Variation in Bioactive Compounds and Antioxidant Activity of Rubus Fruits at Different Developmental Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Measurement of Fruit Horizontal Diameter, Vertical Diameter, Weight, and Hardness
2.3. Determination of Fruit Sugar and Protein Content
2.4. Determination of Antioxidant Capacity
2.5. Determination of Vitamin Contents
2.6. Determination of the Flavonoid Content
2.7. Determination of the Anthocyanin Content
2.8. Determination of the Total Phenol Content
2.9. Data Processing
3. Results
3.1. Fruit Morphological Index Analysis
3.2. Fruit Sugar and Protein Content Analysis
3.3. Active Antioxidant Substance Content Analysis
3.4. Antioxidant Ability Analysis
3.5. The Relationship between Fruit Biologically Active Substances and Antioxidant Capacity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodman, C.; Lyon, K.N.; Scotto, A.; Smith, C.; Sebrell, T.A.; Gentry, A.B.; Bala, G.; Stoner, G.D.; Bimczok, D. A high-throughput metabolic microarray assay reveals antibacterial effects of black and red raspberry and Blackberry against helicobacter pylori infection. Antibiotics 2021, 10, 845. [Google Scholar] [CrossRef] [PubMed]
- Strugala, P.; Dudra, A.; Kucharska, A.Z.; Sokól-Lętowska, A.; Wojnicz, D.; Cisowska, A.; Walkowski, S.; Sroka, Z.; Gabrielska, J.; Hendrich, A.B. Biological activity of the methanol and water extracts of the fruits of anthocyanin-rich plants grown in south-west Poland. Nat. Prod. Commun. 2015, 10, 467–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Xu, M.; Yuan, Y.; Zhang, X.; Tan, J.; He, J.; Tian, Y. Effect of raspberry extract on wound healing. Food Qual. Saf. 2021, 5, fyab013. [Google Scholar] [CrossRef]
- D’Angelo, R.W.O.; Gonçalves, M.M.; Fachi, M.M.; Vilhena, R.d.O.; Pontarolo, R.; Maluf, D.F. UPLC–QToF-MS characterization of blackberry extracts of cultivars ‘Tupy’, ‘Guarani’, and ‘Xavante’: Development of extract-loaded niosomes. Rev. Bras. Farmacogn. 2020, 30, 519–527. [Google Scholar] [CrossRef]
- Choe, U.; Li, Y.; Yu, L.; Gao, B.; Wang, T.T.Y.; Sun, J.; Chen, P.; Yu, L. Chemical composition of cold-pressed blackberry seed flour extract and its potential health-beneficial properties. Food Sci. Nutr. 2020, 8, 1215–1225. [Google Scholar] [CrossRef]
- Harshman, J.; Jurick Ii, W.; Lewers, K.; Wang, S.; Walsh, C. Resistance to Botrytis cinerea and quality characteristics during storage of raspberry genotypes. HortScience 2014, 49, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Li, W. Cultivation and Utiliazation of Blackberry in China; Jiangsu Science and Technology Press: Shenzhen, China, 2010; pp. 1–10. [Google Scholar]
- He, S.; Gu, Y.; Sun, Z.; Cai, J. Theoretic guide to blackberry introduction. J. Plant Resour. Environ. 1998, 7, 1–9. [Google Scholar]
- Linck, H.; Reineke, A. Rubus stunt: A review of an important phytoplasma disease in Rubus spp. J. Plant Dis. Protect. 2019, 126, 393–399. [Google Scholar] [CrossRef]
- Hussain, I.; Roberto, S.R.; Colombo, R.C.; De Assis, A.M.; Koyama, R. Cutting types collected at different seasons on blackberry multiplication. Rev. Bras. Frutic. 2019, 37, e939. [Google Scholar] [CrossRef]
- Liu, X.J.; Wang, X.R.; Tang, H.R.; Chen, Q. The complete chloroplast genome sequence of a hybrid blackberry (Rubus spp.) cultivar. Mitochondrial. DNA B Resour. 2021, 6, 2103–2104. [Google Scholar] [CrossRef]
