Isolation, Characterization, and Application of Clostridium sporogenes F39 to Degrade Zearalenone under Anaerobic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Medium
2.2. Analytical Methods
2.3. Isolation of ZEN-Degrading Strains
2.4. Identification of ZEN-Degrading Strains
2.5. Preparing the Inoculum for Degradation Studies
2.6. Biodegradation of ZEN by F39
2.6.1. Degradation Kinetics of F39
2.6.2. Effect of Culture Conditions on the Growth and Degradation of ZEN by F39
2.6.3. Localization of the Active Degradation Ingredients in F39
2.6.4. Analysis of the Degradation Products of ZEN by F39
2.6.5. Degradation of ZEN in Feed by F39
2.7. Cytotoxic Assay of ZEN Degradation Products on MCF-7 Cells
- PR = (A of experimental group/A of control group) × 100%.
- Cell culture was performed in an incubator at 37 °C with 5% CO2.
2.8. Statistical Analysis
3. Results and Discussion
3.1. Isolation and Identification of ZEN-Degrading Strains
3.2. Effect of Culture Conditions on the Growth of F39
3.3. Effect of Culture Conditions on the Degradation Efficiency of F39
3.4. Mechanism of ZEN Degradation by Strain F39
3.5. Estrogenic and Cytotoxic Effects of the ZEN Degradation Products on MCF-7 Cells
3.6. Degradation of ZEN in Feedstuffs by F39
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stob, M.; Baldwin, R.S.; Tuite, J.; Andrews, F.N.; Gillette, K.G. Isolation of an Anabolic, Uterotrophic Compound from Corn Infected with Gibberella Zeae. Nature 1962, 196, 1318. [Google Scholar] [CrossRef] [PubMed]
- Glenn, A.E. Mycotoxigenic Fusarium Species in Animal Feed. Anim. Feed Sci. Technol. 2007, 137, 213–240. [Google Scholar] [CrossRef]
- Hussein, H.S.; Brasel, J.M. Toxicity, Metabolism, and Impact of Mycotoxins on Humans and Animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef]
- Vlata, Z.; Porichis, F.; Tzanakakis, G.; Tsatsakis, A.; Krambovitis, E. A Study of Zearalenone Cytotoxicity on Human Peripheral Blood Mononuclear Cells. Toxicol. Lett. 2006, 165, 274–281. [Google Scholar] [CrossRef]
- Kuiper-Goodman, T.; Scott, P.M.; Watanabe, H. Risk Assessment of the Mycotoxin Zearalenone. Regul. Toxicol. Pharmacol. 1987, 7, 253–306. [Google Scholar] [CrossRef]
- Čonková, E.; Laciaková, A.; Pástorová, B.; Seidel, H.; Kováč, G. The Effect of Zearalenone on Some Enzymatic Parameters in Rabbits. Toxicol. Lett. 2001, 121, 145–149. [Google Scholar] [CrossRef]
- Obremski, K.; Poniatowska-Broniek, G. Zearalenone Induces Apoptosis and Inhibits Proliferation in Porcine Ileal Peyer’s Patch Lymphocytes. Pol. J. Vet. Sci. 2015, 18, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Hu, D.; Li, Y. Effects of Zearalenone on MRNA Expression and Activity of Cytochrome P450 1A1 and 1B1 in MCF-7 Cells. Ecotoxicol. Environ. Saf. 2004, 58, 187–193. [Google Scholar] [CrossRef]
- Miturski, R.; Semczuk, A.; Tomaszewski, J.; Jakowicki, J. Bcl-2 Protein Expression in Endometrial Carcinoma: The Lack of Correlation with P53. Cancer Lett. 1998, 133, 63–69. [Google Scholar] [CrossRef]
