Oligomers of Carboxymethyl Cellulose for Postharvest Treatment of Fresh Produce: The Effect on Fresh-Cut Strawberry in Combination with Natural Active Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Oligosaccharide Production
2.3. Application of Oligomers as Coatings on Fresh-Cut Fruit
2.3.1. Fruit Preparation
2.3.2. Treatment Preparation
2.3.3. Treatment Application and Storage
2.4. Fruit Quality Characterization
2.4.1. Firmness Test
2.4.2. Weight Loss Test
2.4.3. Microbiological Analysis
2.4.4. Color Evaluation
2.4.5. Incidence of Fruit Decay
2.4.6. Total Soluble Solids (TSS) Analysis
2.5. Sensorial Tests
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bradford, K.J.; Dahal, P.; Van-Asbrouck, J.; Kunusoth, K.; Bello, P.; Thompson, J.; Wue, F. The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends Food Sci. Technol. 2018, 71, 84–93. [Google Scholar] [CrossRef]
- Plazzotta, S.; Manzocco, L.; Nicoli, M.C. Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends Food Sci. Technol. 2017, 63, 51–59. [Google Scholar] [CrossRef]
- Vågsholm, I.; Shah-Arzoomand, N.; Boqvist, S. Food Security, Safety, and Sustainability—Getting the Trade-Offs Right. Front. Sustain. Food Syst. 2020, 4, 16. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, M.; Bhandari, B.; Gao, Z. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends Food Sci. Technol. 2017, 64, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.I.; Selma, M.V.; López-Gálvez, F.; Allende, A. Fresh-cut product sanitation and wash water disinfection: Problems and solutions. Int. J. Food Microbiol. 2009, 134, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.L.; Sethi, S.; Sharma, R.R.; Prajapati, U. Active Edible Coatings for Fresh Fruits and Vegetables, Polymers for Agri-Food Applications. In Polymers for Agri-Food Applications, 1st ed.; Gutiérrez, T.J., Ed.; Springer: Cham, Switzerland; Heidelberg/Berlin, Germany, 2019; pp. 417–432. [Google Scholar] [CrossRef]
- Miteluț, A.C.; Popa, E.E.; Drăghici, M.C.; Popescu, P.A.; Popa, V.I.; Bujor, O.C.; Ion, V.A.; Popa, M.E. Latest Developments in Edible Coatings on Minimally Processed Fruits and Vegetables: A Review. Foods 2021, 10, 2821. [Google Scholar] [CrossRef]
- Sneha, N.M.; Maharishi, T.; Sneh, P.; Wirginia, K.K.; Manoj, K. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int. J. Biol. Macromol. 2020, 164, 304–320. [Google Scholar] [CrossRef]
- Basharat, Y.; Ovais, S.Q.; Abhaya, K.S. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT 2018, 89, 198–209. [Google Scholar] [CrossRef]
- Shebis, Y.; Kumar, V.B.; Gedanken, A.; Poverenov, E. Cooperative crystallization effect in the formation of sonochemically grafted active materials based on polysaccharides. Colloids Surf. B 2020, 190, 110931. [Google Scholar] [CrossRef]
- Arnon-Rips, A.; Sabag, A.; Tepper-Bamnolkera, P.; Chalupovich, D.; Levi-Kalisman, Y.; Eshel, D.; Porat, R.; Poverenov, E. Effective suppression of potato tuber sprouting using polysaccharide-based emulsified films for prolonged release of citral. Food Hydrocoll. 2020, 103, 1–9. [Google Scholar] [CrossRef]
- Rutenberg, R.; Galaktionova, D.; Golden, G.; Cohen, Y.; Levi-Kalisman, Y.; Cohen, G.; Král, P.; Poverenov, E. Omniphilic Polysaccharide-Based Nanocarriers for a Modular Molecular Delivery in a Broad Range of Bio-Systems. ACS Appl. Mater. Interfaces 2018, 10, 36711–36720. [Google Scholar] [CrossRef] [PubMed]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-Hindi, R.R. Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustain. Mater. Technol. 2020, 26, e00215. [Google Scholar] [CrossRef]
- Panahirad, S.; Dadpour, M.; Peighambardoust, S.H.; Soltanzadeh, M.; Gullón, B.; Alirezalu, K.; Lorenzo, J.M. Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends. Food. Sci. Technol. 2021, 110, 663–673. [Google Scholar] [CrossRef]