- Moraes, D.; Machado, M.; Farias, C.; Barin, J.; Zabot, G.; Lozano-Sánchez, J.; Ferreira, D.; Vizzotto, M.; Leyava-Jimenez, F.; Limana da Silveira, T.; et al. Effect of microwave hydrodiffusion and gravity on the extraction of phenolic compounds and antioxidant properties of Blackberry (Rubus spp.): Scale-up extraction. Food Bioprocess Technol. 2020, 13, 2200–2216. [Google Scholar] [CrossRef]
- Gong, E.S.; Li, B.; Li, B.; Podio, N.S.; Chen, H.; Li, T.; Sun, X.; Gao, N.; Wu, W.; Yang, T.; et al. Identification of key phenolic compounds responsible for antioxidant activities of free and bound fractions of blackberry varieties’ extracts by boosted regression trees. J. Sci. Food Agric. 2022, 102, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Chen, S.; Zhang, H.; Jia, S.; Wang, J. Phytochemical composition and potential biological activities assessment of raspberry leaf extracts from nine different raspberry species and raspberry leaf tea. J. Berry Res. 2020, 10, 295–309. [Google Scholar] [CrossRef]
- Cefali, L.C.; Franco, J.G.; Nicolini, G.F.; Ataide, J.A.; Mazzola, P.G. In vitro antioxidant activity and solar protection factor of blackberry and raspberry extracts in topical formulation. J. Cosmet. Dermatol. 2019, 18, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Kopjar, M.; Tiban, N.N.; Pilizota, V.; Babic, J. Stability of anthocyanins, phenols and free radical scavenging activity through sugar addition during frozen storage of blackberries. J. Food Process Pres. 2009, 33, 1–11. [Google Scholar] [CrossRef]
- Birch, G. Spectrophotometric determination of glucose content in glucose derivatives. Ann. Clin. Biochem. 1963, 2, 216–217. [Google Scholar] [CrossRef] [Green Version]
- Claes, M.; Kristoffer, T. The influence of sodium hyaluronate molecular weight on protein content according to Lowry and Coomassie blue assays. Carbohyd Polym. 2008, 74, 745–748. [Google Scholar] [CrossRef]
- Xie, P.J.; Huang, L.X.; Zhang, C.H.; Zhang, Y.L. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure–activity relationships. J. Funct. Foods 2015, 16, 460–471. [Google Scholar] [CrossRef]
- Mohamed, A.F.; Abeer, A.A.; Ahlam, A.H.; Sharifa, A.B. Color, flavonoids, phenolics and antioxidants of Omanihoney. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.R.; Cui, H.X.; Fang, J.L.; Yuan, K.; Jin, S.H.; Zhu, X.T.; Xu, Y. Content determination of functional composition and antioxidant activity from six purple plants. Pharm. Mag. 2021, 17, 342–347. [Google Scholar] [CrossRef]
- Zawawi, N.; Chong, P.J.; Tom, N.N.M.; Anuar, N.S.S.; Mohammad, S.M.; Ismail, N.; Jusoh, A.Z. Establishing relationship between vitamins, total phenolic and total flavonoid content and antioxidant activities in various honey types. Molecules 2021, 26, 4399. [Google Scholar] [CrossRef] [PubMed]
- Adorno, V.L.; Reis, L.C.B.; Dias, Ê.R.; Camilloto, G.P.; Branco, A. Characterization of a flavonol-rich antioxidant fraction from Spondias purpurea L. pulp and the effect of its incorporation on cellulose acetate-based film. J. Sci. Food Agr. 2020, 101, 3270–3279. [Google Scholar] [CrossRef]
- Raudonis, R.; Raudonė, L.; Gaivelytė, K.; Viškelis, P.; Janulis, V. Phenolic and antioxidant profiles of rowan (Sorbus L.) fruits. Nat. Prod. Res. 2014, 28, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Veberic, R.; Hudina, M.; Zorenc, Z.; Koron, D.; Senica, M. Fruit quality characteristics and biochemical composition of fully ripe Blackberry harvested at different times. Foods 2021, 10, 1581. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, C.; Huang, Z.; Lyu, L.; Li, J.; Li, W.; Wu, W. The color difference of Rubus fruits is closely related to the composition of flavonoids including anthocyanins. LWT 2021, 149, 111825. [Google Scholar] [CrossRef]