- Daković, A.; Matijašević, S.; Rottinghaus, G.E.; Dondur, V.; Pietrass, T.; Clewett, C.F. Adsorption of Zearalenone by Organomodified Natural Zeolitic Tuff. J. Colloid Interface Sci. 2007, 311, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Abd Alla, E.-S. Zearalenone: Incidence, Toxigenic Fungi and Chemical Decontamination in Egyptian Cereals. Food/Nahrung 1997, 41, 362–365. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, K.S.; Sarr, A.B.; Mayura, K.; Bailey, R.H.; Miller, D.R.; Rogers, T.D.; Norred, W.P.; Voss, K.A.; Plattner, R.D.; Kubena, L.F. Oxidative Degradation and Detoxification of Mycotoxins Using a Novel Source of Ozone. Food Chem. Toxicol. 1997, 35, 807–820. [Google Scholar] [CrossRef]
- Joannis-Cassan, C.; Tozlovanu, M.; Hadjeba-Medjdoub, K.; Ballet, N.; Pfohl-Leszkowicz, A. Binding of Zearalenone, Aflatoxin B1, and Ochratoxin A by Yeast-Based Products: A Method for Quantification of Adsorption Performance. J. Food Prot. 2011, 74, 1175–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Jin, H.; Lan, J.; Zhang, R.; Ren, H.; Zhang, X.; Yu, G. Detoxification of Zearalenone by Three Strains of Lactobacillus Plantarum from Fermented Food in Vitro. Food Control 2015, 54, 158–164. [Google Scholar] [CrossRef]
- Takahashi-Ando, N.; Kimura, M.; Kakeya, H.; Osada, H.; Yamaguchi, I. A Novel Lactonohydrolase Responsible for the Detoxification of Zearalenone: Enzyme Purification and Gene Cloning. Biochem. J. 2002, 365, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vekiru, E.; Hametner, C.; Mitterbauer, R.; Rechthaler, J.; Adam, G.; Schatzmayr, G.; Krska, R.; Schuhmacher, R. Cleavage of Zearalenone by Trichosporon Mycotoxinivorans to a Novel Nonestrogenic Metabolite. Appl. Environ. Microbiol. 2010, 76, 2353–2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biehl, M.L.; Prelusky, D.B.; Koritz, G.D.; Hartin, K.E.; Buck, W.B.; Trenholm, H.L. Biliary Excretion and Enterohepatic Cycling of Zearalenone in Immature Pigs. Toxicol. Appl. Pharmacol. 1993, 121, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Upadhaya, S.D.; Sung, H.G.; Lee, C.H.; Lee, S.Y.; Kim, S.W.; Cho, K.J.; Ha, J.K. Comparative Study on the Aflatoxin B1 Degradation Ability of Rumen Fluid from Holstein Steers and Korean Native Goats. J. Vet. Sci. 2009, 10, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Santamarina, A.; Gonzalez, E.G.; Lamas, A.; Mondragon, A.D.C.; Regal, P.; Miranda, J.M. Probiotics as a Possible Strategy for the Prevention and Treatment of Allergies. A Narrative Review. Foods 2021, 10, 701. [Google Scholar] [CrossRef]
- Paulina, S.; Edyta, J.-K.; Michał, W.; Monika, A.; Marek, R.L. Probiotics as a Biological Detoxification Tool of Food Chemical Contamination: A Review. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2021, 153, 112306. [Google Scholar]
- Chelius, M.K.; Triplett, E.W. The Diversity of Archaea and Bacteria in Association with the Roots of Zea Mays L. Microb. Ecol. 2001, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, F.; Xing, Y.J.; Lee, Y.W.; Mokoena, M.P.; Olaniran, A.O.; Xu, J.H.; Shi, J.R. Occurrence of Fusarium Mycotoxins and Toxigenic Fusarium Species in Freshly Harvested Rice in Jiangsu, China. World Mycotoxin J. 2020, 13, 201–212. [Google Scholar] [CrossRef]