- Eggleston, G.; Côté, G.L. Oligosaccharides in Food and Agriculture; American Chemical Society: Washington, DC, USA, 2003; pp. 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Zheng, J.; Jiao, S.; Cheng, G.; Feng, C.; Du, Y.; Liu, H. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr. Polym. 2019, 220, 60–70. [Google Scholar] [CrossRef]
- Ahmed, K.B.M.; AKhan, M.M.; Siddiqui, H.; Jaha, A. Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydr. Polym. 2020, 227, 115331. [Google Scholar] [CrossRef]
- Matencio, A.; Caldera, F.; Cecone, C.; López-Nicolás, J.M.; Trotta, F. Cyclic Oligosaccharides as Active Drugs, an Updated Review. Pharmaceuticals 2020, 13, 281. [Google Scholar] [CrossRef]
- Ma, L.; Cao, J.; Xu, L.; Zhang, X.; Wang, Z.; Jiang, W. Effects of 1-methylcyclopropene in combination with chitosan oligosaccharides on post-harvest quality of aprium fruits. Sci. Hortic. 2014, 179, 301–305. [Google Scholar] [CrossRef]
- Bose, S.K.; Howlader, P.; Xiaochen, J.; Wenxia, W.; Heng, Y. Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via Abscisic acid signaling in strawberry. Food Chem. 2019, 283, 665–674. [Google Scholar] [CrossRef]
- Virgen-Ortiz, J.J.; Morales-Ventura, J.M.; Colín-Chávez, C.; Esquivel-Chávez, F.; Vargas-Arispuro, I.; Aispuro-Hernández, E.; Martínez-Téllez, M.A. Postharvest application of pectic-oligosaccharides on quality attributes, activities of defense-related enzymes, and anthocyanin accumulation in strawberry. J. Sci. Food Agric. 2019, 100, 1949–1961. [Google Scholar] [CrossRef]
- Shebis, Y.; Vanegas, A.; Tish, N.; Fallik, E.; Rodov, V.; Poverenov, E. Facile method for preparation of oligo-carboxymethyl cellulose and other oligosaccharides: Physicochemical properties and bioactivity. Food Hydrocoll. 2022, 127, 107530. [Google Scholar] [CrossRef]
- Ahmed, Z.; Alblooshi, S.; Kaur, N.; Maqsood, S.; Schmeda-Hirschmann, G. Synergistic Effect of Preharvest Spray Application of Natural Elicitors on Storage Life and Bioactive Compounds of Date Palm (Phoenix dactylifera L.; cv. Khesab). Horticulturae 2021, 7, 145. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Re-evaluation of celluloses E 460(i), E 460(ii), E 461, E 462, E 463, E 464, E 465, E 466, E 468 and E 469 as food additives. EFAS J. 2018, 16, 5047. [Google Scholar] [CrossRef] [Green Version]
- Saifur, R.; Saif, H.; Ashis, S.N.; Sunghyun, N.; Aneek, K.K.; Shameem, A.; Muhammad, J.A.S.; Mohammad, B.A. Recent Developments of Carboxymethyl Cellulose. Polymers 2021, 8, 1345. [Google Scholar]
- Enebro, J.; Momcilovic, D.; Siika-aho, M.; Karlsson, S. Liquid chromatography combined with mass spectrometry for the investigation of endoglucanase selectivity on carboxymethyl cellulose. Carbohydr. Res. 2009, 344, 2173–2181. [Google Scholar] [CrossRef] [PubMed]
- Horner, S.; Puls, J.; Saake, B.; Klohr, E.A.; Thielking, H. Enzyme-aided characterisation of carboxymethylcellulose. Carbohydr. Polym. 1999, 40, 1–7. [Google Scholar] [CrossRef]
- Brasil, I.M.; Gomes, C.; Puerta-Gomez, A.; Castell-Perez, M.E.; Moreira, R.G. Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT 2012, 47, 39–45. [Google Scholar] [CrossRef]
- El-Nagar, A.; Elzaawely, A.A.; Taha, N.A.; Nehela, Y. The Antifungal Activity of Gallic Acid and Its Derivatives against Alternaria solani, the Causal Agent of Tomato Early Blight. Agronomy 2020, 10, 1402. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, H.J.; Lee, C.Y.; Choi, W.Y. Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. LWT 2003, 36, 323–329. [Google Scholar] [CrossRef]
- Buslovich, A.; Horev, B.; Shebis, Y.; Rodov, V.; Gedanken, A.; Poverenov, E. A facile method for the deposition of volatile natural compound-based nanoparticles on biodegradable polymer surfaces. J. Mater. Chem. B 2018, 6, 2240–2249. [Google Scholar] [CrossRef]