- Yamamori, A.; Takata, Y.; Fukushi, E.; Kawabata, J.; Okada, H.; Kawazoe, N.; Ueno, K.; Onodera, S.; Shiomi, N. Structural analysis of novel low-digestible sucrose isomers synthesized from D-glucose and D-fructose by thermal treatment. J. Appl. Glycosci. 2017, 64, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Kafkas, E.; Koşar, M.; Turemis, N.; Baser, K.H.C. Analysis of sugars, organic acids and vitamin C contents of blackberry genotypes from Turkey. Food Chem. 2006, 97, 732–736. [Google Scholar] [CrossRef]
- Kefayeti, S.; Kafkas, E. Micropropagation of ‘Chester thornless’ blackberry cultivar using axillary bud explants. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 47, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N.C. Effect of ultraviolet irradiation on postharvest quality and composition of tomatoes: A review. J. Food Sci. Technol. 2017, 54, 3025–3035. [Google Scholar] [CrossRef]
- Papoutsis, K.; Vuong, Q.V.; Pristijono, P.; Golding, J.B.; Bowyer, M.C.; Scarlett, C.J.; Stathopoulos, C.E. Enhancing the total phenolic content and antioxidants of lemon pomace aqueous extracts by applying UV-C irradiation to the dried powder. Foods 2016, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Tekin, O.; çavuşoğlu, ş. The effects of different postharvest applications on some physicochemical properties in ‘Rubygem’ and ‘Sabrina’ strawberry (Fragaria x ananassa duch.) cultivars. Appl. Ecol. Environ. Res. 2018, 16, 5299–5310. [Google Scholar] [CrossRef]
- Kim, M.J.; Perkins-Veazie, P.; Fernandez, G. Storage life and composition of organically grown Blackberry. Hortscience 2012, 47, S20. [Google Scholar]
- Liu, M.; Li, X.Q.; Weber, C.; Lee, C.Y.; Brown, J.; Liu, R.H. Antioxidant and antiproliferative activities of raspberry. J. Agric. Food Chem. 2002, 50, 2926–2930. [Google Scholar] [CrossRef]
- Sun, Y.; Li, M.; Mitra, S.; Muhammad, R.H.; Debnath, B.; Lu, X.; Jian, H.; Qiu, D. Comparative phytochemical profiles and antioxidant enzyme activity analyses of the Southern Highbush Blueberry (Vaccinium corymbosum) at different developmental stages. Molecules 2018, 23, 2209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalt, W.; Lawand, C.; Ryan, D.; McDonald, J.; Donner, H.; Forney, C. Oxygen radical absorbing capacity, anthocyanin and phenolic content of highbush blueberries (Vaccinium corymbosum L.) during ripening and storage. J. Am. Soc. Hortic. Sci. 2003, 128, 917–923. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Achim, G.; Botu, M.; Iordănescu, O. Variation of bioactive compounds and antioxidant activity of jujube (Ziziphus jujuba) fruits at different stages of ripening. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 46, 134–137. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Zhao, G.; Jin, S.; Tong, X.; Sun, P. Comparison of transcriptional profiles of flavonoid genes and anthocyanin content during fruit development in Chinese bayberry (Myrica Rubra Sieb. & Zucc.). Chem. Eng. Trans. 2015, 46, 1423–1428. [Google Scholar]