- Berkman, S.J.; Roscoe, E.M.; Bourret, J.C. Comparing Self-Directed Methods for Training Staff to Create Graphs Using Graphpad Prism. J. Appl. Behav. Anal. 2019, 52, 188–204. [Google Scholar] [CrossRef] [PubMed]
- Budd, P.; Kubiak, A.; Collery, M.; Gustafsson, C.; Minton, N.; Kuehne, S. Using Modified Clostridium Sporogenes as a Delivery Vehicle for Anti-Cancer Therapeutics. Ann. Oncol. 2015, 26, ii20. [Google Scholar] [CrossRef] [Green Version]
- Ionata, E.; Canganella, F.; Bianconi, G.; Benno, Y.; Sakamoto, M.; Capasso, A.; Rossi, M.; La Cara, F. A Novel Keratinase from Clostridium Sporogenes Bv. Pennavorans Bv. Nov., a Thermotolerant Organism Isolated from Solfataric Muds. Microbiol. Res. 2008, 163, 105–112. [Google Scholar] [CrossRef]
- McSharry, S.; Koolman, L.; Whyte, P.; Bolton, D. Investigation of the Effectiveness of Disinfectants Used in Meat-Processing Facilities to Control Clostridium Sporogenes and Clostridioides Difficile Spores. Foods 2021, 10, 1436. [Google Scholar] [CrossRef]
- Wang, G.; Yu, M.; Dong, F.; Shi, J.; Xu, J. Esterase Activity Inspired Selection and Characterization of Zearalenone Degrading Bacteria Bacillus Pumilus ES-21. Food Control 2017, 77, 57–64. [Google Scholar] [CrossRef]
- Yang, S.B.; Zheng, H.C.; Xu, J.Y.; Zhao, X.Y.; Shu, W.J.; Li, X.M.; Song, H.; Ma, Y.H. New Biotransformation Mode of Zearalenone Identified in Bacillus Subtilis Y816 Revealing a Novel ZEN Conjugate. J. Agric. Food Chem. 2021, 69, 7409–7419. [Google Scholar] [CrossRef]
- Brodehl, A.; Moller, A.; Kunte, H.J.; Koch, M.; Maul, R. Biotransformation of the Mycotoxin Zearalenone by Fungi of the Genera Rhizopus and Aspergillus. FEMS Microbiol. Lett. 2014, 359, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.; Hu, Y.; He, J.; Wu, L.; Liao, F.; Luo, B.; He, Y.; Zuo, Z.; Ren, Z.; Zhong, Z.; et al. Zearalenone Degradation by Two Pseudomonas Strains from Soil. Mycotoxin Res. 2014, 30, 191–196. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium Species as Probiotics: Potentials and Challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Ren, C.; Gong, Y.; Gao, X.; Rajput, S.A.; Qi, D.; Wang, S. The Insensitive Mechanism of Poultry to Zearalenone: A Review. Anim. Nutr. 2021, 7, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Molina-Molina, J.-M.; Real, M.; Jimenez-Diaz, I.; Belhassen, H.; Hedhili, A.; Torné, P.; Fernández, M.F.; Olea, N. Assessment of Estrogenic and Anti-Androgenic Activities of the Mycotoxin Zearalenone and Its Metabolites Using in Vitro Receptor-Specific Bioassays. Food Chem. Toxicol. 2014, 74, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Drzymala, S.S.; Binder, J.; Brodehl, A.; Penkert, M.; Rosowski, M.; Garbe, L.-A.; Koch, M. Estrogenicity of Novel Phase I and Phase II Metabolites of Zearalenone and Cis-Zearalenone. Toxicon 2015, 105, 10–12. [Google Scholar] [CrossRef]
- Turcotte, J.C.; Hunt, P.J.; Blaustein, J.D. Estrogenic Effects of Zearalenone on the Expression of Progestin Receptors and Sexual Behavior in Female Rats. Horm. Behav. 2005, 47, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Balázs, A.; Faisal, Z.; Csepregi, R.; Kőszegi, T.; Kriszt, B.; Szabó, I.; Poór, M. In Vitro Evaluation of the Individual and Combined Cytotoxic and Estrogenic Effects of Zearalenone, Its Reduced Metabolites, Alternariol, and Genistein. Int. J. Mol. Sci. 2021, 22, 6281. [Google Scholar] [CrossRef]
