 101–116. [Google Scholar] [CrossRef]
- Twumasi-Afriye, S.; Rojas, P.N.; Friesen, D.; Teklewold, A.; Gissa, D.W.; De Groote, H.; Prasanna, B.M. Guidelines for the Quality Control of Quality Protein Maize (QPM) Seed and Grain; CIMMYT: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Wu, Y.; Holding, D.R.; Messing, J. γ-Zeins are essential for endosperm modification in quality protein maize. Proc. Natl. Acad. Sci. USA 2010, 107, 12810–12815. [Google Scholar] [CrossRef] [Green Version]
- Vivek, B.S.; Krivanek, A.F.; Palacios-Rojas, N.; Twumasi-Afriyie, S.; Diallo, A.O. Breeding Quality Protein Maize (QPM): Protocols for Developing QPM Cultivars; CIMMYT: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Mansilla, P.S.; Nazar, M.C.; Pérez, G.T. Evaluation and comparison of protein composition and quality in half-sib families of opaque-2 maize (Zea mays L.) from Argentina. Argentina 2019, 36, 39–53. [Google Scholar] [CrossRef]
- Zimmer, S.; Messmer, M.; Haase, T.; Piephoe, H.P.; Mindermann, A.; Schulz, H.; Habekuss, A.; Ordon, F.; Wilboisg, K.P.; Heß, J. Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Eur. J. Agron. 2016, 72, 38–46. [Google Scholar] [CrossRef]
- Siracusa, L.; Gresta, F.; Sperlinga, E.; Ruberto, G. Effect of sowing time and soil water content on grain yield and phenolic profile of four buckwheat (Fagopyrum esculentum Moench.) varieties in a Mediterranean environment. J. Food Comp. Anal. 2017, 62, 1–7. [Google Scholar] [CrossRef]
- Sharma, S.; Carena, M.J. Grain quality in maize (Zea mays L.): Breeding implications for short-season drought environments. Euphytica 2016, 212, 247–260. [Google Scholar] [CrossRef]
- Lu, X.; Chen, J.; Zheng, M.; Guo, J.; Qi, J.; Chen, Y.; Miao, S.; Zheng, B. Effect of high-intensity ultrasound irradiation on the stability and structural features of coconut-grain milk composite systems utilizing maize kernels and starch with different amylose contents. Ultrason Sonochem. 2019, 55, 135–148. [Google Scholar] [CrossRef]
Code | Name | Donor |
---|---|---|
L1 | CZL1330 | QPM progeny |
L2 | CZL15041 | QPM progeny |
L3 | CZL15055 | QPM progeny |
L4 | CZL15073 | QPM progeny |
L5 | CZL1471 | QPM progeny |
L6 | TL135470 | QPM progeny |
L7 | VL06378 | QPM progeny |
L8 | TL155805 | QPM progeny |
L9 | TL147078 | QPM progeny |
L10 | TL147070 | QPM progeny |
L11 | TL13609 | QPM progeny |
L12 | TL145743 | QPM progeny |
L13 | TL156614 | QPM progeny |
L14 | CZL1477 | QPM progeny |
L15 | CZL15074 | QPM donor |
L16 | CZL0616 | QPM progeny |