- Moscatello, S.; Frioni, T.; Blasi, F.; Proietti, S.; Pollini, L.; Verducci, G.; Rosati, A.; Walker, R.P.; Battistelli, A.; Cossignani, L.; et al. Changes in absolute contents of compounds affecting the taste and nutritional properties of the flesh of three plum species throughout development. Foods 2019, 8, 486. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Du, W.; Wang, Y.; Teng, X.; Chen, X.; Ye, L. Total phenolic, flavonoid content, and antioxidant activity of bulbs, leaves, and flowers made from Eleutherine bulbosa (Mill.) Urb. Food Sci. Nutri. 2019, 7, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Ekin, S.; Bayramoglu, M.; Goktasoglu, A.; Ozgokce, F.; Kiziltas, H. Antioxidant activity of aqueous and ethanol extracts of Crataegus meyeri Pojark leaves and contents of vitamin, trace element. J. Chil. Chem. Soc. 2017, 62, 3661–3667. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Seco, D.; Zhang, Y.; Gutierrez-Mañero, F.J.; Martin, C.; Ramos-Solano, B. Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS ONE 2015, 10, e0142639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.M.; Yan, R.X.; Zhang, P.T.; Han, X.Y.; Wang, L. Anthocyanin accumulation rate and the biosynthesis related gene expression in Dioscorea alata. Biol. Plantarum. 2015, 59, 325–330. [Google Scholar] [CrossRef]
- Thole, V.; Bassard, J.E.; Ricardo, R.G.; Trick, M.; Ghasemi, A.B.; Breitel, D.; Hill, L.; Foito, A.; Shepherd, L.; Freitag, S.; et al. RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics. BMC Genom. 2019, 20, 995. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.C.; Li, C.L.; Zhang, J.W.; Li, S.J.; Luo, X.P.; Yao, H.P.; Chen, H.; Zhao, H.X.; Park, S.U.; Wu, Q. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis. Physiol. Plant 2014, 152, 431–440. [Google Scholar] [CrossRef]
- Matsui, K.; Umemura, Y.; Ohme-Takagi, M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J. 2008, 55, 954–967. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, T.; Pan, Q.; Anupol, N.; Chen, H.; Shi, J.; Liu, F.; Deqiang, D.; Wang, C.; Zhao, J.; et al. RrMYB5- and RrMYB10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in Rosa rugosa. Plant Biotechnol. J. 2019, 17, 2078–2095. [Google Scholar] [CrossRef] [Green Version]
Cultivar | Period | Horizontal Diameter (mm) | Longitudinal Diameter (mm) | Weight (g) | Hardness (kg·cm−2) |
---|---|---|---|---|---|
Chester | Green | 10.82 ± 0.79 aB | 11.65 ± 1.41 aC | 0.95 ± 0.30 aC | |
Green–red | 12.04 ± 0.84 aA | 12.95 ± 1.83 aAB | 1.00 ± 0.54 aA | ||
Red | 18.46 ± 0.83 bE | 21.90 ± 1.58 bC | 4.00 ± 0.71 bB | ||
Red–purple | 20.87 ± 0.93 cD | 22.50 ± 1.19 bBC | 4.79 ± 0.61 bB | 0.44 ± 0.05 aC | |
Purple | 23.22 ± 1.67 dC | 27.35 ± 1.41 cC | 6.84 ± 1.20 cC | 0.18 ± 0.05 bB | |
Hull | Green | 11.89 ± 0.61 aC | 15.50 ± 1.00 aE | 1.35 ± 0.28 aD | |
Green–red | 14.73 ± 0.80 bBC | 17.91 ± 1.39 bC | 2.04 ± 0.33 aC | ||
Red | 18.34 ± 1.51 cE | 22.77 ± 2.82 cC | 3.99 ± 0.94 bB | ||
Red–purple | 19.87 ± 1.28 dD | 24.43 ± 2.19 cdC | 4.92 ± 0.69 cC | 0.39 ± 0.05 aCD | |
Purple | 19.99 ± 0.93 dB | 25.50 ± 1.76 dBC | 5.21 ± 0.83 cC | 0.18 ± 0.06 bB | |
Boysen | Green | 12.39 ± 0.61 aC | 16.03 ± 0.66 aE | 1.24 ± 0.16 aD | |
Green–red | 15.41 ± 0.97 bC | 19.12 ± 2.44 bC | 2.30 ± 0.51 bC | ||
Red | 17.55 ± 1.41 cDE | 20.53 ± 2.05 bcC | 3.34 ± 0.67 cB | ||
Red–purple | 18.14 ± 0.87 cC | 22.06 ± 1.56 cB | 3.39 ± 0.64 cB | 0.44 ± 0.10 aC | |
Purple | 19.85 ± 1.20 dB | 24.98 ± 3.81 dBC | 5.12 ± 1.22 dC | 0.19 ± 0.09 bB | |
Young | Green | 10.28 ± 0.55 aB | 13.02 ± 0.85 aD | 0.72 ± 0.11 aBC | |
Green–red | 14.10 ± 0.87 bB | 18.34 ± 1.23 bC | 1.99 ± 0.16 bC | ||
Red | 16.16 ± 1.93 cCD | 22.56 ± 1.77 cC | 3.38 ± 0.61 cB | ||