- Voca, S.; Dobricevic, N.; Dragovic-Uzelac, V.; Duralija, B.; Druzic, J.; Cmelik, Z.; Babojelic, M.S. Fruit quality of new early ripening strawberry cultivars in Croatia. Food Technol. Biotechnol. 2008, 46, 292–298. [Google Scholar]
- Yu, Y.; Gim, S.; Kim, D.; Arnon, Z.; Gazit, E.; Seeberger, P.H.; Delbianco, M. Oligosaccharides Self-Assemble and Show Intrinsic Optical Properties. J. Am. Chem. Soc. 2019, 141, 4833–4838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibuya, N.; Minami, E. Oligosaccharide Signaling for Defense Responses in Plant. Physiol. Mol. 2001, 59, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-J.; Liu, M.; Dawuti, G.; Dou, Q.; Ma, Y.; Liu, H.-G.; Aibai, S. Antifungal Activity of Gallic Acid In Vitro and In Vivo. Phytother. Res. 2017, 31, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Przekwas, J.; Wiktorczyk, N.; Budzyńska, A.; Wałecka-Zacharska, E.; Gospodarek-Komkowska, E. Ascorbic Acid Changes Growth of Food-Borne Pathogens in the Early Stage of Biofilm Formation. Microorganisms 2020, 8, 553. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, D.; Stratford, M.; Gasson, M.; Ueckert, J.; Bos, A.; Narbad, A. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J. Appl. Microbiol. 2004, 97, 104–113. [Google Scholar] [CrossRef]
- Bouknana, D.; Jodeh, S.; Sbaa, M.; Hammouti, B.; Arabi, M.; Darmous, A.; Slamini, M.; Haboubi, K. A phytotoxic impact of phenolic compounds in olive oil mill wastewater on fenugreek “Trigonella foenum-graecum”. Environ. Monit. Assess. 2019, 191, 405. [Google Scholar] [CrossRef]
- Fang, Z.; Lei, C.; Peifeng, Z.; Jingqi, Z.; Xiaofang, L.; Wei, T. Carbohydrate polymers exhibit great potential as effective elicitors in organic agriculture: A review. Carbohydr. Polym. 2020, 230, 1–15. [Google Scholar] [CrossRef]
- Howlader, P.; Bose, S.K.; Zhang, C.; Jia, X.; Wang, W.; Yin, H. Pectin oligosaccharide (POS) induce resistance in Arabidopsis thaliana through salicylic acid-mediated signaling pathway against Pseudomonas syringae pv. tomato DC3000. Physiol. Mol. 2020, 110, 101483. [Google Scholar] [CrossRef]
Treatment | TSS (°Brix) | ||
---|---|---|---|
T2 | T5 | T7 | |
control | 9.8 ± 0.73a | 8.1 ± 1.2b′ | 7.3 ± 1.1c″ |
O-CMC | 11.1 ± 1.3a | 10.7 ± 0.4 a′ | 10.2 ± 0.65a″ |
Gallic control | 9.9 ± 1.6a | 8.6 ± 1.2b′ | 7.5 ± 1.3c″ |
Ascorbic control | 10.2 ± 1.3a | 9.4 ± 0.9b′ | 8.8 ± 0.5b″ |
Vanillin control | 10.8 ± 1a | 10.3 ± 0.3a′ | 9.9 ± 0.8a″ |
O-CMC gallic | 10.1 ± 1.1a | 8.9 ± 0.8b′ | 7.9 ± 0.6b″c″ |
O-CMC ascorbic | 10.6 ± 1.5a | 10.1 ± 1.6a′ | 9.3 ± 0.7a″b″ |
O-CMC vanillin | 11.5 ± 0.7a | 11.3 ± 1.2a′ | 10.9 ± 0.7a″ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shebis, Y.; Fallik, E.; Rodov, V.; Sagiri, S.S.; Poverenov, E. Oligomers of Carboxymethyl Cellulose for Postharvest Treatment of Fresh Produce: The Effect on Fresh-Cut Strawberry in Combination with Natural Active Agents. Foods 2022, 11, 1117. https://doi.org/10.3390/foods11081117
Shebis Y, Fallik E, Rodov V, Sagiri SS, Poverenov E. Oligomers of Carboxymethyl Cellulose for Postharvest Treatment of Fresh Produce: The Effect on Fresh-Cut Strawberry in Combination with Natural Active Agents. Foods. 2022; 11(8):1117. https://doi.org/10.3390/foods11081117
Chicago/Turabian StyleShebis, Yevgenia, Elazar Fallik, Victor Rodov, Sai Sateesh Sagiri, and Elena Poverenov. 2022. "Oligomers of Carboxymethyl Cellulose for Postharvest Treatment of Fresh Produce: The Effect on Fresh-Cut Strawberry in Combination with Natural Active Agents" Foods 11, no. 8: 1117. https://doi.org/10.3390/foods11081117
APA StyleShebis, Y., Fallik, E., Rodov, V., Sagiri, S. S., & Poverenov, E. (2022). Oligomers of Carboxymethyl Cellulose for Postharvest Treatment of Fresh Produce: The Effect on Fresh-Cut Strawberry in Combination with Natural Active Agents. Foods, 11(8), 1117. https://doi.org/10.3390/foods11081117