L17 | CZL083 | QPM progeny |
L18 | CML572 | Non-QPM parent |
L19 | EBL167787 | Non-QPM check |
L20 | CZL0520 | Non-QPM parent |
L21 | CZL99005 | Non-QPM parent |
L22 | CML502 | QPM donor |
L23 | CZL0920 | QPM donor |
L24 | CML144 | QPM donor |
L25 | CML159 | QPM donor |
L26 | CML181 | QPM donor |
L27 | CML197 | Non-QPM parent |
L28 | CML312SR | Non-QPM parent |
L29 | CML488 | Non-QPM parent |
L30 | CML491 | QPM donor |
L31 | LH51 | Non-QPM parent |
L32 | CZL00025 | Non-QPM parent |
L33 | CZL15049 | QPM tester |
L34 | CZL059 | QPM tester |
L35 | CML444 | Non-QPM tester |
L36 | CML395 | Non-QPM tester |
L37 | CZL01005 | QPM check |
L38 | CML511 | QPM check |
L39 | CML312 | Non-QPM check |
L40 | CZL1470 | QPM check |
Source | Protein % | Oil % | Starch % | Tryptophan % | Amylose % | β-Zein | γ-Zein | α-Zein | QI |
---|---|---|---|---|---|---|---|---|---|
Cedara | |||||||||
Rep | 0.61 | 0.03 | 23.62 * | 0.000003 | 15.77 | 54.90 | 14.30 | 110.80 | 0.03 |
Entry | 0.86 | 1.44 * | 9.59 * | 0.000700 ** | 224.68 ** | 29.47 | 814.77 ** | 596.97 * | 0.11 ** |
Error | 0.59 | 0.47 | 4.81 | 0.000026 | 3.99 | 43.81 | 185.02 | 277.94 | 0.01 |
Potch | |||||||||
Rep | 0.01 | 0.82 | 5.61 | 0.00012 * | 3.43 | 2.89 | 506.42 | 184.40 | 0.01 |
Entry | 1.77 ** | 1.77 ** | 11.59 ** | 0.00007 ** | 127.90 ** | 2.56 * | 626.25 ** | 749.91 ** | 0.11 ** |
Error | 0.41 | 0.44 | 3.38 | 0.00001 | 5.62 | 1.09 | 173.98 | 102.07 | 0.01 |
Harare | |||||||||
Rep | 0.01 | 0.01 | 0.44 | 0.00005 | 25.97 | 51.47 | 265.39 | 1124.40 * | 0.05 |
Entry | 2.12 * | 1.05 * | 3.16 ** | 0.00048 ** | 2459.23 | 159.55 ** | 455.05 | 491.71 ** | 0.16 ** |
Error | 0.45 | 0.08 | 0.13 | 0.00004 | 1861.53 | 31.43 | 279.22 | 132.02 | 0.01 |
Gwebi | |||||||||
Rep | 0.23 | 0.30 | 0.04 | 0.00005 | 23.99 | 34.95 | 8228.20 * | 52.26 | 0.01 |
Entry | 2.33 | 0.97 * | 4.70 | 0.00050 ** | 166.79 | 11.12 | 390.22 | 591.20 | 0.11 ** |
Error | 1.00 | 0.13 | 1.41 | 0.00002 | 7.54 | 23.68 | 454.75 | 806.43 | 0.01 |
Combined analysis | |||||||||
Entry (G) | 7.42 ** | 4.41 ** | 0.003 ** | 7.42 ** | 249.07 ** | 9.80 ** | 1490.51 ** | 1577.48 ** | 0.99 ** |
Environment (E) | 592.77 ** | 4.14 ** | 0.008 ** | 592.77 ** | 823.45 ** | 67.80 ** | 976.73 ** | 606.62 ** | 20.71 ** |
GxE | 1.03 ** | 0.88 ** | 0.000 ** | 1.03 ** | 232.70 ** | 2.21 | 213.41 ** | 209.52 ** | 0.21 ** |
Error | 0.32 | 0.25 | 0.000 | 0.32 | 10.01 | 1.67 | 96.01 | 98.11 | 0.04 |
Line | Line Status | Protein % | Oil % | Starch % | Tryptophan % | QI | Amylose % | β-Zein % | γ-Zein % | α-Zein % |