Red–purple | 16.10 ± 1.20 cB | 22.97 ± 2.89 cBC | 3.40 ± 0.84 cB | 0.33 ± 0.06 aABC | |
Purple | 18.73 ± 1.82 dB | 21.37 ± 2.82 cB | 3.55 ± 0.60 cB | 0.10 ± 0.06 bA | |
Clode Summit | Green | 9.06 ± 0.39 aA | 8.45 ± 0.84 aA | 0.40 ± 0.05 aA | |
Multicolor | 12.97 ± 0.92 bA | 13.18 ± 0.90 bAB | 1.23 ± 0.18 bA | 0.25 ± 0.09 aA | |
Yellow | 16.25 ± 1.51 cA | 15.65 ± 1.00 cA | 3.32 ± 0.35 cB | 0.04 ± 0.02 bA | |
Heritage | Green | 10.15 ± 0.79 aB | 9.63 ± 0.74 aB | 0.54 ± 0.08 aAB | |
Green–red | 14.93 ± 1.12 bBC | 13.58 ± 1.21 bB | 1.44 ± 0.22 bB | ||
Red | 15.21 ± 0.72 bC | 14.15 ± 2.65 bB | 1.62 ± 0.58 bA | 0.36 ± 0.06 aBCD | |
Dark Red | 15.59 ± 1.27 bB | 12.90 ± 2.69 bA | 1.46 ± 0.49 bA | 0.21 ± 0.06 bB | |
Bristol | Green | 9.10 ± 0.68 aA | 8.24 ± 0.64 aA | 0.38 ± 0.06 aA | |
Green–red | 12.64 ± 0.75 bA | 10.93 ± 0.99 bA | 1.15 ± 0.18 bAB | ||
Red | 13.21 ± 1.06 bB | 11.50 ± 1.11 bcA | 1.25 ± 0.27 bA | ||
Red–purple | 13.62 ± 0.69 bA | 12.52 ± 1.06 cA | 1.25 ± 0.19 bA | 1.62 ± 0.09 aAB | |
Purple | 15.32 ± 0.78 cA | 14.08 ± 1.12 dA | 1.88 ± 0.28 cA | 1.46 ± 0.04 bA |
Component | Eigenvalues | Percent of Variance Explained/% | Cumulative Variance Contribution Rate/% |
---|---|---|---|
1 | 4.21 | 46.74 | 46.74 |
2 | 1.62 | 17.96 | 64.69 |
3 | 1.37 | 15.17 | 79.86 |
4 | 0.76 | 8.40 | 88.26 |
5 | 0.37 | 4.09 | 92.35 |
6 | 0.33 | 3.70 | 96.05 |
7 | 0.22 | 2.46 | 98.51 |
8 | 0.11 | 1.20 | 99.71 |
9 | 0.03 | 0.29 | 100.00 |
Component | |||
---|---|---|---|
1 | 2 | 3 | |
Fructose | −0.698 | 0.41 | −0.07 |
Glucose | −0.707 | 0.34 | 0.20 |
Soluble Sugar | −0.737 | 0.62 | −0.07 |
Vitamin C | −0.028 | 0.54 | −0.74 |
Vitamin E | 0.702 | 0.35 | 0.46 |
Flavonoids | 0.838 | 0.35 | 0.18 |
Anthocyanins | −0.421 | 0.36 | 0.70 |
Phenols | 0.822 | 0.44 | −0.03 |
DPPH free radical scavenging capacity | 0.794 | 0.31 | −0.18 |
Fructose | Glucose | Soluble Sugar | Vitamin C | Vitamin E | Flavonoids | Anthocyanins | Phenols | DPPH | |
---|---|---|---|---|---|---|---|---|---|
Fructose | 1 | 0.35 | 0.84 ** | 0.13 | −0.29 | −0.48 ** | 0.28 | −0.33 | −0.47 ** |
Glucose | 1 | 0.67 ** | 0.12 | −0.33 | −0.40 * | 0.52 ** | −0.47 ** | −0.44 * | |
Soluble Sugar | 1 | 0.32 | −0.34 | −0.37 * | 0.41 * | −0.33 | −0.38 * | ||
Vitamin C | 1 | −0.17 | −0.02 | −0.18 | 0.21 | 0.26 | |||
Vitamin E | 1 | 0.71 ** | 0.07 | 0.72 ** | 0.51 ** | ||||
Flavonoids | 1 | −0.14 | 0.82 ** | 0.72 ** | |||||
Anthocyanins | 1 | −0.24 | −0.28 | ||||||
Phenols | 1 | 0.68 ** | |||||||
DPPH | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Wu, Y.; Zhang, S.; Yang, H.; Wu, W.; Lyu, L.; Li, W. Variation in Bioactive Compounds and Antioxidant Activity of Rubus Fruits at Different Developmental Stages. Foods 2022, 11, 1169. https://doi.org/10.3390/foods11081169
Huang X, Wu Y, Zhang S, Yang H, Wu W, Lyu L, Li W. Variation in Bioactive Compounds and Antioxidant Activity of Rubus Fruits at Different Developmental Stages. Foods. 2022; 11(8):1169. https://doi.org/10.3390/foods11081169
Chicago/Turabian StyleHuang, Xin, Yaqiong Wu, Shanshan Zhang, Hao Yang, Wenlong Wu, Lianfei Lyu, and Weilin Li. 2022. "Variation in Bioactive Compounds and Antioxidant Activity of Rubus Fruits at Different Developmental Stages" Foods 11, no. 8: 1169. https://doi.org/10.3390/foods11081169
APA StyleHuang, X., Wu, Y., Zhang, S., Yang, H., Wu, W., Lyu, L., & Li, W. (2022). Variation in Bioactive Compounds and Antioxidant Activity of Rubus Fruits at Different Developmental Stages. Foods, 11(8), 1169. https://doi.org/10.3390/foods11081169