Experimental Projects | Results | Experimental Projects | Results | Experimental Projects | Results |
---|---|---|---|---|---|
Cell morphology | Rods | Gram stain | Positive | Oxidase | − |
Catalase from Micrococcus lysodeikticus | − | Nitrate reduction | − | Indole production | − |
Acid production from fermented glucose | + | Arginine dihydrolase | + | Urease | + |
Heptachloride hydrolysis | + | Gelatin hydrolysis | + | β-Galactose adenosine | − |
Acid production from carbohydrates (API 50CH) | |||||
Glycerin | + | Inositol | − | Inulin | − |
Erythritol | − | Mannitol | − | Melezitose | − |
d-Arabinose | − | Sorbitol | − | Raffinose | − |
l-Arabinose | − | a-Methyl-d-mannoside | − | Starch | + |
d-Ribose | − | a-Methyl-d-glucoside | + | Glycogen | + |
d-Xylose | − | N-Acetyl-glucosamine | + | Xylitol | − |
l-Xylose | − | Amygdalin | − | Gentiobiose | − |
Adonol | − | Arbutin | + | d-Sondiose | + |
β-Methyl-d-xyloside | − | Esculin hydrate | + | d-Lysose | − |
d-Galactose | − | Salicin | + | d-Tagatose | + |
d-Glucose | + | Fibrous disaccharides | + | d-Fucose | − |
d-Fructose | + | Maltose | + | l-Fucose | − |
d-Mannose | − | Lactose | − | d-Arabinitol | − |
l-Sorbose | − | Melibiose | − | l-Arabinitol | − |
l-Rhamnose | − | Sucrose | − | Gluconate | − |
Dulcitol | − | d-Trehalose anhydrous | + | 2-Keto-gluconate | − |
Feed Type | A | A (pH Modified) | B | C | D | E | F |
---|---|---|---|---|---|---|---|
ZEN degradation rate (%) | 25.79 ± 1.76 | 42.39 ± 2.91 | 18.81 ± 0.46 | 25.32 ± 0.55 | 48.65 ± 2.58 | 43.59 ± 3.39 | 38.04 ± 1.42 |
pH | 4.18 ± 0.02 | 7.00 ± 0.02 | 3.79 ± 0.03 | 4.05 ± 0.03 | 4.99 ± 0.03 | 5.11 ± 0.06 | 4.75 ± 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, C.; Yu, Y.; Han, J.; Hu, J.; He, D.; Zhang, H.; Shi, J.; Mohamed, S.R.; Dawood, D.H.; Wang, G.; et al. Isolation, Characterization, and Application of Clostridium sporogenes F39 to Degrade Zearalenone under Anaerobic Conditions. Foods 2022, 11, 1194. https://doi.org/10.3390/foods11091194
Zhai C, Yu Y, Han J, Hu J, He D, Zhang H, Shi J, Mohamed SR, Dawood DH, Wang G, et al. Isolation, Characterization, and Application of Clostridium sporogenes F39 to Degrade Zearalenone under Anaerobic Conditions. Foods. 2022; 11(9):1194. https://doi.org/10.3390/foods11091194
Chicago/Turabian StyleZhai, Congning, Yangguang Yu, Jun Han, Junqiang Hu, Dan He, Hongyin Zhang, Jianrong Shi, Sherif Ramzy Mohamed, Dawood H. Dawood, Gang Wang, and et al. 2022. "Isolation, Characterization, and Application of Clostridium sporogenes F39 to Degrade Zearalenone under Anaerobic Conditions" Foods 11, no. 9: 1194. https://doi.org/10.3390/foods11091194
APA StyleZhai, C., Yu, Y., Han, J., Hu, J., He, D., Zhang, H., Shi, J., Mohamed, S. R., Dawood, D. H., Wang, G., & Xu, J. (2022). Isolation, Characterization, and Application of Clostridium sporogenes F39 to Degrade Zearalenone under Anaerobic Conditions. Foods, 11(9), 1194. https://doi.org/10.3390/foods11091194