---|---|---|---|---|---|---|---|---|---|---|
L1 | QPM | 7.21 | 4.27 | 65.69 | 0.079 | 1.21 | 41.23 | 4.98 | 62.70 | 33.06 |
L2 | QPM | 8.44 | 3.94 | 66.35 | 0.086 | 1.11 | 44.24 | 4.33 | 46.49 | 49.26 |
L3 | QPM | 7.11 | 4.94 | 65.17 | 0.076 | 1.19 | 42.04 | 5.15 | 56.96 | 37.88 |
L4 | QPM | 7.54 | 3.78 | 66.84 | 0.068 | 1.01 | 45.92 | 6.00 | 35.27 | 58.66 |
L5 | QPM | 7.80 | 5.50 | 63.11 | 0.091 | 1.28 | 38.94 | 5.21 | 68.03 | 26.68 |
L6 | QPM | 6.38 | 3.83 | 66.72 | 0.079 | 1.68 | 46.56 | 4.79 | 44.18 | 38.19 |
L7 | QPM | 8.54 | 3.54 | 61.51 | 0.089 | 1.01 | 38.50 | 5.41 | 65.21 | 29.30 |
L8 | QPM | 9.43 | 5.09 | 63.25 | 0.076 | 0.88 | 46.10 | 5.92 | 40.08 | 54.05 |
L9 | QPM | 8.21 | 4.97 | 64.36 | 0.089 | 1.18 | 50.65 | 5.11 | 57.19 | 37.79 |
L10 | QPM | 9.64 | 6.31 | 61.14 | 0.076 | 0.83 | 37.30 | 5.81 | 37.52 | 56.67 |
L11 | QPM | 7.22 | 5.27 | 65.83 | 0.078 | 1.30 | 35.38 | 4.44 | 43.70 | 51.93 |
L12 | QPM | 7.13 | 3.62 | 66.91 | 0.078 | 1.12 | 36.07 | 6.75 | 62.61 | 30.56 |
L13 | QPM | 6.75 | 4.26 | 66.56 | 0.081 | 1.21 | 34.67 | 5.36 | 56.16 | 38.51 |
L14 | QPM | 8.63 | 4.15 | 60.20 | 0.083 | 1.01 | 33.75 | 5.48 | 63.42 | 31.02 |
L15 | QPM | 6.96 | 4.33 | 66.32 | 0.083 | 1.29 | 44.08 | 6.35 | 64.34 | 29.39 |
L16 | QPM | 8.98 | 5.06 | 63.61 | 0.091 | 1.07 | 44.12 | 4.71 | 49.60 | 45.69 |
L17 | QPM | 6.69 | 5.30 | 65.11 | 0.085 | 1.40 | 48.00 | 4.81 | 60.26 | 34.93 |
L18 | non-QPM | 7.81 | 3.47 | 66.20 | 0.035 | 0.51 | 39.82 | 6.18 | 44.82 | 48.92 |
L19 | non-QPM | 8.46 | 3.65 | 67.01 | 0.039 | 0.70 | 48.10 | 6.46 | 30.40 | 62.84 |
L20 | non-QPM | 8.17 | 4.50 | 65.06 | 0.044 | 0.71 | 49.42 | 4.55 | 22.71 | 72.83 |
L21 | QPM | 8.57 | 3.75 | 65.03 | 0.046 | 0.67 | 44.46 | 2.59 | 40.02 | 57.32 |
L22 | QPM | 8.00 | 4.57 | 63.45 | 0.081 | 1.56 | 37.23 | 5.38 | 51.73 | 42.90 |
L23 | QPM | 8.63 | 3.92 | 65.10 | 0.075 | 0.96 | 39.01 | 4.95 | 43.68 | 51.29 |
L24 | QPM | 8.24 | 4.12 | 65.50 | 0.085 | 1.15 | 43.61 | 5.71 | 64.69 | 29.60 |
L25 | QPM | 6.38 | 4.96 | 65.30 | 0.083 | 1.48 | 53.18 | 6.58 | 70.62 | 22.89 |
L26 | QPM | 8.53 | 3.86 | 65.64 | 0.075 | 1.06 | 39.37 | 3.06 | 43.13 | 53.81 |
L27 | non-QPM | 9.78 | 5.75 | 61.46 | 0.045 | 0.45 | 32.22 | 3.72 | 34.26 | 62.15 |
L28 | non-QPM | 7.09 | 4.07 | 67.49 | 0.038 | 0.65 | 36.04 | 5.64 | 32.26 | 62.10 |
L29 | non-QPM | 7.79 | 5.34 | 66.32 | 0.046 | 0.69 | 39.48 | 3.75 | 34.95 | 61.22 |
L30 | QPM | 7.95 | 3.18 | 66.14 | 0.043 | 0.58 | 44.74 | 6.62 | 57.88 | 35.43 |
L31 | non-QPM | 8.06 | 3.90 | 65.71 | 0.045 | 0.72 | 39.40 | 2.35 | 29.17 | 68.40 |
L32 | non-QPM | 9.30 | 4.09 | 63.85 | 0.040 | 0.46 | 31.32 | 3.69 | 30.40 | 65.99 |
L33 | QPM | 6.63 | 5.65 | 65.38 | 0.086 | 1.73 | 50.20 | 4.27 | 57.41 | 38.32 |
L34 | QPM | 6.53 | 5.64 | 65.01 | 0.075 | 1.30 | 45.43 | 4.58 | 64.01 | 31.49 |
L35 | non-QPM | 8.17 | 4.70 | 64.68 | 0.045 | 0.56 | 46.37 | 3.43 | 31.41 | 65.17 |
L36 | non-QPM | 7.16 | 4.77 | 66.42 | 0.034 | 0.59 | 31.88 | 6.85 | 29.98 | 63.16 |
L37 | QPM | 6.60 | 4.06 | 67.10 | 0.066 | 1.29 | 37.68 | 4.20 | 68.67 | 27.04 |
L38 | QPM | 7.53 | 5.04 | 66.19 | 0.079 | 1.38 | 39.50 | 5.41 | 47.62 | 44.80 |
L39 | non-QPM | 9.49 | 4.97 | 61.85 | 0.041 | 0.42 | 45.60 | 5.40 | 33.52 | 61.20 |
L40 | QPM | 6.77 | 4.86 | 66.10 | 0.076 | 1.36 | 44.49 | 4.93 | 55.98 | 39.08 |
QPM mean | 7.69 | 4.54 | 64.99 | 0.078 | 1.18 | 42.29 | 5.13 | 54.45 | 39.92 | |
Non-QPM mean | 8.30 | 4.47 | 65.10 | 0.041 | 0.59 | 40.00 | 4.73 | 32.17 | 63.09 | |
Total mean | 7.86 | 4.52 | 65.02 | 0.068 | 1.02 | 41.68 | 5.02 | 48.33 | 46.29 | |
LSD (0.05) | 0.47 | 0.42 | 1.08 | 0.0051 | 0.16 | 2.62 | 1.07 | 8.11 | 8.20 |
Characteristic 1 | Characteristic 2 | Correlation |
---|---|---|
α-Zein | γ-Zein | −0.94 ** |
Tryptophan | −0.47 ** | |
Amylose | Starch | 0.18 * |
β-Zein | Protein | −0.31 ** |
Starch | 0.15 * | |
Oil | Protein | 0.22 ** |
Tryptophan | 0.19 * | |
γ-Zein | Tryptophan | 0.41 ** |
Tryptophan | Starch | 0.20 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amegbor, I.; van Biljon, A.; Shargie, N.; Tarekegne, A.; Labuschagne, M. Identifying Quality Protein Maize Inbred Lines for Improved Nutritional Value of Maize in Southern Africa. Foods 2022, 11, 898. https://doi.org/10.3390/foods11070898
Amegbor I, van Biljon A, Shargie N, Tarekegne A, Labuschagne M. Identifying Quality Protein Maize Inbred Lines for Improved Nutritional Value of Maize in Southern Africa. Foods. 2022; 11(7):898. https://doi.org/10.3390/foods11070898
Chicago/Turabian StyleAmegbor, Isaac, Angeline van Biljon, Nemera Shargie, Amsal Tarekegne, and Maryke Labuschagne. 2022. "Identifying Quality Protein Maize Inbred Lines for Improved Nutritional Value of Maize in Southern Africa" Foods 11, no. 7: 898. https://doi.org/10.3390/foods11070898
APA StyleAmegbor, I., van Biljon, A., Shargie, N., Tarekegne, A., & Labuschagne, M. (2022). Identifying Quality Protein Maize Inbred Lines for Improved Nutritional Value of Maize in Southern Africa. Foods, 11(7), 898. https://doi.org/10.3390/foods11070898